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Abstract: The tumor microenvironment plays a key role in tumor development and progression.
Stromal cells secrete growth factors, cytokines and extracellular matrix proteins which promote
growth, survival and metastatic spread of cancer cells. Fibroblasts are the predominant constituent of
the tumor stroma and Hepatocyte Growth Factor (HGF), the specific ligand for the tyrosine kinase
receptor c-MET, is a major component of their secretome. Indeed, cancer-associated fibroblasts
have been shown to promote growth, survival and migration of cancer cells in an HGF-dependent
manner. Fibroblasts also confer resistance to anti-cancer therapy through HGF-induced epithelial
mesenchymal transition (EMT) and activation of pro-survival signaling pathways such as ERK and
AKT in tumor cells. Constitutive HGF/MET signaling in cancer cells is associated with increased
tumor aggressiveness and predicts poor outcome in cancer patients. Due to its role in tumor
progression and therapeutic resistance, both HGF and MET have emerged as valid therapeutic
targets. Several inhibitors of MET and HGF are currently being tested in clinical trials. Preclinical
data provide a strong indication that inhibitors of HGF/MET signaling overcome both primary and
acquired resistance to EGFR, HER2, and BRAF targeting agents. These findings support the notion
that co-targeting of cancer cells and stromal cells is required to prevent therapeutic resistance and to
increase the overall survival rate of cancer patients. HGF dependence has emerged as a hallmark of
therapeutic resistance, suggesting that inhibitors of biological activity of HGF should be included
into therapeutic regimens of cancer patients.
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1. Tumor Microenvironment

The transition from a normal to a malignant cell is driven by progressive accumulation of
mutations through which cancer cells acquire unlimited proliferative potential, resistance to apoptosis
and the ability to metastasize [1,2]. Indeed, oncogene addiction, the reliance of cancer cells on oncogenic
signaling for their survival, has been successfully utilized in targeted cancer therapy. However, tumors
are not just a mass of malignant cells, but rather resemble abnormal organs encompassing multiple
cell types, including nonmalignant cells, such as fibroblasts, immune cells, extracellular matrix (ECM),
and the vascular network [3,4] (Figure 1). It has become evident that the tumor microenvironment
plays a key role in tumor initiation, progression, metastasis and therapeutic resistance [5,6]. In fact,
cancer cells are not only addicted to specific oncogenes, but also to pro-survival signals provided by
the tumor stroma [7,8]. As such, the tumor microenvironment has emerged as an important target for
therapeutic interventions.
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Figure 1. Schematic representation of the key components of the tumor microenvironment. In 
addition to tumor cells, the tumor niche is comprised of stromal cells such as cancer-associated 
fibroblasts, macrophages, lymphocytes, neutrophils and mast cells. Important components of the 
tumor microenvironment also include the extracellular matrix and the vascular network, which is 
composed of blood vessels, lymphatic vessels and pericytes. 

Normal tissues have been shown to possess tumor-suppressing abilities, providing a barrier 
against tumorigenesis [9–11]. However, important changes occur during tumorigenesis, resulting in 
the formation of an environment that enables tumors to progress to malignancy. These alterations 
are driven by tumor-derived factors and involve recruitment and activation of stromal fibroblasts, 
polarization and education of immune cells, matrix remodeling and the development of abnormal 
blood vasculature [12–16]. In general, factors in the tumor microenvironment tend to promote 
tumorigenesis, however plasticity is a principal characteristic of stromal cells, and both tumor-
promoting and anti-tumorigenic properties of cancer-associated fibroblasts have been described [17,18]. 

Secretion of a variety of cytokines, growth factors and chemokines by stromal cells generates a 
pro-inflammatory microenvironment, which shares characteristics with wound healing. Indeed, 
tumors have been viewed as wounds that fail to heal [19]. Accordingly, several anti-inflammatory drugs 
have chemopreventive and therapeutic activity. For example, sulindac significantly reduces the number 
of polyps in Familial Adenomatous Polyposis (FAP) patients who harbor a mutation in the APC gene 
[20] and the use of aspirin is associated with a better clinical outcome in colon cancer patients [21]. 

