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Abstract: Reducing the particle size of active material is an effective solution to the poor rate
performance of the lithium-ion battery. In this study, we proposed a facile strategy for the preparation
of nano-graphite as an anode for a lithium-ion battery via the rapid mechanical pulverization method.
It is the first time that diamond particle was selected as the medium to achieve high preparation
efficiency and low energy consumption. The as-prepared nano-graphite with the size from 10 to
300 nm displays an intact structure and high specific surface area. The introduced oxygen atoms
increased the wettability of nano-graphite electrode and lowered its polarization. The nano-graphite
prepared from three hours of grinding shows an excellent reversible capacity of 191 mAh g−1, at a
rate of 5 C, after 480 cycles, along with an increase of 86% in capacity, at 1 C, in comparison with
pristine graphite. The highlight of this strategy is to optimize the current preparation method. The
good electrochemical performance comes from the combined effect of nano-scale particle size, large
specific surface area, and continuous mesopores.
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1. Introduction

The lithium-ion batterie (LIB), as one of the most important energy storage devices that
plays an indispensable role in the world of production and living, has various advantages,
such as a high average output voltage and high energy density, and it is also environmen-
tally friendly [1]. The intercalation/deintercalation of Li+ plays an essential role in the
electric energy storage and release converted from the chemical energy stored in the com-
pound, laying the solid technical foundation of LIBs [2]. The evaluation of the performance
of LIBs is based on several important indicators, including charge and discharge capacity,
cycle life, and rate performance. Graphite is considered to be the most ideal anode material
in LIBs and is widely used in the commercial application due to its stable electrochemical
performance and high theoretical specific capacity (~372 mAh g−1) [3]. However, the poor
fast-charging ability of the graphite-based LIB impedes its further development, especially
for the application in electric vehicles and electrical power grids.

Designing a porous structure and nanosizing the graphite-based anode material can
effectively enhance the high-rate performance of LIBs, since this could shorten the Li+

migration distance. In the meantime, the contact area between the electrolyte and electrode
could be increased [4]. Recent studies have mainly focused on the design of porous graphite
to improve the intrinsic capability in fast charging. For example, Deng et al. reported that
the porous graphite synthesized by nickel-catalyzed gasification exhibits a high capacity
of 200 mAh g−1 at 5 C [5]. Deng et al. found that the porous graphite shows an excellent
capacity retention of 81.4% of its first irreversible capacity after 1500 cycles at 5 C, and this
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is much higher than that of commercial graphite [6]. Despite these intriguing merits of
porous graphite, the practical application is still limited by its complicated synthesis route.

In recent years, only a few studies have focused on nanosizing graphite into nano-
graphite. This is mainly due to the fact that exfoliating along the plane of the layered
material overcomes the van der Waals forces. Along the direction perpendicular to the
plane of the layered material, it is necessary to break the cooperation between atoms in
the plane of the layered material. For example, the shear force applied on graphite in
the vertical direction is 28 times stronger than the van der Waals force to be overcome in
the plane direction [7]. Nano-graphite usually provides more effective space and active
sites for the storage of lithium ions, which facilitate the migration of lithium ions during
the charge/discharge process [8]. The normal preparation methods for preparing nano-
graphite have been established, including ball milling [9,10] and mechanical grinding [11],
which impact and grind the graphite from top to bottom to refine the bulk material to
nanoscale size. For example, Li et al. obtained nano-graphite powder with a particle size
of 20–30 nm and a few-layered structure (3–5 layers) by using the ball-milling method.
It should be pointed out that the exfoliation process took 40 h to obtain nano-graphite,
consuming a lot of energy during the process [12]. Meanwhile, during the high-energy
collision, the milling medium, such as steel balls and zirconia balls, will lower the purity
of the product. Therefore, it is necessary to optimize the method to achieve both a high
preparation efficiency and good quality of product.

In this paper, we report about the novel synthesis route and applicable use of nano-
graphite as anode in LIBs, achieving high specific surface area, comparable areal capacities
with commercial graphite, outstanding cycle stability, and high-rate performance. We
propose a simple model for the Li-ion storage mechanism, and it accounts for the short
diffusion path of lithium ions during the lithiation/delithiation process, which results in
the high-rate performance of the nano-graphite electrode.

