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Osteoporosis is a systemic metabolic disease, mainly characterized by reduced

bone mineral density and destruction of bone tissue microstructure. However,

the molecular mechanisms of osteoporosis need further investigation and

exploration. Increasing studies have reported that circular RNAs (circRNAs), a

novel type of RNA molecule, play crucial roles in various physiological and

pathological processes and bone-related diseases. Based on an in-depth

understanding of their roles in bone development, we summarized the

multiple regulatory roles and underlying mechanisms of circRNA–miRNA–

mRNA networks in the treatment of osteoporosis, associated with bone

marrow mesenchymal stem cells (BMSCs), osteoblasts, and osteoclasts.

Deeper insights into the vital roles of circRNA–miRNA–mRNA networks can

provide new directions and insights for developing novel diagnostic biomarkers

and therapeutic targets in the treatment of osteoporosis.
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1 Introduction

Osteoporosis (OP) is a common systemic metabolic disease, with high morbidity

among the elderly especially in postmenopausal women (1). It is identified by the

decreased bone toughness and altered bone microarchitecture, leading to an increase in

skeletal fragility and fracture risk (2). Fracture is the most serious consequence of

osteoporosis in the elderly, which easily leads to myeloid fracture, vertebral compression

fracture, and other bone disorders. Osteoporosis has become one of the important causes
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of disability and death in the elderly due to its high incidence,

high surgical risk, and poor prognosis (3, 4). With the aging of

the population, osteoporosis has become a global health

problem; it has been estimated that approximately 200 million

individuals are affected by different levels of osteoporosis. The

process of bone strength damage occurs silently and

progressively, and there are no symptoms except fracture

genera l ly . Thus , the phenomenon not only has a

socioeconomic impact and increases the healthcare cost related

to osteoporosis, but also causes a heavy burden to patients with

osteoporosis and their families (5, 6). However, there is no

specific medicine to cure the disease in clinical practice, and the

existing therapies can merely retard the process of osteoporosis

and reduce the risk of fractures. Thus, it is imminently necessary

to search for novel and effective therapeutics for osteoporosis.

Bone is a multifunctional, highly mineralized connective

tissue acting as the center for the locomotory system and

providing structural support for all internal organs. It is worth

noting that bone is also a storeroom of calcium and phosphorus,

which are prerequisite to maintain mineral homeostasis. Bone

tissue metabolism is particularly active, and it endures constant

remodeling during the whole life process. Bone remodeling is the

process in which old bones are replaced by new bones, thereby

maintaining bone mineral homeostasis and strength via a

coupling between osteoblast-induced bone formation and

osteoclast-mediated bone resorption (7–9). When the bones

are affected by unfavorable factors, including aging,

malnutrition, alcohol abuse, estrogen reduction, and connected

adverse reactions to medications, the balance between bone

formation and resorption will be broken, which is the main

cause of generation osteoporosis (10, 11). However, because of a

series of endogenous and exogenous factors included in bone

metabolism, the particular molecular mechanism underlying the

development of osteoporosis remains unclear (12–14).

Non-coding RNAs (ncRNAs), which are the novel focus

point in most bioscience research, such as circular RNAs

(circRNAs), microRNAs (miRNAs), and long ncRNAs

(lncRNAs), have vital roles as regulators in various disease

progressions, including osteoporosis (15, 16). CircRNAs,

which widely exist in diverse organisms, emerge as a novel

type of RNAs with a covalently closed-loop structure, implicated

in the regulation of various biological activities, including cell

growth, signaling, and multiple physiological and pathological

responses (17). For example, circ_0000854, a novel circRNA,

was detected to accelerate hepatocellular carcinoma (HCC)

progression via the miR-1294/IRGQ axis, and silencing

circ_0000854 suppresses cancer cell malignant behaviors,

providing unique regulatory targets for HCC pathogenesis

(18). Circ_SMG6 aggravated the resultant myocardial

ischemia/reperfusion (I/R) injury, which might be related to

the circ_SMG6-miR-138-5p-EGR1 network (19). This pathway

can provide a novel therapeutic target to myocardial I/R

injury (19). Meanwhile, emerging studies indicate that several
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circRNAs and miRNAs have been found to participate in the

regulation of bone marrow mesenchymal stem cell (BMSC)

differentiation and osteoporosis pathogenesis. It has been

reported that circRNAs act as molecular sponges of miRNAs

by competing for the rich miRNA-binding sites and interfering

its expression with target messenger RNAs (mRNAs), which has

been validated in various particular bone cellular activities (20).

