

Contents lists available at ScienceDirect

One Health

journal homepage: www.elsevier.com/locate/onehlt

Role of rodents in the zoonotic transmission of giardiasis

Junqiang Li^{a,b,c}, Huikai Qin^{a,b,c}, Xiaoying Li^{a,b,c}, Longxian Zhang^{a,b,c,*}

^a College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China

^b International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450046, China

^c Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, China

ARTICLE INFO

Keywords:

Rodents

Assemblages

Giardia duodenalis

Zoonotic transmission

ABSTRACT

Four species of Giardia out of nine have been identified in rodents based on molecular data: G. muris, G. microti, G. cricetidarum, and G. duodenalis. A total of seven G. duodenalis assemblages (A, B, C, D, E, F, G) have been identified in rodents to date. The zoonotic assemblages A and B are responsible for 74.88% (480/641) of the total identified genotypes in rodents by statistic. For sub-assemblage A in humans, AII is responsible for 71.02% (1397/1967) of the identified sub-assemblages, followed by AI with 26.39% (519/1967) and AIII with 1.17% (23/1967), indicating a significantly greater zoonotic potential for G. duodenalis infections in humans originating from animals. For sub-assemblages of type A in rodents, AI was identified in 86.89% (53/61), and AII in 4.92% (3/61). For assemblage B, 60.84% (390/641) were identified in rodents as having zoonotic potential to humans. In environmental samples, the zoonotic assemblages A and B were responsible for 83.81% (533/636) in water samples, 86.96% (140/161) in fresh produce samples, and 100% (8/8) in soil samples. The same zoonotic potential assemblage A or B simultaneously identified in humans, rodents, and environment samples had potential zoonotic transmission between humans and animals via a synanthropic environment. The infections and zoonotic potential for G. duodenalis were higher in farmed rodents and pet rodents than that in zoo, lab, and wild rodents. In conclusion, the role of rodents in zoonotic transmission of giardiasis should be noticed. In addition to rodents, dogs, cats, wild animals, and livestock could be involved in the zoonotic transmission cycle. This study aims to explore the current situation of giardiasis in rodents and seeks to delineate the role of rodents in the zoonotic transmission of giardiasis from the One Health perspective.

1. Introduction

Giardia spp. are important zoonotic protozoan pathogens that infect the intestines of a wide range of vertebrate hosts, including humans [1,2]. Giardia spp. are diplomonad flagellates found in a broad range of vertebrates. There are currently nine validated species (G. duodenalis, G. microti, G. muris, G. agilis, G. ardeae, G. psittaci, G. varani, G. peramelis, and G. cricetidarum) that have been identified based on the combination of cysts, trophozoite morphology, and host specificity [2]. Among these, G. duodenalis (synonyms G. lamblia and G. intestinalis) is commonly identified in humans and a wide range of livestock, wildlife, and companion animals [3,4].

Although asymptomatic infections can often occur, the main symptom for giardiasis (caused by G. duodenalis) is self-limiting diarrhea. It has also been associated with arthritis and irritable bowel syndrome in humans [2,3]. G. duodenalis is one of the most prevalent enteric parasites

globally, with a high prevalence in both developing and developed countries [4]. G. duodenalis is known as a multispecies complex [5], with a total of eight genetically distinct assemblages (A-H). The zoonotic assemblages A and B are found in both humans and animals; hostadapted assemblages C and D occur primarily in dogs, E in ruminants, F in cats, G in rodents, and H in seals [2]. These assemblages likely represent different Giardia species, and this is supported by the apparent host specificity and distinct genetic polymorphism [5,6].

The ssu rRNA locus is a common marker for Giardia species differentiation; the conserved nature of that locus, however, makes genotyping results of G. duodenalis less reliable [6,7]. In addition to the ssu *rRNA* gene, β -giardin (*bg*), triosephosphate isomerase (*tpi*), elongation factor 1 alpha (ef1a), and glutamate dehydrogenase (gdh) genes are common markers for species differentiation and genotyping and subtyping of G. duodenalis [4,6], and even for whole-genome sequencing (WGS) applied to identification [8]. This generally involves sequence

https://doi.org/10.1016/j.onehlt.2023.100500

Received 29 November 2022; Received in revised form 3 February 2023; Accepted 5 February 2023 Available online 8 February 2023 2352-7714/© 2023 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

^{*} Corresponding author at: College of Veterinary Medicine, Henan Agricultural University, No. 218 of Ping An Avenue, Zhengdong Newly-developed Area, Zhengzhou 450046, China.

E-mail address: zhanglx8999@henau.edu.cn (L. Zhang).

The infections of Giardia duodenalis in different human populations.

Populations	Locations	Total No.	Positive no.	Infection (%)	No. of genotyped	Assemblages	Sub-assemblage	
Humans								
Common humans	Brazil, Canada, Egypt, Ethiopia, Iran, Italy, Jamaica, Malaysia, New Zealand, Poland, Romania, Uganda, United Arab Emirates	13,822	680	4.92%	502	A (311), B (175), E (2); F (1), A/B (12), B/E (1)	AI (63), AII (94)	
Hospital patients	Bangladesh, Belgium, China, Turkey	7661	425	5.55%	349	A (64), B (266), A/B (19)	AI (8), AII (36), AI/ AII (1) AII/AIII (8)	
Diarrheal patients	Canada, Egypt, Nepal, Netherlands, Spain, Vietnam	4907	308	6.28%	239	A (66), B (142), B/E (9), A/ B (22)	AI (7), AII (37)	
Community								
Communities and households peoples	Argentina, Brazil, Ethiopia, Malaysia, Mongolia, Peru, South Africa, Thailand	2230	329	14.75%	136	A (52), B (73), C (1), A/B (3), A/C or A/D (7)	AII (18), AII/AIII (1)	
Poor communities people ²	Australia, Bangladesh, Brazil, India, Thailand, Uganda,	6434	1172	18.22%	791	A (317), B (393), A/B (61), D (4), C (3), A/C or A/D (13)	AI (45), AII (124), AIII (21), AII/AIII (10)	
Children in								
Community								
Common children ³	Australia, Brazil, China, Cuba, Guinea- Bissau, Italy, Peru, Malaysia, Mexico, Mozambique, Sahrawi, Saudi Arabia, Spain, Tanzania: Thai-Myanmar border, Uganda	7818	791	10.12%	347	A (160), B (154), E (15), A/ B (17), F (1)	AI (31), AII (77)	
Children in poor communities ⁴	Brazil, Slovakia, Thailand, Uganda	1578	235	14.89%	146	A (66), B (75), A/B (5)	AI (1), AII (44)	
Children								
Asymptomatic children	Mozambique, Portugal, Spain	4764	1341	28.15%	156	A (20), B (132), A/B (4)	AI (1), AII (14), AII/AIII (6)	
Symptomatic children ⁵	Albania, China, Egypt, Ethiopia, Gabon, Mexico, Mozambique, Slovakia, Sweden	2321	518	23.06%	163	A (55), B (100), A/B (9)	AI (1), AII (27), AII/AIII (1)	
Peoples frequently connected with animals ⁶	Côte d'Ivoire, Egypt, Germany, Ghana, Spain	719	110	15.30%	89	A (75), B (7), A/B (7)	AI (60), AII (12)	
Cases								
Sporadic and outbreaks cases ⁷	Africa, Argentina, Australia, Brazil, Canada, China, Côte d'Ivoire, Egypt, Ethiopia, Europe, France, India, Iran, Japan, Italy, Mexico, Nicaragua, New Zealand, Norway, Peru, Qatar, Turkey, Netherlands, Norway, Portugal South Korea, Spain, Sweden				4703	A (1887), B (2666), A/B (81), C (3); D (4); E (37), F (5), A/F (7);		
	Uganda, United Kingdom, United States							
Total		52,254	5909	11.31%	7621	A (3072), B (4174), A/B (263), E (54), D (8), C (7), F (6), B/E (10), A/F (7), A/ C or A/D (20)	AI (519), AII (1397), AIII (23), AI/AII (1), AII/ AIII (27)	

Communities and households peoples ¹: Communities, Municipalities, Households, Asymptomatic immigrants.