2. Materials and Methods
2.1. Fabrication of Nano-Graphite

Nano-graphite was prepared from natural flake graphite (1200 mesh, Shanghai Mack-
lin Biochemical Co., Ltd., Shanghai, China) by using a rapid pulverization method with the
introduction of diamond particles (80 mesh, Ai-zuan Novel Materials Co., Ltd., Shangqiu,
China). The mass ratio between natural flake graphite and diamond particle was 1:1,
the grinding speed was set to 2800 rpm, and the grinding time varied from one hour to
three hours. The as-pulverized nano-graphite materials were dispersed into isopropanol
solution (purity ≥ 99.5%, Shanghai Macklin Biochemical Co., Ltd., Shanghai, China) at a
concentration of 10 mg mL−1. After that, the dispersion was centrifuged at 3000 rpm for
10 min, and the supernatant was taken to obtain high-quality nano-graphite dispersion
with an average particle size of 300 nm. The nano-graphite materials prepared according to
different grinding times were named as NG-x, where NG stands for nano-graphite, and x
represents the grinding time (1, 2, and 3 h).

2.2. Structural Characterization

The prepared nano-graphite samples are systematically characterized by various mea-
surements, including UV-visible spectroscopy (Agilent Cary 5000, Palo Alto, CA, USA),
powder X-ray diffractometer (XRD, Bruker D8 Advance, Saarbrucken, Germany), Raman
spectrometer (Renishaw InVia, Gloucestershire, UK), X-ray photoelectron spectroscopy
(XPS, PHI Versa Probe II, Waltham, MA, USA), zeta potential and granular meter (An-
ton Paar, Litesizer™ 500, Shanghai, China), scanning electron microscopy (SEM, Hitachi
SU8010, Tokio, Japan), surface area and pore size analyzer (Anton Paar, Nova touch Quanta
chrome, Shanghai, China), and galvanostatic charge/discharge measurement (LAND,
CT2001A, Wuhan, China).
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2.3. Electrochemical Characterization

The lithium-ion semi-battery measurements were carried out by using a half-cell sys-
tem in CR2032-type coin cells. Nano-graphite was mixed with super P and polyvinylidene
fluoride (PVDF) binder to form slurry at the weight ratio of 8:1:1. The electrode was pre-
pared by casting the slurry onto copper foil, using a doctor blade, and drying in a vacuum
drying oven at 60 ◦C for 6 h. The active material loading content is about 0.8 mg cm−2.
The electrode was cut into circular pieces, with a diameter of 12 mm for coin-cell testing.
Li-ion batteries were assembled with lithium as the counter electrode. The electrolyte was
1.0 M LiPF6 in ethylene carbonate/diethyl carbonate (EC/DEC), with a volume ratio of
1:1, and polypropylene (PP) membrane was selected as the separator. The fabrication of
coin cells is operated in the glove box, with an Ar atmosphere (H2O and O2 < 0.01 ppm).
The lithium-ion batteries were cycled between 0.01 and 3 V, at a constant current density of
0.1 C on LAND CT2001A battery testing system at 25 degrees Celsius. Different current
rates, ranging from 0.1 to 5 C, were also utilized to measure the electrochemical response.

3. Results and Discussion

At present, various ways to prepare the nanoparticle have been established, including
the mechanical pulverization and ball-milling method. Herein, we report a novel rapid
pulverization method for the preparation of nanoparticle in this study (Scheme 1). The
rapid exfoliation here is based on the shear force provided by the diamond perpendicular
to the plane of the layered graphite flakes. The rotating grinding hammer in the cavity
creates a strong wind field, which drives the mixture to move in an orderly manner at a
high speed of 2000 rpm. With the synergistic effect of the centrifugal force and gravity,
the grinding hammers collide to create a strong impact force perpendicular to the plane
of graphite. The graphite flakes are pulverized on the collision surface, together with the
collision with diamond particles. The shear force is applied in the direction of the plane
of the graphite flakes to reduce the particle size. Since the size of the diamond particle is
small, in the same grinding time, the particle size of the product obtained after the addition
of the diamond is greatly reduced in comparison with the case of no addition.
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Scheme 1. Three-dimensional schematic illustration of the pulverization process for the preparation
of nano-graphite.