Moreover, the growing number of evidence proves that

circRNA–miRNA–mRNA networks are a series of novel

regulators in bone development (Tables 1 and Table 2)

(Figure 1). In this review, we comprehensively searched the

PubMed database (https://pubmed.ncbi.nlm.nih.gov/) with the

combined keywords “circRNA”, “miRNA”, and “osteoporosis”,

and summarized the roles of circRNA–miRNA–mRNA

networks in the development and treatment of osteoporosis.
2 The roles of circRNA–miRNA–
mRNA networks in the development
of osteoporosis

2.1 Biogenesis and function of circRNAs

CircRNAs are a new type of non-coding RNAs with a closed

continuous loop structure covalently via the concatenating of the

3’-poly(A) tails and 5’-end capping splice sites, which were first

found in viroid in 1976 and widely distributed in nature (63).

Compared with linear RNAs, circRNAs are more stable to

exonuclease RNase Rand and highly conserved molecules (64).

CircRNAs can be roughly classified into three categories:

intronic circRNAs, exonic circRNAs, and exon–intron

circRNAs, on the basis of the genome origin and their means

of generation. Because of splicing errors, circRNAs were

previously considered as nonfunctional by-products (64). In

recent years, increasing circRNAs were investigated to

function in a class of biological processes, such as cell

proliferation, differentiation, and apoptosis (50, 61). According

to a recent report, circFAM120B, as a tumor suppressor,

hampers cell proliferation, metastasis, and invasion in

esophageal squamous cell carcinoma (ESCC) (65). CircUbe3a

could facilitate the cell proliferation, migration, and phenotypic

transformation of cardiac fibroblasts (CFs) and then exacerbate

myocardial fibrosis after acute myocardial infarction (66).

Meanwhile, circRNAs have also been unexpectedly proven to

take part in the regulation of bone microarchitecture,

pathogenesis, and therapies of osteoporosis. Recently, a report

has indicated that circ_0005564 significantly increased the

mRNA levels of osteogenic differentiation markers, including

RUNX2, OPN, and OCN, and then played energetic roles in

osteoporosis (67). Nevertheless, the specific roles of various

circRNAs in osteoporosis and the related underlying

mechanisms need further exploration.
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TABLE 2 The inhibitory effects of the circRNA–miRNA–mRNA axis during bone formation.

CircRNAs Target miRNAs Target genes or pathways Cell types References

circRNA-POMT1 and circRNA-MCM3AP miR-6881-3p Smad6 and Chordin hASCs (52)

circRNA-HGF miR-25-3p Smad7 BMSCs (53)

circRNA-0001052 miR-124-3p Wnt4/b-catenin pathway BMSCs (54)

circRNA-CDR1as miR-7-5p WNT5B BMSCs (55)

circRNA-0006873 miR-142-5p PTEN/Akt signaling pathway hBMSCs (56)

hsa-circ-0006859 miR-431-5p ROCK1 hBMSCs (57)

circRNA-009934 miR-5107 TRAF6 osteoclast (58)

circRNA-25487 miR-134-3p p21 BMSCs (59)

hsa-circ-0001275 miR-377 CDKN1B hFOB1.19 cells (60)

circRNA-28313 miR-195a CSF1 BMMCs (61)

circRNA-0003865 miR-3653-3p GAS1 BMSCs (62)
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hASCs, human adipose-derived mesenchymal stem cells; BMSCs, bone marrow mesenchymal stem cells; hBMSCs, human bone marrow mesenchymal stem cells; hFOB, human osteoblast;
BMMCs, bone marrow monocyte/macrophage cells.
TABLE 1 The auxo-action of the circRNA–miRNA–mRNA axis during bone formation.