Fibroblasts and myofibroblasts are found abundant in the tumor stroma and secrete several 
tumor-promoting chemokines, growth factors, cytokines and extracellular matrix proteins. 
Hepatocyte growth factor (HGF) is a major component of the fibroblast secretome [22] and cancer-
associated fibroblasts have been shown to promote epithelial-mesenchymal transition, cell scattering 
and migration of cancer cells in an HGF-dependent manner. In addition, fibroblasts (or recombinant 
HGF) promote survival of cancer cells and represent an important source of primary and acquired 
resistance to targeted therapy, including inhibitors of EGFR (Figure 2). Finally, myofibroblasts have 
been shown to promote Wnt signalling and foster cancer stem cell phenotype by promoting Wnt 
signaling through production of hepatocyte growth factor (HGF) [23]. 

Figure 1. Schematic representation of the key components of the tumor microenvironment. In addition
to tumor cells, the tumor niche is comprised of stromal cells such as cancer-associated fibroblasts,
macrophages, lymphocytes, neutrophils and mast cells. Important components of the tumor
microenvironment also include the extracellular matrix and the vascular network, which is composed
of blood vessels, lymphatic vessels and pericytes.

Normal tissues have been shown to possess tumor-suppressing abilities, providing a
barrier against tumorigenesis [9–11]. However, important changes occur during tumorigenesis,
resulting in the formation of an environment that enables tumors to progress to malignancy.
These alterations are driven by tumor-derived factors and involve recruitment and activation of stromal
fibroblasts, polarization and education of immune cells, matrix remodeling and the development
of abnormal blood vasculature [12–16]. In general, factors in the tumor microenvironment tend
to promote tumorigenesis, however plasticity is a principal characteristic of stromal cells, and
both tumor-promoting and anti-tumorigenic properties of cancer-associated fibroblasts have been
described [17,18].

Secretion of a variety of cytokines, growth factors and chemokines by stromal cells generates
a pro-inflammatory microenvironment, which shares characteristics with wound healing. Indeed,
tumors have been viewed as wounds that fail to heal [19]. Accordingly, several anti-inflammatory
drugs have chemopreventive and therapeutic activity. For example, sulindac significantly reduces
the number of polyps in Familial Adenomatous Polyposis (FAP) patients who harbor a mutation in
the APC gene [20] and the use of aspirin is associated with a better clinical outcome in colon cancer
patients [21].

Fibroblasts and myofibroblasts are found abundant in the tumor stroma and secrete several
tumor-promoting chemokines, growth factors, cytokines and extracellular matrix proteins. Hepatocyte
growth factor (HGF) is a major component of the fibroblast secretome [22] and cancer-associated
fibroblasts have been shown to promote epithelial-mesenchymal transition, cell scattering and
migration of cancer cells in an HGF-dependent manner. In addition, fibroblasts (or recombinant
HGF) promote survival of cancer cells and represent an important source of primary and acquired
resistance to targeted therapy, including inhibitors of EGFR (Figure 2). Finally, myofibroblasts have
been shown to promote Wnt signalling and foster cancer stem cell phenotype by promoting Wnt
signaling through production of hepatocyte growth factor (HGF) [23].



Cancers 2017, 9, 35 3 of 16

Cancers 2017, 9, 35  3 of 15 

 

 
Figure 2. Hepatocyte growth factor (HGF) or HGF-producing fibroblasts (FIB) promote epithelial-
mesenchymal transition (EMT), associated with inhibition of E-cadherin expression (red 
fluorescence), enhance cell scattering and migration, increase proliferation of cancer cells and confer 
resistance to apoptosis. The cell migration assay shows the number of cells that migrated through the 
membrane of a transwell chamber. Apoptosis is shown as increased caspase-3/7 activity in gefitinib 
(GEF)-treated colon cancer cells, which is blocked by fibroblasts. The figure is modified from our 
recent publication [24]. 