Poor communities people ²: Poor communities people: Asymptomatic Indigenous People, Rural communities, Villages communities, Poor communities, Valley communities, Rural villages community, Amazonas communities.

Children ³: Children, kindergarten children, School children, Community children.

Children in poor communities⁴: School children in rural community, Low-income families children, School children in villages; Children and adolescents in villages. Symptomatic children⁵: Children with acute gastroenteritis, Symptomatic children, Children with flatulence, Children with diarrhea, Symptomatic young children, Symptomatic school children.

Peoples frequently connected with animals ⁶: Animals owners, Farmers connected with animals, Zookeepers, Zookeepers and veterinarians.

Sporadic and outbreaks positive cases ⁷: Only with the positive samples identification. Cases.

analysis of PCR products from these targets. Apparent host adaptation has been observed among the three classical sub-assemblages within assemblage A; sub-assemblage AI is mainly found in animals, subassemblage AII is mostly found in humans, while sub-assemblage AIII has been almost exclusively found in wild ruminants, especially deer [4,6]. Assemblage B is more polymorphic than assemblage A, with the generation of numerous subtypes at each of the three common genotyping loci. In contrast, the initial identification of sub-assemblages BIII and BIV based on the results of allozyme electrophoretic analysis is not supported by phylogenetic analysis [7,9]. Sequence polymorphism is apparently also present among assemblages C, D, and E isolates, although the utility of subtyping of these pathogens has not been demonstrated [10-13]. Whole-genome sequencing and comparative genomics analysis have been used for high-resolution tracking of infection and contamination sources in giardiasis outbreaks [8,14]. Results of these comparative genomics analyses have confirmed the zoonotic transmission of assemblage B and sub-assemblage AI [14].

The life cycle of *G. duodenalis* comprises rapidly multiplying trophozoites and environmentally hardy cysts that are released in the feces and spread through the fecal-oral route [15]. The trophozoite is the vegetative form and replicates in the small intestine of the host, and the cyst is the environmentally stable stage of the parasite life cycle that facilitates the zoonotic transmission of cysts passed in the feces of one host into the environment to be ingested by the subsequent host, leading to waterborne or foodborne outbreaks [16–19]. Several drugs have been approved for the treatment of giardiasis in humans; however, treatment failures are common with giardiasis and no vaccines are available [3,19–21].

Rodents are the most abundant and diversified order of mammals [22]. Since the Middle Ages, it has been recognized that rodents can contribute to human disease [22–25]. In modern times, rodents are also recognized as carriers of many human pathogens with public health

Fig. 1. The infections and assemblages distributions of Giardia duodenalis in humans (A) and rodents (B).

importance, and almost 10% of the global rodent population is either a carrier or a reservoir of pathogens with public health importance [24–26]. While much progress has been made in *Giardia* research, no retrospective analyses have been done on the epidemiology, diversity, or transmission routes of this parasite in rodents, and there has been no assessment of the potential risks posed to human and animal populations. This article aims to explore the current situation for giardiasis both in humans and rodents and attempts to examine the role of rodents in the zoonotic transmission of giardiasis from the One Health perspectives (human–animal–environment).

2. Search strategy and selection criteria

We searched PubMed, Web of Science, MEDLINE, ScienceDirect, China National Knowledge Infrastructure (CNKI), and WANGFANG DATA for publications written in both English and Chinese for epidemiology records of *Giardia* by using the search terms "*Giarida*" AND "Human," OR "*Giarida duodenalis*" AND "Human" for human populations; "*Giarida duodenalis*" AND "Rodent," OR "*Giarida duodenalis*" AND "Rodent" for rodents populations; "*Giarida duodenalis*" AND "water," OR "*Giarida duodenalis*" AND "vegetable," OR "*Giarida duodenalis*" AND "soil" for environment samples. We restricted our search to updates published before October 10, 2022. The titles and abstracts of the literature were screened first, followed by the full articles, for inclusion in the epidemiology summary in this article. The literature from recent reviews was also used to find the original records. Additional key references were retrieved from the published personal databases of all coauthors. The raw data for occurrence and genotypes distributions of *Giarida* were showed in supplemental materials.

3. Molecular characteristics of Giardia in humans

Among the *Giardia* species, *G. duodenalis* is the only reported species that infects humans. There are many human populations that have been documented as having infections of *G. duodenalis* (Table 1). The pooled prevalence is 11.31% (5909/52254). For the locations, there were at least 53 countries that have reported *G. duodenalis* infections in humans, and the prevalence ranges from 0.42% (33/7805) [27] in humans in Romania to 62.22% (28/45) [28] for school children in Tanzania (Fig. 1).

The presence of diarrhea is a risk factor for *G. duodenalis* infections in previous investigations, as the pooled prevalence for diarrheal patients

Table 2 The infections of Giardia duodenalis in different rodents.