CircRNAs Target miRNAs Target genes or pathways Cell types References

circRNA-0016624 miR-98 BMP2 hBMSCs (21)

circRNA-0000020 miR-142-5p BMP2 BMSCs (22)

circRNA-0048211 miR-93-5p BMP2 hBMSCs (23)

circRNA-0007059 miR-378 BMP2 hBMSCs (24)

circRNA-0006215 miR-942-5p RUNX2/VEGF BMSCs (25)

mm9-circ-009056 miR-22-3p BMP7 MC3T3-E1 cells (26)

circRNA-Fgfr2 miR-133 BMP6 rDFCs (27)

circRNA-AFF4 miR-135a-5p FNDC5/Irisin and Smad1/5 pathway BMSCs (28)

circRNA-SIPA1L1 miR-617 Smad3 DPSCs (29)

circRNA-RUNX2 has-miR-203 RUNX2 hBMSCs (30)

circRNA-0011269 miR-122 RUNX2 hBMSCs (31)

hsa-circ-0005752 miR-496 RUNX3 ADSCs (32)

hsa-circ-33287 miR-214-3p RUNX3 MSMSCs (33)

hsa-circ-0026827 miR-188-3p Beclin1 and the RUNX1 hDPSCs (34)

circRNA-23525 miR-30a-3p RUNX2 ADSCs (35)

circRNA-0001795 miR-339-5p YAP1 hBMSCs (36)

circRNA-0024097 miR-376b-3p YAP1 and Wnt/b-catenin pathway BMSCs and MC3T3-E1 (37)

circRNA-Smg5 miR-194-5p Fzd6 and b-catenin pathway BMSCs (38)

circRNA-124534 miR-496 b-Catenin Pathway hDPSCs (39)

circRNA-0006393 miR-145-5p FOXO1 BMSCs (40)

circRNA-FOXP1 miR-33a-5p FOXP1 hASCs (41)

circRNA-Rtn4 miR-146a TNF-a MC3T3-E1 cells (42)

hsa-circ-0076906 miR-1305 OGN hMSCs (43)

circRNA-0062582 microRNA-145 CBFB hBMSCs (44)

hsa-circ-0006766 miR-4739 Notch2 hBMSCs (45)

circRNA-vgll3 miR-326-5p integrin a5 ADSCs (46)

circRNA-AFF4 Mir-7223-5p PIK3R1 MC3T3-E1 cells (47)

hsa-circ-0008500 miR-1301-3p PADI4 HEK and hFOB (48)

hsa-circ-0074834 miR-942-5p ZEB1 and VEGF BMSCs (49)

circRNA-SIPA1L1 miR-204-5p ALPL SCAPs (50)

circRNA-DAB1 miR-1270 and miR-944 NOTCH/RBPJ pathway hBMSCs (51)
hBMSCs, human bone marrow mesenchymal stem cells; BMSCs, bone marrow mesenchymal stem cells; rDFCs, rat dental follicle cells; DPSCs, dental pulp stem cells; ADSCs, adipose-derived
mesenchymal stem cells; MSMSCs, maxillary sinus membrane stem cells; hDPSCs, human dental pulp stem cells; BMMCs, bone marrow monocyte/macrophage cells; hASCs, human adipose-
derived mesenchymal stem cells; hMSCs, human marrow mesenchymal stem cells; HEK, human embryonic kidney; hFOB, human osteoblast; SCAPs, stem cells from apical papillas.
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CircRNAs act as regulators in different essential