To characterize the as-obtained nano-graphite, three different nano-graphite materials
from different grinding times, named as NG-1, NG-2, and NG-3, were dispersed in iso-
propanol (IPA) solvent, separated by centrifugation process, and re-dispersed in IPA. The
stability of nano-graphite dispersion under centrifugation at 3000 rpm was checked after
standing overnight. The quantitative analysis of the concentration difference was carried
on by using UV–vis absorption spectrum. The intensity of the NG-3 curve in the range of
400–800 nm is 2.5-fold larger than the other curves, which implies that the concentration
for NG-3 is also 2.5 times larger, correspondingly (Figure 1a). Therefore, NG-3 was selected
for further characterization and electrochemical performance. The crystal structures of
pristine graphite and as-prepared NG-3 were investigated by powder X-ray diffractome-
ter (XRD) and Raman spectrometer. As shown in Figure 1b, both pristine graphite and
as-prepared NG-3 display the characteristic peaks in the XRD pattern of NG-3 located at 2θ
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of 26.2 and 44.4 degrees, which come from the (002) and (101) crystal planes, respectively
(Figure 1b). These two peaks are consistent with the characteristic peaks of graphite in
2H phase (PDF#41-1487) [13], which reveals that the crystal structure remains the same as
natural flake graphite after the pulverization and refinement process. The other two peaks
occur at 43.9 and 75.3 degrees and come from the non-well-separated diamond. It is worthy
to notice that the board peak at 26.2 degrees for NG-3 is the evidence to show that the lateral
size of nano-graphite is greatly cut down. Furthermore, the weak intensity and increased
full width at half maximum (FWHM) of (002) plane of NG-3 indicate that the graphitization
degree of the nano-graphite has decreased significantly [14]. A qualitative analysis for
defects and disordered carbons was carried out based on Raman spectra (Figure 1c). Both
pristine graphite and NG-3 show three characteristic peaks located at 1360 cm−1 (D band),
1580 cm−1 (G band), and 2695 cm−1 (2D band). The D band has been attributed to the
in-plane C–C stretching A1g vibration mode, which reflects the imperfect layers and dis-
ordered carbons. The G band corresponds to the splitting of the degenerate E2g vibration
mode [15]. The intensity ratio of D band and G band (ID/IG) determines the degree of
imperfection (in-plane defects and edge defects) in the as-prepared nano-graphite [16]. The
value of ID/IG for NG-3 is calculated to be 0.95, and this result is 0.12 for pristine graphite.
The increased value of ID/IG indicates the rise of the imperfection degree for NG-3 after
mechanical pulverization.
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Figure 1. (a) UV–vis absorption spectrum for the supernate of pristine graphite and as-exfoliated
NG-1, NG-2, and NG-3 after centrifugation. (b) XRD patterns and (c) Raman spectra of powder
sample of pristine graphite and NG-3.