Classification of colon cancer patients based on distinct global gene expression profiles has been 
shown to have prognostic and predictive significance [25–27]. According to this classification, 
patients with cancers characterized by the stemness/serrated/mesenchymal (SSM) gene signature 
have a poor prognosis. However, careful analysis of these classification systems by Calon et al. 
established that the predictive power of this gene signature is derived from gene expression in 
stromal rather than in epithelial cells [28]. The authors demonstrated that TGF-β signaling in cancer- 
associated fibroblasts (CAFs) increased the frequency of tumor-initiating cells, a common feature of 
all colorectal cancer subtypes with poor prognosis. Accordingly, pharmacological inhibition of TGF-
β signaling blocked the crosstalk between cancer cells and fibroblasts and prevented metastatic 
spread [28]. Another group confirmed that the CAF signature was associated with poor prognosis in 
untreated colon cancer patients and predicted resistance to radiotherapy in rectal cancer [29]. These 
studies confirmed that stroma significantly contributes to clinical features of colorectal cancer and 
shapes the response to therapy. 

Thus, it is becoming clear that drugs which would normalize the tumor stroma or would block 
signaling between stroma and tumor cells should be incorporated into therapeutic regimens for 
cancer patients in order to control cancer spread and/or to prevent cancer recurrence. Tumor cells are 
dynamic, and ever-evolving genetic and epigenetic changes pose a serious challenge for cancer 
therapy. In contrast, cells in the tumor microenvironment are genetically stable and the tumor-
promoting nature of the tumor microenvironment is reversible, suggesting that the tumor 
microenvironment may be a preferred target for therapeutic approaches. 
  

Figure 2. Hepatocyte growth factor (HGF) or HGF-producing fibroblasts (FIB) promote
epithelial-mesenchymal transition (EMT), associated with inhibition of E-cadherin expression
(red fluorescence), enhance cell scattering and migration, increase proliferation of cancer cells and
confer resistance to apoptosis. The cell migration assay shows the number of cells that migrated
through the membrane of a transwell chamber. Apoptosis is shown as increased caspase-3/7 activity
in gefitinib (GEF)-treated colon cancer cells, which is blocked by fibroblasts. The figure is modified
from our recent publication [24].

Classification of colon cancer patients based on distinct global gene expression profiles has been
shown to have prognostic and predictive significance [25–27]. According to this classification, patients
with cancers characterized by the stemness/serrated/mesenchymal (SSM) gene signature have a poor
prognosis. However, careful analysis of these classification systems by Calon et al. established that
the predictive power of this gene signature is derived from gene expression in stromal rather than in
epithelial cells [28]. The authors demonstrated that TGF-β signaling in cancer- associated fibroblasts
(CAFs) increased the frequency of tumor-initiating cells, a common feature of all colorectal cancer
subtypes with poor prognosis. Accordingly, pharmacological inhibition of TGF-β signaling blocked
the crosstalk between cancer cells and fibroblasts and prevented metastatic spread [28]. Another group
confirmed that the CAF signature was associated with poor prognosis in untreated colon cancer
patients and predicted resistance to radiotherapy in rectal cancer [29]. These studies confirmed
that stroma significantly contributes to clinical features of colorectal cancer and shapes the response
to therapy.

Thus, it is becoming clear that drugs which would normalize the tumor stroma or would block
signaling between stroma and tumor cells should be incorporated into therapeutic regimens for cancer
patients in order to control cancer spread and/or to prevent cancer recurrence. Tumor cells are
dynamic, and ever-evolving genetic and epigenetic changes pose a serious challenge for cancer therapy.
In contrast, cells in the tumor microenvironment are genetically stable and the tumor-promoting nature
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of the tumor microenvironment is reversible, suggesting that the tumor microenvironment may be a
preferred target for therapeutic approaches.