physiological processes by regulating gene transcription,

participating in translation, and acting as miRNA sponges. For

instance, in a recent report, circStag1 was found to be related to

osteoporosis (68). Overexpression of circStag1 could

significantly promote the osteogenic capability in BMSCs, and

researchers found that circStag1 directly interplays with an

RNA-binding protein, named human antigen R (HuR), to

mechanistically promote the regeneration of bone-related

tissue (68).
2.2 Biogenesis and function of miRNAs

miRNAs are a kind of stem ring endogenous small non-

coding RNA molecules, about 22 nucleotides, and present in all

eukaryotic cells (69). miRNAs play a key role in the translation

and expression of gene in organisms post-transcriptionally via

combining the 3’-UTR region of mRNA and then silencing the

expression of target genes (70). The expression of miRNAs

exerts the characteristics of tissue specificity and growth

process specificity, and they participate in cell proliferation,

differentiation, apoptosis, and other development. When the

content of some miRNAs changes abnormally, the

corresponding diseases will be induced subsequently on

account of the abnormal expression levels of target genes (71).

It has been reported in the literature that the disorder of several

miRNAs is closely related to the occurrence and development of

many types of diseases (72, 73). For instance, in cancer, miRNAs

can act not only as oncogenes but also as tumor suppressors. At

the same time, miRNAs can also be used as markers in the

process of cancers, providing new targets for cancer therapy

(74). In recent years, the roles of miRNAs in osteoporosis have

gradually been recognized. miRNAs can regulate bone
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metabolism by regulating osteogenic differentiation, osteoclast

differentiation, and maturation. Therefore, the abnormal

expression of miRNAs, related to bone metabolism, must be

closely related to the occurrence of bone-related diseases, such as

osteoporosis. According to the study, the level of miR-27a has

been verified to be reduced in the disease process of osteoporosis

and during adipogenic differentiation (75). Further research

found that silencing of miR-27a could decrease bone

formation in vivo. Therefore, in-depth study of these miRNAs

will be helpful to understand the pathogenesis of bone

replacement and osteoporosis and search the clinical diagnosis

and treatment of osteoporosis.
2.3 The effects of circRNA–miRNA–
mRNA networks as signaling pathway
factors in bone development

2.3.1 BMP signaling pathways
Bone morphogenetic proteins (BMPs), one of the members

of transforming growth factor-b (TGF-b) superfamily,

undertake a pivotal role in regenerating osteogenic

differentiation of osteoblast by Smads-related or non-Smads-

related pathways. BMP receptors can receive information from

BMP ligands, form a complex with co-Smad4 through

phosphorylating R-Smad1/5/8, and affect the transcriptional

expression of downstream target genes. According to the

research, BMP2, BMP6, BMP7, and BMP14 (also named to as

GDF5) have been affirmed to be correlated with bone

homeostasis (Figure 2).

2.3.1.1 BMP2

As a positive cytokine, bone morphogenetic protein-2

(BMP2) is involved in a variety of cellular activities, which is
FIGURE 1

The regulatory roles of circRNA–miRNA–mRNA networks in bone development and bone homeostasis. CircRNA–miRNA–mRNA networks
regulate the osteogenesis, adipogenesis, and osteoclastogenesis in several types of cells and provide a therapeutical approach to treating
abnormal bone metabolism including osteoporosis.
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known to induce osteogenic differentiation and regulate bone

development and fracture repair. For example, it is confirmed

that circ-0000020 could promote osteogenic differentiation,

retard the progress of osteoporosis, and upregulate the

expression of BMP2 via sponging miR-142-5p as ceRNA (22).

Inversely, the silence of circ-0000020 significantly decreased the

expression of osteogenic markers, reduced the mineralization

ability, and enhanced the apoptosis levels of BMSCs (22).