4

Host animals	Scientific name	Rodent types	Locations	Total No.	Positive no.	Infection (%)	No. of genotyped	Genetic locus	Assemblages	Sub-assemblage
Giardia muris										
Hamsters		Farmed	USA				1	SSU rDNA		
Mouse	Mus musculus	Lab	Australia				3	SSU rDNA		
Rat	Rattus spp.	Wild	Sweden				2	SSU rDNA		
mouse	Mus musculus	Wild	Sweden				1	SSU rDNA		
Swiss albino mice		Lab	Turkey				1	bg		
Hamsters	Phodopus sungorus	Farmed	China	87	3	3.45%	3	SSU rRN, bg, ef-1 α		
Berkenhout	Rattus norvegicus	Wild	China	23	4	17.39%	4	SSU rRN, bg, ef-1 α		
Mice	Apodemus spp	Wild	Germany	93	31	33.33%	31	SSU rDNA		
Voles	Microtus spp	Wild	Germany	175	2	1.14%	2	SSU rDNA		
Voles	Myodes spp	Wild	Germany	301	3	1.00%	3	SSU rDNA		
Subtotal	• •			679	43	6.33%	51			
Giardia microti										
Rats	Rattus norvegicus	Wild	US				1	SSU rRNA		
Deer mice	Peromyscus maniculatus	Wild	US				1	SSU rRNA		
Muskrat	Ondatra zibethicus	Wild	US				3	SSU rRN. tvi		
Mouse	Mus musculus	Wild	Sweden				1	SSU rDNA		
Günther's Voles	Microtus guentheri	Pet	Italy				2	SSU rRNA		
Milne Edwards	Eothenomys melanogaster	Wild	China	7	7	100%	7	SSU rRNA		
Mice	Anodemus spp	Wild	Germany	93	7	7.53%	7	SU rRN ho odh		
Voles	Microtus spp	Wild	Germany	175	134	76.57%	134	SU rRN hø ødh		
Voles	Myodes spp	Wild	Germany	301	173	57.48%	173	SU rRN hø ødh		
Subtotal	injouco opp	, , ind	Germany	576	321	55.73%	329	00 Hall, 08, 8al		
Giardia				0,0	011	0017070	029			
cricetidarum										
Hamsters	Phodopus campbelli	Farmed	China	9	9	100%	9	SSU rRN, bg, ef-1 α		
Hamsters	Mesocricetus	Farmed	China	11	11	100%	11	SSU rRN, bg, ef-1 α		
Homotoro	uuruus Dhodonus sungonus	Formod	China	07	26	41 2004	26	CCIL PDN by of 1		
Subtotal	Photopus sungorus	Fallieu	Cillia	0/ 107	56	41.30%	56	330 Min, bg, ej-1a		
Subtotal				107	30	32.3470	50			
Giardia doudenalis										
Alashan ground	Spermophilus alaschanicus	Wild in the field	China	99	2	2.02%	2	bg, gdh, tpi	B (2)	
Asian house rats	Rattus tanezumi	Wild in the field	China	33	2	6.06%	2	hg. gdh. tni	G (2)	
Bamboo rat	Rhizomys sinensis	Farmed	China	480	52	10.83%	52	bg. gdh. tni	B (52)	
Beaver	Castor canadensis	Wild in the field	Canada, United States				32	SSU rRNA. Toi	A (18): B (14)	AI (1)
Beaver	Castor canadensis	Zoo	United States	62	4	6.45%	4	TPI. ssrRNA. bg	B (4)	
Beaver	Castor fiber	Zoo	China	3	1	33.33%	1	hg. gdh. tni	B (1)	
Berkenhout	Rattus norvegicus	Wild in the field	China	23	1	4.35%		SSU rRN. bg. ef-1a		
Black rats	Rattus rattus	Wild in the field	Iran	40	2	5.00%	2	tpi	B (1), G (1)	
Brown rats	Rattus norvegicus	Wild in the field	China , Iran	208	12	5.77%	12	bg, gdh, tpi	G (12)	
Brown rats	Ruttus norvegicus	Lab	China	355	33	9.30%	33	bg, gdh, tpi	G (33)	
Bush rat	Rattus fuscipes	Wild in the field	Australia	12	1	8.33%	1	SSU rRNA, bg	C/F (1)	
01 - 1 - 11			Brazil, Romania, Italy,	074		55.05%	007	bg, tpi, gdh, SSU		11 (0)
Chinchilla	Chinchilla lanigera	Farmed	Europe	976	557	57.07%	236	rRNA, ITS	А (2); В (193); С (2), D (33), Е (6)	AI (2)
Chinchilla	Chinchilla lanigera	Pet	Germany, Belgium, China, Czech Republic	220	91	41.36%	90	bg, gdh, tpi	A (13) B (62), C (14), E (1)	AI (8), AII (3), AI/ AII (2)
Chipmunk	Eutamias asiaticus	Pet	China	279	24	8.60%	24	bg, gdh, tpi	A (13); G (11)	AI (13)

(continued on next page)

Table 2 (continued)

Host animals	Scientific name	Rodent types	Locations	Total No.	Positive no.	Infection (%)	No. of genotyped	Genetic locus	Assemblages	Sub-assemblage
Coypus Desmarest's hutia	Myocastor coypus Capromys pilorides	Farmed Pet	China Europe	308	38	12.34%	38 1	bg, gdh, tpi bg, tpi, SSU rRNA, ITS	A (2); B (36) B (1)	AI (2)
Dolichotis	Dolichotis patagonum	Zoo	China	15	6	40.00%	6	bg, gdh, tpi	A (3); B (1), E (2)	AI (3)
Groundhog Guinea pig Guinea pig	Cavia porcellus Cavia porcellus	Wild Lab Pet	Canada Australia Sweden				2 3 1	SSU rRNA Allozymesb bg, gdh, tpi	A (2) A (3) B (1)	AI (3)
Guinea pig	Cavia porcellus	Farmed	Europe	121	5	4.13%		bg, tpi, SSU rRNA, ITS		
Hamsters	Phodopus sungorus	Farmed	China	87	6	6.90%		SSU rRN, bg, ef-1 α		
marmot	himalayana	Wild in the field	China, Gansu	399	6	1.50%	6	bg, gdh, tpi	A (1); B (4), E (1)	
House mice	Mus musculus	Free living in community	China	31	1	3.23%	1	bg, gdh, tpi	G (1)	
House mice	Mus musculus	Wild in the field	Iran	40	1	2.50%	1	tpi	G (1)	
Mouse	Pseudomys albocinereus	Wild in the field	Australia	2	1	50.00%	1	SSU rRNA, bg	E (1)	
Mouse Mouse Muskrat	Apodemus spp. Mus musculus Ondatra zibethicus	Wild in the field Wild in the field Wild in the field	Germany Sweden United States	82	1	1.22%	1 1 5	SU rRNA, bg, gdh bg, gdh, tpi SSU rRN, tpi	A (1) A (1) B (5)	
Muskrat	Ondatra zibethicus	Wild in the field	Romania	1	1	100%	1	gdh	C (1)	
Norway rats	Rattus norvegicus	community	Spain	100	35	35.00%		gdh, tpi		
Prairie dogs	Cynomys ludovicianus	Lab	USA	60	29	48.33%	29	bg, gdh, tpi	A (19); B (6), A/B (4)	AI (16), AI/AII (3)
Prairie dogs	Cynomys ludovicanus	Pet	Thailand	79	11	13.92%	2	ssu rRNA, tpi, gdh	A (1); B (1)	AI (1)
Prairie dogs	Cynomys ludovicanus	Wild in the field	Canada				1	SSU rRNA	A (1)	
Patagonian cavy	Docilchotis patagonum	Zoo	Croatia	1	1	100%	1	bg, tpi, gdh, SSU rRNA, ITS	B (1)	
Prevost's squirrel	Callosciurus prevosti	Zoo	Croatia	1	1	100%	1	bg, tpi, SSU rRNA, ITS	B (1)	
Rat	Rattus spp.	Lab	Australia				2	Allozymesb	G (2)	
Rat	Rattus spp.	Wild in the field	Sweden				8	bg, gdh, tpi	G (8)	
Rat	Rattus spp.	community	Spain	64	9	14.06%	9	bg, gdh, tpi	G (9)	
Rodents	11	Wild in the field	Brazil	136	4	2.94%	4	gdh, tpi	A (4)	AI (4)
urban rodents	/	Free living in community	Malaysia	134	4	2.99%	1	tpi	B (1)	
Voles	Myodes spp.	Wild in the field	Germany	301	4	1.33%	4	SU rRN, bg, gdh	A (2), B (2)	
Wild rodent	//	Wild in the field	Spain	284	73	25.70%	20	bg, gdh, tpi	B (1); G (19) A (86) B (390) G (99) D (33) C	AL (53) ALL (3)
	Subtotal			5306	1019	20.23%	641		(17), E (11), A/B (4); C/F (1)	AI/AII (5)

The infections of Giardia duodenalis in water sources, fresh produce, and soil.