2. HGF/MET Signaling in the Tumor Microenvironment

HGF has been identified as a scattering factor for epithelial cells [30–32] and, independently,
as a fibroblast-secreted factor that promotes the motility of epithelial cells [33]. Binding of HGF to
its receptor, MET, leads to receptor dimerization and induction of signaling pathways that support
growth, survival, motility and metastatic spread of cancer cells. Although HGF is the sole ligand
for MET, growth factors such as EGF and TGFα have been shown to induce delayed activation of
MET, which depends on the EGFR kinase activity [34]. In fact, the crosstalk between EGFR and MET
maximizes the oncogenic activity of EGFR and leads to increased migration and invasion of lung
cancer cells [34].

MET activation triggers Ras-dependent ERK1/ERK2 activation and STAT3 signaling, which
contribute to enhanced proliferation, survival and migration of cancer cells (Figure 3). HGF-induced
MET activation also triggers multiple pro-survival pathways in cancer cells, such as AKT and STAT3,
promotes epithelial-mesenchymal transition (EMT), and thus confers primary and acquired resistance
to anti-cancer therapy [35–39].
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Figure 3. HGF/MET signaling. Binding of HGF to MET induces conformational changes that result in
receptor dimerization and trans-phosphorylation of tyrosine residues in the catalytic domain of MET
and phosphorylation of tyrosine residues in the carboxyl-terminal tail. The phosphorylated tyrosine
residues create docking sites for several adaptor molecules and kinase substrates as indicated. MET
activation leads to subsequent activation of signaling pathways that include MAPK, PI3K/AKT and
STAT3, which mediate MET-dependent cell proliferation, survival, migration and invasion.
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HGF/MET signaling plays a crucial role in embryogenesis, organogenesis, wound healing and
tissue repair, at least in part by stimulating epithelial to mesenchymal transition (EMT). Indeed, HGF
or MET deficiency in mice is embryonically lethal. However, constitutive activation of the HGF/MET
signaling pathway promotes the growth and survival of cancer cells and stimulates their metastatic
spread [40]. Accordingly, activation of the HGF/MET signaling pathway in tumor cells is associated
with tumor aggressiveness and resistance to therapy, and predicts poor outcome in cancers patients [41].
Colon cancer patients, particularly patients with lymph node and liver metastasis, have increased
levels of HGF in serum and in tumor tissues [42]. Elevated levels of HGF are associated with poor
survival of stage II and stage III colon cancer patients [43]. High levels of HGF also correlate with
lymph node metastasis and relapse in breast cancer patients [44,45], multiple myeloma patients [46]
and myeloid leukemia patients [47].

HGF has recently been shown to be constitutively produced in a relatively large subset (~30%) of
primary colon tumors and in established colon cancer cell lines due to mutations in the HGF promoter
region [48]. HGF-producing colon cancer cells display autocrine activation of MET signaling (Figure 4).
Similar mutations in the HGF promoter region also occur in breast cancer cells [49]. Increased levels
of HGF have been found in the bone marrow of acute myeloid leukemia (AML) patients [50]. About
50% of adult AML cell lines and primary specimens secrete high levels of HGF, which activates MET
in an autocrine manner [51,52]. Fusion transcription factors, such as AML1/ETO and PLZ-RARα
appear to be sufficient to induce the expression of pro-HGF [51]. Interestingly, HGF mutations were
detected in 10.5% of lung adenocarcinomas and in 5.8% of lung squamous carcinomas [53]; however,
the functional significance of these mutations is currently not understood.
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Figure 4. HGF-dependent and HGF-independent MET activation. Cancer cells can produce pro-HGF
(due to mutations in the HGF promoter or expression of oncogenic transcription factors), which
activates MET in an autocrine manner. More commonly, pro-HGF is produced by stromal cells, such as
fibroblasts, and HGF activates MET in a paracrine manner. Ligand-independent MET activation occurs
due to overexpression or amplification of MET or due to mutational activation of MET.