Postmenopausal osteoporosis (PMO), one type of osteoporosis,

caused by reduction of estrogen, dramatically reduces the quality

of later life of postmenopausal women. According to the study,

circ-0007059 was found by screened different circRNA

expression levels in PMO patients via RNA-seq and

bioinformatics analysis (24). Meanwhile, overexpression of

circ-0007059 could attenuate osteoclastogenesis in hBMSCs in

vitro (24). Further mechanism studies demonstrated that circ-

0007059 directly targeted miR-378, which, in turn, targeted

BMP2 (24). Hence, circ-0007059 was verified to function as a

novel target in osteoclastogenesis via the miR-378/BMP2

signaling pathway (24). Furthermore, circRNA-0048211 could

upregulate the expression of osteogenic genes during bone

remodeling, including RUNX2, OPN, and OCN, and alleviate

the progression of PMO through the circRNA-0048211/

miRNA-93-5p/BMP2 regulatory network (23). The expression

levels of circRNA-19142 and circRNA-5846 were observably

upregulated in the BMP2-induced osteogenesis group compared

with the control group (76). miR-7067-5p was confirmed to the

co-targeted miRNAs of the two circRNAs by Venny analysis

(76). Both circRNA-19142 and circRNA-5846 have been found

to be involved in osteogenic activity through the circRNA-

19142/cirRNAc-5846-miRNA-mRNA axis (76). Similarly, the

circRNA-0016624/miR-98/BMP2 axis could prevent

osteoporosis and offer a novel insight into therapeutic

strategy (21).
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2.3.1.2 BMP6

CircRNA-Fgfr2 could sponge miR-133 and regulate the

expression of bone morphogenetic protein-6 (BMP6) (27). For

further validation, overexpression of circRNA-Fgfr2 in rDFCs

restrained the expression of miR-133; on the contrary, the level

of BMP6 was increased (27). Furthermore, during osteogenic

induction, the positive regulation of the circRNA-Fgfr2/miR-

133/BMP6 regulatory pathway has been verified (27).

2.3.1.3 BMP7

Bone morphogenetic protein-7 (BMP7) belongs to the BMP

family and possesses equivalent osteogenesis function. The

calcitonin gene-related peptide (CGRP) could obviously promote

the osteogenesis of MC3T3 cells and the expression of

mm9_circ_009056 was significantly increased in the CGRP-

induced cells (26). Furthermore, it could accelerate the

expression levels of miR-22-3p following silencing

mm9_circ_009056, but decrease the mRNA and protein levels of

BMP7 (26). This phenomenon suggested that mm9_circ_009056

might act as a sponge for miR-22-3p to regulate the expression of

BMP7 and then affect osteogenesis-related genes.

2.3.1.4 GDF5

Growth differentiation factor (GDF) 5, also called bone

morphogenetic protein-14 (BMP14), has been reported to

participate in the process of osteogenic differentiation. The

cerebellar degeneration-related protein 1 transcript (CDR1as),

as a newly reported circRNA, has been discovered to be involved

in the osteogenic differentiation of periodontal ligament stem

cells (PDLSCs). By in vivo and in vitro assays, they found that

circ-CDR1as plays the role of a miR-7 sponge, leading to

upregulate the level of GDF5 and phosphorylate the Smad1/5/

8 and p38 mitogen-activated protein kinases (p38 MAPK)

mechanistically (77).
FIGURE 2

The roles of circRNA–miRNA–mRNA networks related to BMP and Smad pathways in bone development. The circRNA–miRNA–mRNA
networks exert the potentials to regulate the bone development by BMP and Smad pathways.
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2.3.1.5 Others

According to the latest studies, several circRNAs play a part

in bone formation-related diseases through the Smad pathway

(Figure 2). For example, circ_AFF4 sponges miR-135a-5p and

modulates osteoblast differentiation by activating the Smad1/5

pathway via the miR-135a-5p/FNDC5/Irisin network in BMSCs

(28). Both circPOMT1 and circMCM3AP have been

demonstrated to crosstalk with hsa-miR-6881-3p. Moreover,

hsa-miR-6881-3p possibly inhibits Smad6 to activate the BMP

signaling pathway and influences osteogenesis of hASCs (52). At

the same time, circRNA-SIPA1L1 accelerates osteogenesis in

DPSCs via adsorbing miR-617 and further activating the Smad3

pathway (29). Moreover, circHGF, which was significantly

upregulated in osteonecrosis of the femoral head (ONFH)