*						a		
Location	Environment factors	Total No.	Positive No.	Infection rate (%)	No. of samples genotyped	Genetic locus	Assemblages	
Philippines	Lake stations	36	6	16.67%	6	SSU rRNA	A (6)	
Philippines	Tributary rivers	69	26	37.68%	26	SSU rRNA	A (24), B (2)	
China	Sewer wastewater	386	319	82.64%	202	tpi	A (243), B (6), A/B (53)	AII (243)
Colombia	River Water	55	26	47.27%	26	gdh	A (19), B (7)	AII (2)
Pakistan	Water Bodies	600	160	26.67%	11	SSU rRNA		
Norway	Sewage	40	30	75.00%	30	SSU rRNA, bg,	A (27), B (3)	AII (27)
	Raw, surface and sewage	0.6	10	06 110/	10	gun		AI (1), AII
Hungary	water	30	13	36.11%	12	SSU FRNA, gan	A (7), B (1), A/B (4)	(4)
China	Wastewater Combined sewer	40	32	80.00%	32	bg, gdh, tpi	A (31), B (1)	AII (31)
China	overflow	40	33	82.50%	33	bg, gdh, tpi	A (31), B (1), G (1)	AII (31)
Spain	Treated wastewater	96	12	12.50%	12	SSU rRNA, bg	A (5), A/E (7)	AI (2), AII (3)
Romania	Wastewater and Different Surface Water	76	22	28.95%	22	gdh	A (9), D (1); E (12)	AII (9)
France	Wastewater	36	25	69.44%	25	tpi	A (8), B (1), E (4), A/B (5), A/	
China	Raw urban wastewater	48	23	47 92%	23	tni	E (7) A (17) B (5) A/B (1)	AII (17)
China	Recreational lakes	52	51	98.08%	5	SSII rRNA	A(3) B(1) D(1)	/m (1/)
Malaysia	Recreational lake water	9	7	77.78%	7	SSU rRNA	A (7)	
USA, Canada, New Zealand	Raw surface water				29	tpi, WGS	A (6), B (21), A/B (2)	AI (6)
Canada	Raw surface water				29	SSU rRNA, bg, gdh, tpi, WGS	A (4), B (25)	
Brazil	Water	10	3	30.00%	1	SSU rRNA, gdh, tvi	E (1)	
Egypt	Raw water	10	10	100.00%	11	tvi. gdh	A (10)	AII (10)
Bangladesh	Water samples	24	14	58.33%	5	tpi, bg	B (1), E (4)	()
US	Sewage samples				1	SSU rRNA	A (1)	
	Subtotal	1663	812	48.83%	636		A (458), B (75), A/B (12), A/E (14), D (2), E (21), G (1)	AI (9), AII (377)
Italy	Ready-to-eat salads and	324	25	7.72%	25	bg	A (6), B (18), E (1)	
Pakistan	Vegetables	200	16	8 00%	11	SSU rRNA		
Brazil	Vegetables	11	2	18 18%	2	ba adh	B (2)	
Brazil	Fresh Leafy Vegetables	128	16	12 50%	16	adh	A (16)	AII (16)
Brazil	Vegetables	260	10	7.31%	11	gdh	A (9), B (1), E (1)	AI (9)
Brazil	Vegetables	62	16	25.81%	2	SSU rRNA, gdh,	E (2)	
India	Fresh produce	284	13	4 58%	2	φι SSU rRNA, tpi,	A (1) D (1)	
	Ready-to-eat packaged	201	10	10070	-	gdh		
Italy	salad	648	4	0.62%	4	tpi	A (4)	
Syria	Salad vegetables Ready-to-eat packaged	128	17	13.28%	17	bg	B (17)	
Canada	leafy greens	544	10	1.84%	9	SSU rRNA	A (2), B (7)	
Spain	Green leafy vegetables	129	30	23.26%	11	qPCR		
Morocco	Leafy green	152	4	2.63%	//	qPCR		
Iraq	Vegetables and fruits	230	4	1.74%	//	SSU rRNA		
China	Street markets vegetables	642	73	11.37%	73	SSU rRNA	B (72), E (1)	
Mozambique	Fresh Horticultural Products	321	12	3.74%	//	bg		
	Subtotal	4063	261	6.42%	161		A (38), B (117), E (5), D (1)	AI (9), AII (16)
Brazil	Soil	10	2	20.00%	//	SSU rRNA, gdh,		(10)
Delvictor	Coil	400	71	17 7504	//	ΨL SSU #DNA		
Colombia	Soil	400 50	/1 Q	16.00%	// 8	35U TKNA adh	$\Lambda(A) = R(A)$	AII (1)
GOIOIIIDIa	Subtotal	460	0 81	10.00%	0 8	zun	A (4), B (4)	ΔII (1)
	Jupiolai	400	01	17.0170	0		··· (¬) u (¬)	ALI (1)

(6.28%, 308/4907) is significantly higher (P < 0.001) than that for common human populations (4.92%, 680/13822). Asymptomatic infections also seem common for *G. duodenalis*, as the pooled prevalence for the population of asymptomatic children (28.15%, 1342/4764) was higher than that for symptomatic children (23.06%, 518/2321) (Table 1).

households (14.75%, 329/2230). As for the children and *G. duodenalis*, the rate of infection in children in poor communities (14.89%, 235/1578) was significantly higher (P < 0.001) than that for more affluent children (10.12%, 791/7818) (Table 1).

Poor sanitation and hygiene are other risk factors for *G. duodenalis* infections identified in previous investigations. Undoubtedly, the pooled prevalence for people in poor communities (18.22%, 1172/6434) is significantly higher (P < 0.001) than that for common communities and

Contact with animals is another risk factor for *G. duodenalis* infections identified in some previous investigations. The pooled prevalence for people frequently in contact with animals (15.30%, 110/719) is significantly higher (P < 0.001) than that for the overall human population (4.92%, 680/13822) (Table 1).

The pooled prevalence for children is generally higher than that for

Distributions of different Giardia duodenalis assemblages in humans and rodents.

Assemblages	No. of genotyped	Major hosts	Reports in humans	Reports in rodents (Positive no.)
Assemblage A	86	Humans, non-human primates, ruminants, pigs, horses, canines, felines, rodents, marsupials, other mammals	Numerous	Chinchilla (1), Beaver (12), Chinchilla (7), Guinea pig (3), Chinchilla (2), Beaver (6), Chinchilla (5), Prairie dogs (19), Mouse (1), Voles (2), Chipmunk (13), Rodents (4), Coypus (2), Prairie dogs (1), Himalayan marmot (1), Dolichotis (3), Mouse (1), Prairie dogs (1), Groundhog (2)
AI	66	Livestocks	Few	Chinchilla (1), Chinchilla (7), Guinea pig (3), Chinchilla (2), Beaver (6), Chinchilla (5), Prairie dogs (19), Chipmunk (13), Rodents (4), Coypus (2), Prairie dogs (1), Dolichotis (3)
AII	8	Humans	Numerous	Chinchilla (5), Prairie dogs (3)
Assemblage B	390	Humans, non-human primates, horses, rabbits, marsupials, chinchillas, beavers	Numerous	Beaver (7), Muskrat (5), Beaver (4), Guinea pig (1), Prevost's squirrel (1), Patagonian cavy (1), Chinchilla (10), Chinchilla (3), Chinchilla (29), Desmarest's hutia (1), Chinchilla (10), Wild rodent (1), Beaver (1), Beaver (7), Chinchilla (33), Prairie dogs (6), Chinchilla (151), Chinchilla (1), Voles (2), Bamboo rat (52), urban rodents (1), Chinchilla (18), Coypus (36), Black rats (1), Prairie dogs (1), Himalayan marmot (4), Alashan ground squirre (2), Dolichotis (1)
Assemblage C	17	Canines	Few	Chinchilla (16); Muskrat (1)
Assemblage D	33	Canines	Few	Chinchilla (33)
Assemblage E	11	Ruminants, pigs	Some	Mouse (1); Chinchilla (7); Himalayan marmot (1); Dolichotis (2)
Assemblage G	99	Mice, rats	None	Rat (2), Rat (8), Wild rodent (19), Brown rats (11), Asian house rats (2), House mice (1), Chipmunk (11), Brown rats (33), Rat (9), House mice (1), brown rats (1), Black rats (1)

other populations, indicating that the age group is a significant factor for *G. duodenalis* infections. Many factors, including specimen size, host immune status, and diagnostic techniques, may also be responsible for the differences in *G. duodenalis* prevalence in different geographic areas (Table 1).