In addition, the element composition on the surface, as well as the existence state
of nano-graphite material, was collected from XPS. The XPS result includes only C and
O elements, in which the amount of oxygen is 9.85 at%. For raw graphite flakes, this value
is 5 at%. According to peaks fitting of C 1s on Figure 2a, two different atomic bonding states
of surface atoms are centered at 284.6 and 286.7 eV for sp2 and sp3 hybridization of carbon
atom [17]. The introduction of oxygen atoms results from the high-energy pulverization
process when carbon atoms combine with oxygen to form C=O and C–O bonds, effectively
increasing the wettability of electrode materials and reducing the polarization of electrode
materials. Meanwhile, oxygen atoms lead to uneven charge distribution of the material,
and this is beneficial to the conduction of charges [18]. These characters are essential in the
working process of LIBs.
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Subsequently, the morphologies of as-obtained NG-3 and natural flake graphite were
investigated by SEM. In Figure 3a,b, pristine graphite mainly exists in the form of flakes
possessing the lateral size up to 12 µm with the smooth surface, as well as a clear layered
structure. As shown in Figure 3c, after pulverizing, the particle size of the nano-graphite
was significantly reduced; the statistical analysis of particle sizes is presented in Figure 3d.
Fifty nano-graphite particles in Figure 3c participated in the statistics, and the bar graph
demonstrates that the size of the majority of particles lies in the range of 250–300 nm,
leading to the average size of 276 (±78) nm. A further visual result was presented from zeta
potential and particle-size-analyzer based on DLS analysis (Figure 2b). The as-prepared
NG-3 was separated into two parts after centrifugation at the speed of 3000 rpm, including
the sediment and supernatant. The particle-size-distribution plot of the supernatant follows
the Gaussian curve approximation, giving the most abundant particle sizes, ranging from
255 to 355 nm, and the average value, located at 295 nm. The blue curve represents the
average particle size, up to 1 µm, coming from non-well-exfoliated graphite. The statistical
analysis in the SEM image and the quantitative DLS analysis are two pieces of evidence
that show the reduction of the particle size. During the pulverization process, the surface
roughness and irregular edges increase because the shear force generated by the impact of
the diamond and the effective collision with inner wall of the container damage the ordered
structure of the graphite. In addition, the agglomeration of the nano-graphite particles
ascribes to the higher specific surface energy of the particles.

Figure 4 presents the surface area and pore size distribution based on the BET theory.
According to the nitrogen adsorption-desorption curve, there is a significant increase of
Brunauer–Emmett–Teller (BET) specific surface area for NG-3 (138 m2 g−1), as compared
with pristine graphite (8 m2 g−1). Although the specific surface area of NG-3 is smaller
than the theoretical value of mesoporous materials (~2000 m2 g−1), this value (138 m2 g−1)
is similar to the those of previously reported graphene nanosheets (184 m2 g−1) [2]. In
addition, as shown in Figure 4a, both the curves of NG-3 and pristine graphite show a
hysteresis loop, corresponding to typical IV type of isothermal adsorption curve and the
classification of H3, indicating that a large number of mesoporous channels are formed by
material accumulation [19]. The pore size distribution plots in Figure 4b demonstrate that
the average pore radius is about 2.2 nm for NG-3 and 1.8 nm for pristine graphite based on
the BJH model; this further proves the existence of mesopores in NG-3. The increase of pore
radius and uneven distribution of disordered mesopores of NG-3 mainly result from the
shear force at random direction during the pulverization process and uneven distribution
of generated defects. Moreover, the micropore volume is only 0.05 cm3 g−1, indicting a
very low content of micropores.
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Galvanostatic charge–discharge techniques were utilized for the electrochemical per-
formance of the as-obtained nano-graphite. In order to understand the rection kinetics of
Li ions, we carried out the cyclic voltammetry experiments for NG-3 and natural graphite
under different sweeping rates. As presented in Figure 5a, anodic and cathodic current
peaks are located at 0.25 and 0.75 V, respectively, indicating the removal and extraction
behavior of lithium [20]. In addition, the inconspicuous broad peak at 1.2 V mainly results
from the reversible redox reaction that occurred from the deintercalation of Li+. We then
consider the charge-storage mechanism by qualitatively analyzing the relationship in CV
experiment between peak current, i, and scan rate, v: i(v) = avb, where a is the constant,
and b stands for the power-law exponent [21]. Experimentally, the b value is 0.5 and 1 for
the battery material and pseudocapacitive material, corresponding to a diffusion-controlled
and capacitor-like process. For NG-3 electrode, the b-values of anodic and cathodic current
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were calculated to be 0.65/0.64 based on the Figure 5a. The results of the b-value lie within
0.5 to 1 and are very close to 0.5, indicating a mixture of diffusion-controlled and capacitor-
like process but with diffusion-controlled mechanism being dominate [22]. The CV curve
of natural graphite displays defined anodic and cathodic peaks at around 0.2 V/0.1 V, thus
suggesting its battery-like characteristic (Figure 5c). Both NG-3 and natural graphite show
a similar anodic peak, and NG-3 exhibits a higher cathodic peak at 0.75 V as compared to
natural graphite. Moreover, the Galvanostatic lithiation/delithiation profile of the NG-3
electrode is another way to tell the difference in the discharge voltage plateau (Figure 5d).
The discharge voltage plateau (~0.1 V) for natural graphite is extremely low, and this will
cause a safety problem due to the formation of lithium dendrites, especially at a high cur-
rent density [23]. The rise of the discharge voltage plateau (~0.75 V) for the NG-3 electrode
should improve the safety of the cell.
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Figure 5. (a) Cyclic voltammetry curves of NG-3 electrode at a scan rate ranging from 0.1 to 1.6 mV
s−1. (b) Log|v| − log|i| plot to determine b value based on its slope. (c) Cyclic voltammetry
curves of NG-3 and natural graphite electrode at a scan rate of 0.1 mV s−1. (d) Galvanostatic
lithiation/delithiation profiles of NG-3 and natural graphite electrode at current density of 0.1 C.