sample group compared with the control group by circRNA

microarray assay, restrained the cell proliferation and

differentiation in BMSCs by acting on the miR-25-3p/Smad7

regulatory pathway (53).
2.3.2 RUNX signaling pathways
2.3.2.1 RUNX2

Runt-related transcription factor 2 (RUNX2), as a critical

osteogenic marker gene, is broadly used to observe the osteogenic

differentiation process. RUNX2 is involved in osteoblast

differentiation through coordinating multiple signaling pathways,

including BMPs, TGFs, Wnts, and hedgehogs. In the meantime, the

upregulated level of RUNX2 can activate the expression of

downstream Osterix, Col I, ALP, and other osteogenic genes. Yin

et al. showed that the expression level of circRUNX2, derived from

osteoporotic bone tissues, was downregulated (30). CircRUNX2

could be combined with miR-203 and compete for binding sites on

miR-203 with RUNX2 (30). Overexpression of circRUNX2 could

promote the osteogenic differentiation and restrain the progression

of osteoporosis (30). A subsequent study has confirmed that circ-

VANGL1, miR-217, and RUNX2 are correlated by the dual-

luciferase reporter gene assay (78). At the same time,

overexpression of circ-VANGL1 could lead to the increase of

miR-217 and the decrease of RUNX2 and then the acceleration

of osteogenic differentiation (78). Moreover, the expressions of bone

formation-related genes were upregulated and ALP activity was

increased by overexpressing circ-VANGL1 in hBMSCs (78). The

reduced osteogenic ability is one of the pivotal causes of age-related

osteoporosis in BMSCs. Overexpression of hsa_circ_0006215 could

enhance the expression of the osteogenesis-related genes, and the

condition in the hsa_circ_0006215 knockdown group was reversed

(25). The results of luciferase reporter and RNA pull-down assays

revealed the relationship between hsa_circ_0006215 and miR-942-

5p and RUNX2 (25). The results also showed that

hsa_circ_0006215 could regulate the RUNX2 and VEGF

expression via targeting miR-942-5p and then promote the

osteogenic differentiation (25). Similarly, the current studies show

that circRNA-23525 promotes osteogenic differentiation by
Frontiers in Endocrinology 06
sponging miR-30a-3p to regulate RUNX2 expression in ADSCs

(35). Meanwhile, circ_0011269 functions as a ceRNA binding to

miR-122 and then regulates the expression of RUNX2 and

accelerates osteoporosis progression (31).

2.3.2.2 RUNX1 and RUNX3

Hsa_circ_0026827, which is increased typically during the

osteoblast differentiation of human dental pulp stem cells

(hDPSCs), was surprisingly found to promote heterotopic

bone formation in vivo. The mechanism of action is via

Beclin1 and the RUNX1 signal channels by binding to miR-

188-3p, providing a novel thinking for osteoporosis

research (34).

It has been proven that hsa_circ_0005752 could regulate

osteogenic differentiation, as verified by alkaline phosphatase

(ALP) and alizarin red S (ARS) staining assays (32). The

hsa_circ_0005752/miR-496/MDM2 network plays a significant

role in accelerating osteogenic differentiation. It is worth noting

that RUNX3 could enhance the level of hsa_circ_0005752 and

then promote osteogenic differentiation (32). On the contrary,

knockdown of hsa_circ_0005752 partially antagonizes the

function (32). In the meantime, hsa_circRNA_33287 may also

affect the osteogenesis under the control of the ceRNA

mechanism in maxillary sinus membrane stem cells

(MSMSCs), which combines miR-214-3p and Runx3 by

forming the hsa_circRNA_33287/miR-214-3p/Runx3 circuit

(33). These pathways furnish novel mentalities for bone

regeneration and therapeutics for bone disease treatment, such

as osteoporosis.