Among the positive samples, a total of 7621 samples (including 4703 sporadic or outbreak positive cases) were successfully genotyped by *ssu rRNA* or by *bg*, *gdh* or *tpi* genes. For *G. duodenalis*, a total of six assemblages (A, B, C, D, E, and F) and some mixed assemblages have been identified. The *G. duodenalis* assemblage B is dominant (54.77%, 4174/7621), followed by assemblage A (40.31%, 3072/7621) and mixed infections of assemblage A and B (3.45%, 263/7621).

For *G. duodenalis* assemblage A, genotype AII is the most common sub-assemblage identified in humans at 71.02% (1397/1967). For other subtypes within assemblage A, sub-assemblage AI was identified in 26.39% of cases (519/1967), AIII in 1.17% (23/1967), and mixed infections (AI/AII or AII/AIII) comprised 1.42% (28/1967) in animals in previous investigations.

In addition to the zoonotic assemblages A and B, assemblage E (0.71%, 54/7621) has been identified in humans, followed by D (0.10%, 8/7621), C (0.09%, 7/7621), F (0.08%, 6/7621), and some mixed infections of B/E (0.13%, 10/7621), A/F (0.09%, 7/7621), and A/C or A/D mixed genotypes (0.26%, 20/7621).

Unquestionable, the assemblages A and B are the dominant genotypes in humans, being responsible for 98.53% (7509/7621) of the identified genotypes. It is worth noting that assemblage E, although it was considered as ruminant-specific previously, has the potential for zoonotic transmission between humans and animals.

4. Molecular characteristics of Giardia in rodents

4.1. Prevalence of Giardia in rodents

To date, among the nine valid *Giardia* species, four have been identified in rodents based on molecular data: *G. muris, G. microti, G. cricetidarum*, and *G. duodenalis* (Table 2). *G. microti* and *G. cricetidarum* were the most prevalent in rodents, being identified in 55.73% (321/576) and 52.34% (56/107), respectively. The pooled prevalence in rodents of *G. muris* was 6.33% (43/679), and *G. duodenalis* was 20.23% (1019/5306).

There were also other *Giardia* species identified in rodents based only on morphology, including the natural intestinal *G. muris* (9.3%, 19/204) in rodents in Iran [29] and 19.2% (10/52) in another study [30]; *Giardia* sp. was identified in captive rats (*Rattus norvegicus*) in Brazil zoos with 42.86% (3/7) [31]; *Giardia* sp. was identified in Syrian hamsters (*Mesocricetus auratus*) by morphology and histology of intestinal tissues [32].

4.2. Molecular characteristics of G. duodenalis by rodents species

The pooled prevalence of *G. duodenalis* was 20.23% (1019/5306) in rodents by molecular identification. For the locations, there were at least 16 countries that reported rodent infections of *G. duodenalis*, and the infection rates ranged from 1.31% (5/383) [33,34] in chinchillas in Germany to 66.25% (53/80) [35] for chinchillas in Belgium, and 100% (2/2) [36] for squirrels in Croatia [37] (Fig. 1).

Among the *G. duodenalis*-positive samples identified in rodents, only 641 samples were successfully genotyped by *ssu rRNA*, *bg*, *gdh* or *tpi* genes. A total of seven assemblages were identified in rodents: A (86), B (390), G (99), D (33), C (17), E (11), A/B (4), and C/F (1). Assemblage B was predominant (60.84%, 390/641), followed by assemblage G (15.44%, 99/641), assemblage A (13.42%, 86/614), assemblage D (5.15%, 33/641), assemblage C (2.65%, 17/641), assemblage E (1.72%, 11/641), and some mixed infections (assemblage A/B (0.62%, 4/641) and assemblage C/F (0.16%, 1/641)).

For different rodent species, the prevalence of *G. duodenalis* varied from 1.00% (3/301) in voles (*Myodes* spp.) to 57.07% (557/976) in chinchillas (*Chinchilla lanigera*) (Table 2). Among the genotypes, the *G. duodenalis* zoonotic assemblages B (n = 390) were frequently identified in most rodent species, and the *G. duodenalis* zoonotic assemblages A (n = 86) and rodent host-specific G (n = 99) were both commonly identified in rodents (Table 2).

For subtypes of assemblage A in rodents, sub-genotype AI is the most common sub-assemblage, identified in 86.89% (53/61) in rodents. Sub-assemblage AII, previously identified in humans, was responsible for 4.92% (3/61), and mixed (AI/AII) infections are also common at 8.20% (5/61).

For the other assemblage distributions, assemblage C (n = 17) has been reported in chinchillas (*Chinchilla lanigera*) in Italy [38], and

Distributions of Giardia duodenalis in rodents of different feeding types.

Rodents feeding types	Total No.	Positive no.	Infection (%)	No. of genotyped	Assemblages(no.)	Sub-assemblage A	Zoonotic potential (%)
Wild in the field	1660	111	6.69%	106	A (30); B (29); C (1); E (2); G (43), C/F (1)	AI (5)	53.15%
Free living in community	329	49	14.89%	11	B (1); G (10)	//	9.09%
Pet	578	126	21.80%	118	A (27); B (65); G (11), C (14), E (1)	AI (22), AII (3), AI/ AII (2)	77.97%
Farm	1972	658	33.37%	326	A (4); B (281); C (2); D (33); E (6)	AI (4)	87.42%
Zoo	82	13	15.85%	13	A (3); B (8); E (2)	AI (3)	84.62%
Lab	415	62	14.94%	67	A (22); B (6); G (35); A/B (4)	AI (19), AI/AII (3)	41.79%
Total	5036	1019	20.23%	641	A (86), B (390), A/B (4); G (99), C (17); D (33); E (11); C/F (1)	AI (53), AII (3), AI/ AII (5)	74.26%

muskrats (*Ondatra zibethicus*) in Romania [36]. Assemblage D (n = 33) was only reported in chinchillas in one study in Romania [39]. Assemblage E (n = 11) was reported in mice (*Pseudomys albocinereus*) in Australia [40], chinchillas (*Chinchilla lanigera*) in Romania [39], and Himalayan marmots (*Marmota himalayana*) and maras (*Dolichotis patagonum*) in China [41,42]. The mixed of assemblage C and F was identified in wild bush rats (*Rattus fuscipes*) in Australia [40].

5. Molecular characteristics of *G. duodenalis* in environmental samples

The environmental factors involved in the *G. duodenalis* transmission are cysts contaminating water, soil, or fresh produce (Table 3). For water samples, the pooled prevalence of *G. duodenalis* was 48.83% (812/1663), with the highest record in recreational lakes in China at 98.08% (51/52) [43] and 100% (10/10) in untreated water in Egypt [44]. Among the positive samples, only 636 were successfully genotyped by *ssu rRNA*, *bg*, *gdh*, or *tpi* genes. There were five kinds of *G. duodenalis* assemblages identified in water samples, namely A, B, D, E, and G, and some mixed infections A/B and A/E. The zoonotic assemblage A was dominant (72.01%, 458/636), followed by assemblage B (11.79%, 75/636), assemblage E (3.30%, 21/636), assemblage D (0.31%, 2/636), and mixed infections A/B (1.89%, 12/636) and A/E (2.20%, 14/636).

For the fresh produce, *G. duodenalis* was identified in green leafy vegetables, street market vegetables, ready-to-eat packaged leafy greens and fresh horticultural products, ready-to-eat salads, and fruits (Table 3). The pooled prevalence of *G. duodenalis* infection in fresh produce was 6.42% (261/4063). Among the positive samples, only 161 were successfully genotyped by *ssu rRNA*, *bg* or *gdh* genes, with assemblage A, B, D, and E being identified. Among these, the zoonotic assemblage B was dominant (72.67%, 117/161), followed by assemblage B (23.60%, 38/161), assemblage E (3.11%, 5/161), and assemblage D (0.62%, 1/161).