Furthermore, the rate performance shows that the discharge capacity varies as current
densities increase for NG-3 (Figure 6a). The discharge capacities for NG-3 were measured
to be 340.3 mAh g−1 at a rate of 0.5 C, 297.2 mAh g−1 at 1 C, 201.2 mAh g−1 at 2 C, and
185.5 mAh g−1 at 5 C. As the current density moved back to 0.1 C after 50 cycles, the
NG-3 electrode could still deliver a capacity of 380 mAh g−1. In addition, NG-3 shows
a stable circulation performance, with a good reversible capacity of 191 mAh g−1 after
480 cycles and stable coulombic efficiency around 100% (Figure 6b). The Galvanostatic lithi-
ation/delithiation profiles of NG-3 electrodes under 5 C could be separated into three parts:
(1) from the first to 20th cycle, the capacity decreases from 153.5 mAh g−1 to 139.5 mAh g−1;
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(2) negative fading happens from the 21st to the 350th cycle; and (3) stabilization starts
from the 351st cycle, delivering a capacity of 191 mAh g−1. The negative fading can be
mainly ascribed to the continuous consumption of lithium and electrolyte-derived surface
reaction, leading to the increased capacity [24].
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current rates between 0.01 and 3.0 V vs. Li/Li+. (b) The cycle stability of NG-3 at the rate of 5 C.
(c) The capacity and (d) normalized ones at different current rates for pristine graphite and NG-3.

In contrast, the rate performance tests for commercial pristine graphite were also
carried out. The comparison of discharge capacities between NG-3 and pristine graphite is
presented in Figure 6c,d. It should be pointed out that the capacities of NG-3 are always
greater than those of pristine graphite at any current densities. To be specific, the largest
difference is calculated to be 86% (∆c = 137.2 mAh g−1) of increase at a rate of 1 C for
NG-3, as compared with pristine graphite. The normalized capacities for NG-3 and pristine
graphite are shown in Figure 6c. The capacities of both materials decline with the increase
of current densities. Nevertheless, at a rate of 5 C, the capacity retention for NG-3 is
46%, while this result is only 28% for pristine graphite (Figure 6d). To be specific there
was a dramatic improvement in results from the reduction of the particle size and the
introduction of the porous structure, which significantly shortens the transport path of
lithium ions between the nano-graphite sheets. In addition, the introduction of oxygen
atoms on the surface of the nano-graphite also facilitates the migration of ions inside the
electrode material.

4. Conclusions

A facile method to fabricate nano-graphite was developed by using a diamond-based
pulverization technique wherein the diamonds were mixed with the natural graphite and
then were cut to nanosize due to the force from the paddle of the crusher. The particle size
of as-prepared nano-graphite fall into the range from 10 to 300 nm, with a high specific
surface area of 138 m2 g−1. The nanosize of the graphite increases the contact area between
the electrolyte and the electrode material, providing a shorter Li+ diffusion path inside the
graphite. Consequently, the capacity at high current density increases. The NG-3 exhibits
an excellent reversible capacity of 191 mAh g−1 at a high current rate of 5 C in LIBs, much
higher than the natural graphite. Compared with the costly conventional method to prepare
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nano-graphite, the current method not only allows us to prepare them at a low cost at a
large scale but also achieves high preparation efficiency and low energy consumption. The
developed scalable method in this study should enable the nano-graphite to be a potential
anode material for the next-generation high-rate LIBs.
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