In general, autocrine production of HGF by cancer cells occurs infrequently. More commonly
HGF is produced by stromal cells, such as cancer-associated fibroblasts, and triggers MET activation in
a paracrine fashion (Figure 4). In fact, HGF appears to be a crucial protein for the cross-talk between
cancer cells and cancer-associated fibroblasts [24,54–56]. Targeted deletion of IKKβ in fibroblasts which
increased HGF expression, triggered increased proliferation of intestinal epithelial cells and enhanced
inflammation-induced tumor formation in IKKβ mutant mice [54]. Accordingly, pharmacological
inhibition of MET prevented the tumor-promoting activity of IKKβ-deficient fibroblasts, confirming
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the significance of HGF/MET signaling for the crosstalk between cancer cells and tumor-promoting
fibroblasts. Targeted deletion of epimorphin, which decreased expression of HGF in myofibroblasts,
reduces polyposis in ApcMin/+ mice, indicating that epimorphin exerts oncogenic potential via
remodeling of the stromal microenvironment [57]. Tumor progression locus 2 (TPL2) deficiency
leads to increased HGF expression in intestinal fibroblasts, coupled to increased MET activation in
epithelial cells [58]. TPL2 has been recently shown to have tumor suppressor properties in the ApcMin/+

model [59].
However, regardless of its cellular origin, HGF is always secreted as pro-HGF, an inactive

precursor. While capable of binding to MET, pro-HGF does not trigger MET activation, and therefore
acts as a receptor antagonist. A proteolytically inert mutant of pro-HGF confirmed the competitive
antagonism between HGF and pro-HGF, and suppressed proliferation, motility and invasiveness of
cancer cells in vitro and inhibited tumor growth and metastases in vivo [60]. Proteolytic conversion of
pro-HGF to its active form is the rate-limiting step in the HGF/MET signaling pathway. The trypsin-like
serine proteases, matriptase, hepsin and HGF activator (HGFA), which are commonly over-expressed
in tumor cells, are three principal proteases responsible for HGF activation [61–68]. These enzymes
cleave pro-HGF to HGF 102–104 times more efficiently than, for example, TMPRSS13 (Transmembrane
Protease, Serine 13) or uPA (urokinase plasminogen activator) [68,69]. The activity of matriptase,
HGFA and hepsin is controlled by the endogenous inhibitors of pro-HGF activation, the HGFA
inhibitors (HAI)-1/2 [68,70,71], whose expression is reduced in tumor tissues. Intestinal deletion of
endogenous HAI-1 augments Wnt signaling in ApcMin/+ mice, both in tumors and in normal mucosa,
and enhances intestinal tumor formation [72], confirming that HAI-1 has tumor suppressor properties.
Accordingly, reduced expression of HAIs is associated with advanced disease and poor outcome in
cancer patients [72–78]. Small molecule inhibitors of HGFA and antibodies neutralizing HGFA and
matriptase have been developed [79] as potential therapeutic agents. However, we developed the first
small molecule triplex inhibitors of HGFA, matriptase and hepsin [80–82], and confirmed that they
block oncogenic HGF/MET signaling [24].

MET mutations, MET amplifications or MET overexpression, which trigger ligand-independent
activation of MET signaling (Figure 4), are rare in primary human cancer [53]. MET activating
mutations in cancer have been described in renal papillary carcinomas, hepatocellular carcinomas [83],
small-cell lung cancer and colon cancers [84]. However, MET mutations are frequently detected in
metastatic disease and increased expression/amplification of MET in colorectal cancer patients has
been shown to promote the metastatic spread of cancer [85]. Recently it has been established that
MET-positive breast cancer cells, such as triple negative breast cancer, preferentially metastasize to
the brain via induction of IL-1β. MET-induced IL-1β triggers pro-HGF secretion in tumor-associated
astrocytes, establishing a pro-metastatic inflammatory tumor microenvironment [86].

In addition, MET amplifications were detected in a significant number of lung- and colon cancer
patients with acquired resistance to anti-EGFR therapy [87,88] (see below). While MET-amplified
cancer cells do not respond to EGFR-targeting drugs, they are uniquely sensitive to anti-MET therapy.