For the soil, only three studies have reported infections of *G. duodenalis* in soil samples. The pooled prevalence was 17.61% (81/460) [45–47]. Among the positive samples, only eight samples were successfully genotyped by *ssu rRNA* or *gdh* genes, including assemblage A (50.0%, 4/8) and B (50.0%, 4/8) [47]. There were also some other negative results reported for *G. duodenalis* infections in soil samples, such as in Brazil [48,49], Egypt [44], and Mongolia [50].

Both *G. duodenalis* sub-genotypes AI and AII were identified in environmental factors (Table 3). Sub-assemblage AI has mostly been seen in animals in previous investigations, and AII in humans.

6. Ecological significance from a one health perspective for giardiasis transmission

6.1. Possible waterborne or foodborne zoonotic transmission

Giardia duodenalis causes large numbers of gastrointestinal illnesses in humans, and there have been over 300 reported outbreaks of giardiasis in the world since 1954, most of which were related to contaminated water [16,17,51]. The largest drinking water outbreak of giardiasis was reported in Portland, Oregon, USA in 1955, with 50,000 infected individuals [17]. More recently, important waterborne giardiasis extensive outbreaks have been documented in Bergen, Norway, in 2004, with over 2500 individuals becoming infected (1500 patients were laboratory diagnosed) caused by drinking water contaminated with *Giardia* cysts in sewage pipes due to leakage from one particular septic tank [52,53].

In North America, there were two outbreaks (83 laboratory confirmed cases were documented in the first outbreak, and 124 laboratory confirmed cases were identified during the second outbreak) at five-year intervals that occurred in the same community with a population of 4200 in the mountains of British Columbia, Canada [54]. In November 1981, an outbreak of waterborne giardiasis occurred at a popular ski resort in Colorado, United States [55]. Many waterborne giardiasis outbreaks have been documented, and giardiasis outbreaks are usually associated with drinking water or recreational water exposure [16].

Very few foodborne outbreaks have been documented [17], and only 38 foodborne outbreaks of giardiasis have been reported [56]. In many of the outbreak investigations, the food type or source was frequently undetermined. However, a variety of foods have been implicated, with fresh produce the most common food type and infected food handlers the most common source [56].

For sporadic cases, numerous risk factors have been identified, including direct and indirect fecal contact, male–male sexual contact, and international travel; these factors have very high odds ratios, but on a population basis, additional risk factors with lower odds ratios are still important because of their high prevalence. These include daycare exposure, swimming in or drinking from natural water bodies, and even chronic gastrointestinal conditions or the use of antibiotics [19,57].

Numerous studies of the relative importance of genotypes A (usually AII) and B have been reported, but the results of these studies do not clearly identify a difference in epidemiology. In contrast, there is accumulating evidence that genotype AI is primarily a zoonotic infection [19]. These studies have also identified the common concurrence of both assemblages A and B in drinking water-associated outbreaks of giardiasis [7,14].

6.2. Zoonotic potential of G. duodenalis from rodents

From a One Health perspective, the human–animal–environment has been identified as being involved in the *G. duodenalis* transmission. For humans, the zoonotic assemblages A, B, and mixed infections have been identified in 98.53% (7509/7621) of the human samples. The animal host-specific C, D, E, F, and mixed infections were identified in 0.98% (75/7621) of cases, and the mixed genotypes were identified in 0.49% (37/7621).

For rodents, the zoonotic assemblages A, B and mixed infections were identified in 74.88% (480/641) of rodents samples. The rodent

host-specific assemblage G was identified in 15.44% (99/641); the dog host-specific assemblages C and D were identified in 7.80% (50/641); the ruminant host-specific assemblage E was identified in 1.72% (11/641), and one dog/cat host-specific assemblage C/F (0.16%, 1/641) was identified.

For the environmental samples, the zoonotic assemblages A, B, and mixed infections were identified in 85.69% (545/636) in water samples; the ruminant host-specific assemblage E was identified in 3.30% (21/636); the dog host-specific assemblage D was identified in 0.31% (2/636); the rodent host-specific assemblage G was identified in 0.16% (1/636), and there were 14 assemblage A/E mixed infections (2.20%, 14/636). The zoonotic assemblages A, B, and mixed infections were identified in 96.27% (155/161) in fresh produce samples; the ruminant host-specific assemblage E was identified in 3.11% (5/161); the dog host-specific assemblage D was identified in 0.62% (1/161). The zoonotic assemblages A (n = 4) and B (n = 4) were identified in 100% (8/8) of reported soil samples.

G. duodenalis assemblages A and B are the major zoonotic assemblages, and assemblage E has also been reported in humans; C and D are occasionally reported in humans, while G has not been reported in humans to date (Table 4). The animal host-specific assemblages C, D, E, and F identified in rodents indicated that the dogs, cats, wild animals, and some farm animals could be involved in the *G. duodenalis* zoonotic transmission cycle. The rodents could also serve as the reservoir for *G. duodenalis* transmission between different animals.

For rodents, there are six feeding types, namely wild in the field, free living in the community, pets, farmed, zoo, and lab (Table 5). The rodents of the farm feeding type had the highest prevalence of *G. duodenalis* infections with 33.37% (658/1972), followed by pet rodents with 21.80% (126/578), zoo rodents with 15.85% (13/82), lab rodents with 14.94% (62/415), free living in community rodents with 14.89% (49/329), and the lowest in wild rodents at 6.69% (111/1660).

For the zoonotic potential assemblages in the different rodent feeding types, the highest was in farm rodents (87.4%) followed by zoo rodents (84.6%), pet rodents (77.97%), wild in the field rodents (53.15%), lab rodents (41.79%), and the lowest in the free living in the community rodents (9.09%). In summary, the farmed rodents and pet rodents had a higher prevalence and potential for *G. duodenalis* zoonotic transmission between rodents and animals (Table 5).

There are also some biases for the published literature, as only studies with positive results or those reporting the highly zoonotic potential for *G. duodenalis* assemblages were easy to have published.

7. Conclusions

From the One Health perspective, G. duodenalis zoonotic assemblages (A and B) have been simultaneously identified in humans, animals, and environment factors involved in zoonotic transmission. The role of rodents in the zoonotic transmission of giardiasis should be taken into consideration from the One Health perspective owing to the fact that rodents are both in close contact with humans and different types of environments. Among the total of seven G. duodenalis assemblages identified in rodents, assemblages A and B were responsible for the majority of infections, indicating their higher zoonotic potential. Rodents played an essential role in the zoonotic transmission of giardiasis. In addition to rodents, dogs, cats, wild animals, and some farm animals could be involved in the zoonotic transmission cycle. Therefore, giardiasis can only be effectively controlled by implementing the One Health approach. Further studies are required to investigate G. duodenalis among the diverse human population, livestock, pet animals, and rodents in various ecosystems, and researchers should pursue a multidisciplinary One Health approach with contributions from zoologists, ecologists, veterinarians, and public health experts to understand rodent-related G. duodenalis and possible transmission routes.

Funding

This work was partially supported by the National Natural Science Foundation of China (32102698), the Outstanding Talents of Henan Agricultural University (30501055), the Henan Postdoctoral Scientific Research Initiation Project (282851), and the Leading Talents of Thousand Talents Program of Central China (19CZ0122).

Declaration of Competing Interest

The authors declare no competing interests.

Data availability

The data that has been used is confidential.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.onehlt.2023.100500.

References

- B.R. Dixon, Giardia duodenalis in humans and animals transmission and disease, Res. Vet. Sci. 135 (2021) 283–289.
- [2] U.M. Ryan, Y. Feng, R. Fayer, L. Xiao, Taxonomy and molecular epidemiology of *Cryptosporidium* and *Giardia* - a 50 year perspective (1971-2021), Int. J. Parasitol. 51 (13–14) (2021) 1099–1119.
- [3] E. Einarsson, S. Ma'ayeh, S.G. Svärd, An up-date on *Giardia* and giardiasis, Curr. Opin. Microbiol. 34 (2016) 47–52.
- [4] W. Cai, U. Ryan, L. Xiao, Y. Feng, Zoonotic giardiasis: an update, Parasitol. Res. 120 (12) (2021) 4199–4218.
- [5] S.M. Cacciò, M. Lalle, S.G. Svärd, Host specificity in the *Giardia duodenalis* species complex, Infect. Genet. Evol. 66 (2018) 335–345.
- [6] Y. Feng, L. Xiao, Zoonotic potential and molecular epidemiology of *Giardia* species and giardiasis, Clin. Microbiol. Rev. 24 (1) (2011) 110–140.
- [7] O. Brynildsrud, K.R. Tysnes, L.J. Robertson, J.J. Debenham, *Giardia duodenalis* in primates: classification and host specificity based on phylogenetic analysis of sequence data, Zoonoses Public Health 65 (6) (2018) 637–647.
- [8] N. Prystajecky, C.K. Tsui, W.W. Hsiao, M.I. Uyaguari-Diaz, J. Ho, P. Tang, et al., *Giardia* spp. are commonly found in mixed assemblages in surface water, as revealed by molecular and whole-genome characterization, Appl. Environ. Microbiol. 81 (14) (2015) 4827–4834.
- [9] L. Xiao, Y. Feng, Molecular epidemiologic tools for waterborne pathogens *Cryptosporidium* spp. and *Giardia duodenalis*, Food Waterb. Parasitol. 8–9 (2017) 14–32.
- [10] M. Qi, H. Dong, R. Wang, J. Li, J. Zhao, L. Zhang, et al., Infection rate and genetic diversity of *Giardia duodenalis* in pet and stray dogs in Henan Province, China, Parasitol. Int. 65 (2) (2016) 159–162.
- [11] T. Wegayehu, M.R. Karim, J. Li, H. Adamu, B. Erko, L. Zhang, et al., Prevalence and genetic characterization of *Cryptosporidium* species and *Giardia duodenalis* in lambs in Oromia special zone, Central Ethiopia, BMC Vet. Res. 13 (1) (2017) 22.
- [12] D. Naguib, A.H. El-Gohary, A.A. Mohamed, D.M. Roellig, N. Arafat, L. Xiao, Age patterns of *Cryptosporidium* species and *Giardia duodenalis* in dairy calves in Egypt, Parasitol. Int. 67 (6) (2018) 736–741.
- [13] F.N.J. Kooyman, J.A. Wagenaar, A. Zomer, Whole-genome sequencing of dogspecific assemblages C and D of *Giardia duodenalis* from single and pooled cysts indicates host-associated genes, Microb. Genom. 5 (12) (2019), e000302.
- [14] C.K. Tsui, R. Miller, M. Uyaguari-Diaz, P. Tang, C. Chauve, W. Hsiao, et al., Beaver fever: whole-genome characterization of waterborne outbreak and sporadic isolates to study the zoonotic transmission of giardiasis, mSphere 3 (2) (2018) e00090-18.
- [15] L. Rojas-López, R.C. Marques, S.G. Svärd, Giardia duodenalis, Trends Parasitol. 38 (7) (2022) 605–606.
- [16] A. Efstratiou, J.E. Ongerth, P. Karanis, Waterborne transmission of protozoan parasites: review of worldwide outbreaks - an update 2011-2016, Water Res. 114 (2017) 14–22.
- [17] U. Ryan, N. Hijjawi, Y. Feng, L. Xiao, *Giardia*: an under-reported foodborne parasite, Int. J. Parasitol. 49 (1) (2019) 1–11.
- [18] A. Zahedi, U. Ryan, V. Rawlings, T. Greay, S. Hancock, M. Bruce, et al., *Cryptosporidium* and *Giardia* in dam water on sheep farms - an important source of transmission? Vet. Parasitol. 288 (2020), 109281.
- [19] R.D. Adam, Giardia duodenalis: biology and pathogenesis, Clin. Microbiol. Rev. 34 (4) (2021), e0002419.
- [20] M. Lalle, K. Hanevik, Treatment-refractory giardiasis: challenges and solutions, Infect. Drug Resist. 11 (2018) 1921–1933.
- [21] R. Argüello-García, M.G. Ortega-Pierres, *Giardia duodenalis* virulence "to be, or not to be", Curr. Trop. Med. Rep. 8 (4) (2021) 246–256.