3. HGF/MET Signaling Is a Hallmark of Therapeutic Resistance

Conventional cancer therapy, including chemotherapy and radiation, does not distinguish
between normal and cancer cells. In contrast, targeted therapeutic agents, which block individual
pathways that cancer cells are addicted to (such as EGFR, BRAF, MET or HER2 signaling), are specific
for cancer cells and have potentially fewer side effects. However, tumors are extremely heterogeneous
and cancer cells within a single tumor show extensive genetic, epigenetic and metabolic differences.
Such differences have important consequences for the diagnosis and the targeted treatment of cancer.
Factors in the tumor microenvironment, including HGF, promote tumor heterogeneity, at least in part,
by providing an appropriate niche for cancer stem cells (CSC) [89,90].

Only a small population of patients respond to targeted therapy (de novo resistance), and patients
that initially show a dramatic response to therapy develop resistance within months (acquired resistance).
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This limits the efficiency of targeted therapeutic approaches and results in local or systemic cancer
recurrence. Therapeutic resistance is indeed the major cause of failure in curing cancer patients.
One of the ten recommendations of the Blue Ribbon Panel to achieve the Cancer Moonshot goal
was to “Identify therapeutic targets to overcome drug resistance through studies that determine the
mechanisms that lead cancer cells to become resistant to previously effective treatments”.

Resistance to therapy can develop due to genetic changes in cancer cells that confer a therapy
resistant phenotype. For example, mutations in the KRAS gene are associated with resistance to
anti-EGFR drugs, which are approved selectively for colon cancer patients with wild type (WT) KRAS.
In addition, the tumor microenvironment is a frequent source of resistance to therapy. HGF has been
identified as a factor in the tumor microenvironment that blocks the response to cancer therapy. MET
activation has been shown to underlie the resistance to drugs targeting EGFR, FGFR, BRAF, VEGF and
HER2, demonstrating that MET activation is a general feature of resistance to targeted therapy [38,91].
Among proposed predictive biomarkers for HGF/MET targeting are determination of MET expression
by immunohistochemistry, MET copy number changes and monitoring the levels of MET and HGF in
plasma. However, none of these biomarkers have been vigorously tested in cancer patients.

How does HGF inhibit the response to therapy? HGF promotes epithelial mesenchymal transition
(EMT) (Figure 2) which is likely to contribute to its ability to confer resistance to therapeutic approaches.
It has been demonstrated that cells that underwent EMT are more resistant to cell death and display
resistance to therapy [92,93]. Accordingly, decreased expression of E-cadherin, a hallmark of the
mesenchymal phenotype, is associated with resistance to inhibitors of EGFR [94]. HGF promotes EMT
by inducing the expression of EMT-associated transcription factors, including Snail1 [95] and Zeb1 [96].
We and others have demonstrated that Snail is sufficient to protect cancer cells from apoptosis [97–99].
Snail confers resistance to classical chemotherapy, but also to immunotherapy [100] and targeted
therapy [101,102].

Finally, EMT promotes acquisition of a stem cell phenotype, generating cells that are extremely
resistant to therapy. Activation of anti-apoptotic signaling pathways, such as Wnt and Notch, and
proliferative/metabolic quiescence contribute to the drug-resistant phenotype of cancer stem cells
(CSCs). Indeed, myofibroblast-derived HGF has been shown to induce Wnt signaling in colon cancer
cells and to confer the cancer stem cell phenotype in vitro and in vivo [23]. MET activation also
promotes the cancer stem cell phenotype in several other types of cancer, including gliomas [103,104],
colon cancer [55], head and neck cancer [105], prostate cancer [106] and pancreatic cancer [107].

We demonstrated that HGF or HGF-producing fibroblasts conferred resistance to EGFR targeting
therapy by reactivation of pro-survival pathways in cancer cells, including ERK and AKT activation [24].
Inhibition of the MET kinase activity by JNJ38877605 or inhibition of the biological activity of
HGF by SRI31215, a novel small molecule inhibitor of pro-HGF activation, restored sensitivity of
HGF-producing colon cancer cells to EGFR inhibition by blocking autocrine MET activation. SRI31215
or JNJ38877605 also overcame resistance mediated by HGF-producing fibroblasts, demonstrating that
inhibition of HGF/MET signaling prevents tumor-microenvironment-mediated resistance to targeted
therapy (Figure 5). Co-inhibition of EGFR and MET promotes eradication of colon cancer stem cells,
resulting in durable tumor regression [55].