One Health 16 (2023) 100500

- J. Li et al.
- [22] B.G. Meerburg, G.R. Singleton, A. Kijlstra, Rodent-borne diseases and their risks for public health, Crit. Rev. Microbiol. 35 (3) (2009) 221–270.
- [23] T.M. Strand, Å. Lundkvist, Rat-borne diseases at the horizon. A systematic review on infectious agents carried by rats in Europe 1995-2016, Infect. Ecol. Epidemiol. 9 (1) (2019) 1553461.
- [24] K. Arden, K. Gedye, O. Angelin-Bonnet, E. Murphy, D. Antic, Yersinia enterocolitica in wild and peridomestic rodents within Great Britain, a prevalence study, Zoonoses Public Health 69 (5) (2022) 537–549.
- [25] B.A. Han, J.P. Schmidt, S.E. Bowden, J.M. Drake, Rodent reservoirs of future zoonotic diseases, Proc. Natl. Acad. Sci. U. S. A. 112 (22) (2015) 7039–7044.
 [26] K. Zhang, Y. Fu, J. Li, L. Zhang, Public health and ecological significance of rodents
- [20] K. Zhang, F. Fu, J. El, L. Zhang, Public hearth and ecological significance of rodents in *Cryptosporidium* infections, One Health 14 (2021), 100364.
- [27] C. Costache, Z. Kalmár, H.A. Colosi, A.M. Baciu, R.V. Opriş, A. Györke, et al., First multilocus sequence typing (MLST) of *Giardia duodenalis* isolates from humans in Romania, Parasit. Vectors 13 (1) (2020) 387.
- [28] V. Di Cristanziano, M. Santoro, F. Parisi, M. Albonico, M.A. Shaali, D. Di Cave, et al., Genetic characterization of *Giardia duodenalis* by sequence analysis in humans and animals in Pemba Island, Tanzania, Parasitol. Int. 63 (2) (2014) 438–441.
- [29] M. Mohebali, Z. Zarei, K. Khanaliha, E.B. Kia, A. Motavalli-Haghi, J. Davoodi, et al., Natural intestinal Protozoa in rodents (Rodentia: Gerbillinae, Murinae, Cricetinae) in northwestern Iran, Iran. J. Parasitol. 12 (3) (2017) 382–388.
- [30] Z. Seifollahi, B. Sarkari, M.H. Motazedian, Q. Asgari, M.J. Ranjbar, S. Abdolahi Khabisi, Protozoan parasites of rodents and their zoonotic significance in Boyer-Ahmad District, Southwestern Iran, Vet. Med. Int. 2016 (2016) 3263868.
- [31] C.R.F. Chagas, I.H.L. Gonzalez, S.M. Favoretto, P.L. Ramos, Parasitological surveillance in a rat (*Rattus norvegicus*) colony in São Paulo Zoo animal house, Ann. Parasitol. 63 (4) (2017) 291–297.
- [32] B.J. Sheppard, H.D. Stockdale Walden, H. Kondo, Syrian hamsters (*Mesocricetus auratus*) with simultaneous intestinal *Giardia* sp., *Spironucleus* sp., and trichomonad infections, J. Vet. Diagn. Investig. 25 (6) (2013) 785–790.
- [33] P. Karanis, P.L. Ey, Characterization of axenic isolates of *Giardia intestinalis* established from humans and animals in Germany, Parasitol. Res. 84 (6) (1998) 442–449.
- [34] Y.A. Helmy, N.G. Spierling, S. Schmidt, U.M. Rosenfeld, D. Reil, C. Imholt, et al., Occurrence and distribution of *Giardia* species in wild rodents in Germany, Parasit. Vectors 11 (1) (2018) 213.
- [35] B. Levecke, L. Meulemans, T. Dalemans, S. Casaert, E. Claerebout, T. Geurden, Mixed Giardia duodenalis assemblage A, B, C and E infections in pet chinchillas (*Chinchilla lanigera*) in Flanders (Belgium), Vet. Parasitol. 177 (1–2) (2011) 166–170.
- [36] G. Adriana, K. Zsuzsa, D. Mirabela Oana, G.C. Mircea, M. Viorica, *Giardia duodenalis* genotypes in domestic and wild animals from Romania identified by PCR-RFLP targeting the gdh gene, Vet. Parasitol. 217 (2016) 71–75.
- [37] R. Beck, H. Sprong, I. Bata, S. Lucinger, E. Pozio, S.M. Caccio, Prevalence and molecular typing of Giardia spp. in captive mammals at the zoo of Zagreb, Croatia, Vet. Parasitol. 175 (1–2) (2011) 40–46.
- [38] F. Veronesi, D. Piergili Fioretti, G. Morganti, A. Bietta, I. Moretta, A. Moretti, et al., Occurrence of Giardia duodenalis infection in chinchillas (Chincilla lanigera) from Italian breeding facilities, Res. Vet. Sci. 93 (2) (2012) 807–810.
- [39] C.M. Gherman, Z. Kalmar, A. Gyorke, V. Mircean, Occurrence of Giardia duodenalis assemblages in farmed long-tailed chinchillas Chinchilla lanigera (Rodentia) from Romania, Parasit. Vectors 11 (1) (2018) 86.
- [40] R.C. Thompson, A. Smith, A.J. Lymbery, S. Averis, K.D. Morris, A.F. Wayne, *Giardia* in Western Australian wildlife, Vet. Parasitol. 170 (3–4) (2010) 207–211.
- [41] J. Xu, H. Liu, Y. Jiang, H. Jing, J. Cao, J. Yin, et al., Genotyping and subtyping of *Cryptosporidium* spp. and *Giardia duodenalis* isolates from two wild rodent species in Gansu Province, China, Sci. Rep. 12 (1) (2022) 12178.

- [42] Y. Zou, X.D. Li, Y.M. Meng, X.L. Wang, H.N. Wang, X.Q. Zhu, Prevalence and multilocus genotyping of *Giardia duodenalis* in zoo animals in three cities in China, Parasitol. Res. 121 (8) (2022) 2359–2366.
- [43] S. Xiao, Y. Zhang, X. Zhao, L. Sun, S. Hu, Presence and molecular characterization of *Cryptosporidium* and *Giardia* in recreational lake water in Tianjin, China: a preliminary study, Sci. Rep. 8 (1) (2018) 2353.
- [44] N.F. Abd El-Latif, H.A. El-Taweel, A. Gaballah, A.I. Salem, A.H.M. Abd El-Malek, Molecular characterization of *Giardia intestinalis* detected in humans and water samples in Egypt, Acta, Parasitol. 65 (2) (2020) 482–489.
- [45] F.P. Ferreira, E.T. Caldart, R.L. Freire, R. Mitsuka-Breganó, F.M. Freitas, A. C. Miura, et al., The effect of water source and soil supplementation on parasite contamination in organic vegetable gardens, Rev. Bras. Parasitol. Vet. 27 (3) (2018) 327–337.
- [46] Z. Abbas, M.K. Khan, R.Z. Abbas, Z.U.D. Sindhu, M.S. Sajid, A. Munir, et al., Molecular epidemiology of *Cryptosporidium parvum* and *Giardia lamblia* in different water bodies, soil, and vegetables in Pakistan, Health Secur. 20 (4) (2022) 308–320.
- [47] V.A. Pinto-Duarte, N.M. Hérnandez-Arango, B.J. Marin-Gallego, P.A. Toloza-Beltrán, F.M. Lora-Suarez, J.E. Gómez-Marín, Detection of *Giardia duodenalis* and *toxoplasma gondii* in soil and water samples in the Quindío River basin, Colombia, Food Waterb. Parasitol. 28 (2022), e00175.
- [48] C.M. Colli, R.C. Bezagio, L. Nishi, T.S. Bignotto, É.C. Ferreira, A.L. Falavigna-Guilherme, et al., Identical assemblage of *Giardia duodenalis* in humans, animals and vegetables in an urban area in southern Brazil indicates a relationship among them, PLoS One 10 (2015), e0118065.
- [49] R. Tiyo, C.Z. de Souza, A.F. Arruda Piovesani, B.T. Tiyo, C.M. Colli, A. A. Marchioro, et al., Predominance of *Giardia duodenalis* assemblage AII in fresh leafy vegetables from a market in southern Brazil, J. Food Prot. 79 (2016) 1036–1039.
- [50] A.N. Barnes, A. Davaasuren, U. Baasandavga, P.M. Lantos, B. Gonchigoo, G. C. Gray, Zoonotic enteric parasites in Mongolian people, animals, and the environment: using one health to address shared pathogens, PLoS Negl. Trop. Dis. 15 (7) (2021), e0009543.
- [51] S. Baldursson, P. Karanis, Waterborne transmission of protozoan parasites: review of worldwide outbreaks-an update 2004–2010, Water Res. 45 (20) (2011) 6603–6614.
- [52] L.J. Robertson, L. Hermansen, B.K. Gjerde, Occurrence of *Cryptosporidium* oocysts and *Giardia* cysts in sewage in Norway, Appl. Environ. Microbiol. 72 (8) (2006) 5297–5303.
- [53] K. Nygård, B. Schimmer, O. Sobstad, A. Walde, I. Tveit, N. Langeland, et al., A large community outbreak of waterborne giardiasis-delayed detection in a non-endemic urban area, BMC Public Health 6 (2006) 141.
- [54] J.L. Isaac-Renton, L.F. Lewis, C.S. Ong, M.F. Nulsen, A second community outbreak of waterborne giardiasis in Canada and serological investigation of patient, Trans. R. Soc. Trop. Med. Hyg. 88 (1994) 395–399.
- [55] G.R. Istre, T.S. Dunlop, G.B. Gaspard, R.S. Hopkins, Waterborne giardiasis at a mountain resort: evidence for acquired immunity, Am. J. Public Health 74 (1984) 602–604.
- [56] E.A. Adam, J.S. Yoder, L.H. Gould, M.C. Hlavsa, J.W. Gargano, Giardiasis outbreaks in the United States, 1971-2011, Epidemiol. Infect. 144 (2016) 2790–2801.
- [57] H.E. Reses, J.W. Gargano, J.L. Liang, A. Cronquist, K. Smith, S.A. Collier, et al., Risk factors for sporadic *Giardia* infection in the USA: a case-control study in Colorado and Minnesota, Epidemiol. Infect. 146 (2018) 1071–1078.