Consistent with preclinical studies, increased levels of HGF in colon cancer patients with WT
KRAS, and in NSCLC patients correlate with lack of response to EGFR inhibitors [108,109].

EGFR targeting drugs have also significantly improved the outcome of lung cancer patients.
Most NSCLC patients with EGFR mutations initially respond to treatment with EGFR tyrosine kinase
inhibitors (TKI), but resistance develops rapidly in virtually all patients. Acquired resistance to EGFR
inhibitors has been associated frequently with selection for secondary EGFR mutations, such as T790M
in exon 20 [110,111], or with MET amplifications [112]. Most troublingly, MET amplification confers
resistance to first- and third-generation of EGFR inhibitors.

MET-amplified lung cancers are addicted to MET signaling and are therefore extremely sensitive to
MET inhibition [113]. Several MET TKI and MET specific antibodies have entered clinical trials [79,114].



Cancers 2017, 9, 35 8 of 16

However, based on preclinical data, acquired resistance to MET kinase inhibitors is likely to occur
rapidly in cancer patients as well. Moreover, it has been shown that acquired resistance to kinase
inhibitors, which prompts discontinuation of this therapy, is associated with accelerated disease
progression. MET kinase inhibitors block MET endocytosis, resulting in an increased number of cell
surface receptors and subsequent re-activation of MET signaling [115]. In some cases, a switch to EGFR
dependency has been shown to underlie the resistance to MET kinase inhibitors [116,117]. However,
some lung cancer cells fail to respond to combined treatment with EGFR and MET inhibitors or develop
resistance to dual EGFR/MET inhibition [118]. Thus, novel therapeutic targets and rationally designed
combination therapies are needed to enhance the initial response to therapy and to overcome acquired
therapeutic resistance.Cancers 2017, 9, 35  8 of 15 
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cetuximab) in colon cancer cells. Inhibition of MET by JNJ3887605 or inhibition of pro-HGF activation
by SRI31215 overcomes resistance mediated by autocrine HGF/MET signaling, or fibroblast-mediated
resistance to cetuximab in colon cancer cells with WT KRAS [24].

Owusu et al. [119] and others [35] have demonstrated that HGF drives resistance to anti-MET
therapy in MET-amplified lung cancer cells (Figure 6), revealing that MET-amplified NSCLC cells
become addicted to HGF upon MET inhibition. HGF or pro-HGF-producing fibroblasts inhibit not
only the response to individual treatment with a MET kinase inhibitor, but also the response to
dual inhibition of EGFR and MET [119]. We demonstrated that HGF reactivates MET, EGFR and
RON signaling and restores AKT, ERK and WNK1 activation in MET-inhibited cells. Thus, upfront
inhibition of HGF and MET, or triple inhibition of EGFR, MET and HGF, may be required to prevent
the development of resistance to targeted therapy in MET-amplified NSCLC cells. Supporting this
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notion, it has been shown that HGF is required for optimal activation of the MET kinase in MET
amplified cancer cells [120].Cancers 2017, 9, 35  9 of 15 

 

 
Figure 6. Dual inhibition of MET and HGF in MET-amplified cancer cells prevents resistance to 
targeted therapy. MET-amplified cancer cells are selectively sensitive to MET inhibition. However, 
upon pharmacological inhibition of MET (JNJ3887605), cancer cells become addicted to HGF, 
commonly provided by the tumor microenvironment. Thus, co-inhibition of HGF activity by 
SRI31215 prevents the development of resistance to MET-targeting agents. 

4. Conclusions 

Constitutive HGF/MET signaling is a hallmark of cancer cells and HGF and MET have both 
emerged as valid therapeutic targets. Some cancer cells produce HGF which stimulates MET in an 
autocrine manner. More commonly, HGF is present in the tumor microenvironment and activates 
MET expressed on tumor cells in a paracrine fashion. HGF promotes proliferation, migration, 
invasion and survival of cancer cells and confers resistance to therapy. In contrast to resistance that 
arises due to genetic alterations, tumor-microenvironment-mediated resistance is transient and  
cancer cells regain sensitivity to therapy when isolated from the microenvironment. Thus, 
“normalizing” the tumor microenvironment or inhibiting communication between tumor cells and 
the tumor microenvironment is an important strategy to combat therapeutic resistance. 

Preclinical studies offer a strong support to include inhibitors of HGF/MET signaling into 
therapeutic strategies. Although several MET kinase inhibitors have entered clinical trials, novel 
approaches for suppressing HGF/MET signaling are needed, due to resistance to kinase inhibitors. 
Moreover, we and others have demonstrated that inhibition of both MET and HGF is required to 
overcome therapeutic resistance in MET-amplified cancer cells. We developed the first small 
molecule inhibitors of pro-HGF activation and demonstrated that they efficiently block HGF/MET 
signaling and overcome HGF-mediated resistance to targeted therapy. Thus, agents blocking the 
biological activity of HGF, such as inhibitors of pro-HGF activation, should be incorporated into 
therapeutic regimens for a selected population of cancer patients. 

Acknowledgments: We thank Georg Wisniewski for critical reading of the manuscript and for helpful suggestions. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. 
2. Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell 2000, 100, 57–70. 
3. Egeblad, M.; Nakasone, E.S.; Werb, Z. Tumors as organs: Complex tissues that interface with the entire 

organism. Dev. Cell 2010, 18, 884–901. 
4. Li, H.; Fan, X.; Houghton, J. Tumor microenvironment: The role of the tumor stroma in cancer. J. Cell. 

Biochem. 2007, 101, 805–815. 

Figure 6. Dual inhibition of MET and HGF in MET-amplified cancer cells prevents resistance to
targeted therapy. MET-amplified cancer cells are selectively sensitive to MET inhibition. However,
upon pharmacological inhibition of MET (JNJ3887605), cancer cells become addicted to HGF, commonly
provided by the tumor microenvironment. Thus, co-inhibition of HGF activity by SRI31215 prevents
the development of resistance to MET-targeting agents.

We demonstrated that SRI31215, an inhibitor of pro-HGF activation, blocked crosstalk between
tumor cells and fibroblasts in MET-amplified NSCLC cells. SRI31215 overcame fibroblast-mediated
resistance to MET inhibition or to dual MET/EGFR inhibition by preventing fibroblast-mediated
reactivation of AKT and ERK signaling. Structurally-unrelated triplex inhibitors of pro-HGF activation
that we developed in parallel showed similar biological activity [119].

4. Conclusions

Constitutive HGF/MET signaling is a hallmark of cancer cells and HGF and MET have both
emerged as valid therapeutic targets. Some cancer cells produce HGF which stimulates MET in an
autocrine manner. More commonly, HGF is present in the tumor microenvironment and activates MET
expressed on tumor cells in a paracrine fashion. HGF promotes proliferation, migration, invasion and
survival of cancer cells and confers resistance to therapy. In contrast to resistance that arises due to
genetic alterations, tumor-microenvironment-mediated resistance is transient and cancer cells regain
sensitivity to therapy when isolated from the microenvironment. Thus, “normalizing” the tumor
microenvironment or inhibiting communication between tumor cells and the tumor microenvironment
is an important strategy to combat therapeutic resistance.

Preclinical studies offer a strong support to include inhibitors of HGF/MET signaling into
therapeutic strategies. Although several MET kinase inhibitors have entered clinical trials, novel
approaches for suppressing HGF/MET signaling are needed, due to resistance to kinase inhibitors.
Moreover, we and others have demonstrated that inhibition of both MET and HGF is required to
overcome therapeutic resistance in MET-amplified cancer cells. We developed the first small molecule
inhibitors of pro-HGF activation and demonstrated that they efficiently block HGF/MET signaling and
overcome HGF-mediated resistance to targeted therapy. Thus, agents blocking the biological activity
of HGF, such as inhibitors of pro-HGF activation, should be incorporated into therapeutic regimens for
a selected population of cancer patients.
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