2.3.3 Wnts
The interrelation between circRNA–miRNA–mRNA

networks and Wnt signaling during osteogenic differentiation

has been revealed (Figure 3). Wnt pathways are divided into the

canonical and non-canonical Wnt/b-Catenin pathway.

Yes-associated protein 1 (YAP1), which belongs to YAP

family, plays an important part in increasing bone mass and

retarding bone microstructure degeneration in BMSCs and

MC3T3-E1. Circ_0024097 could directly target miR-376b-3p

and then attenuate the osteoporosis via both the circ_0024097/

miR-376b-3p/YAP1 network and the Wnt/b-catenin pathway

(37). Furthermore, WIF-1 acts as a rescue regulatory factor to

change the positive effects of circ_0024097 overexpression on

osteogenic differentiation, which is the inhibitor of the Wnt/b-
catenin pathway (37). Another interesting circRNA for

restraining osteoporosis is circRNA-124534, which promotes

hDPSC bone regeneration in vitro and in vivo (39). Similarly, it

works through the miR-496/b-catenin pathway to enhance the

osteogenic differentiation (39). At the same time, circSmg5 could

improve osteoblast differentiation via targeting the miR-194-5p/

Fzd6 network to activate the Wnt/b-catenin pathway in

BMSCs (38).
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Several Wnts pertain to the non-canonical Wnt pathway,

such as Wnt4, Wnt5a, and Wnt5b. According to the report,

circRNA_0001052 is clarified to negatively regulate BMSC

proliferation by binding to miR-124-3p as a sponger via the

Wnt4/b-catenin pathway (54). It is worth mentioning that the

low-level laser irradiation (LLLI) could reverse the process and

provide a potential therapeutic to osteoporosis (54). The balance

between osteogenic and adipogenic differentiation plays an

important role in bone repair in BMSCs. miR-7-5p could link

with CDR1as and WNT5B to modulate the osteogenic/

adipogenic differentiation disorder, which may provide a novel

direction for the molecular mechanisms of bone metabolism-

related diseases (55).
3 The treatment of osteoporosis

3.1 Prevention

Osteoporosis is a type of chronic disease that is hardly

cured at the present stage. Therefore, it is essential to prevent

osteoporosis in advance. Calcium and vitamin D are essential

components of skeletons and also the basic strategy for

prevention and treatment of osteoporosis, especially

beneficial for reducing the risk of fractures in the elderly.

Simultaneously, vitamin D is significant in the treatment of

anti-resorption and anabolic bone formation. However, when

dietary calcium and vitamin D are insufficient to meet the

demand, the balance is affected. It is widely agreed upon that

food supplementation or the use of drug supplements is

necessary to improve calcium and vitamin D levels and then

prevent the development of osteoporosis (79, 80). It is widely

established that the progress of bone loss may be significantly

delayed by focusing on a diet of milk and dairy products,

leading to a healthy lifestyle, and taking appropriate calcium

and vitamin supplements (81, 82).
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3.2 Routine drug therapy

According to the mechanism of function, anti-osteoporosis

drugs can be divided into bone resorption inhibitors, bone

formation promoters, dual-action regulators, and others. Bone

resorption inhibitors are constituted by various drugs, including

estrogens, selective estrogen receptor modulators (SERMs),

calcitonin, and bisphosphonates. While parathyroid hormone

(PTH) and analogues belong to bone formation promoters and

strontium salt drugs play dual roles in regulating the new bone

formation (Table 3).

3.2.1 Estrogens and SERMs
Estrogen is a steroid sex hormone produced by the

endocrine system, which is involved in the physiological and

pathological processes of bone tissue and plays an important role

in the process of bone reconstruction. Estrogen reduces bone

resorption via inhibiting the function of osteoclasts, and

similarly selective estrogen receptor modulators are synthetic

non-hormonal substances that play the same role in bone

metabolism. The typical representative, raloxifene, can

significantly increase the bone density and reduce the risk of

fracture. However, the risk of breast cancer will increase because

of long-term estrogen use. Therefore, long-term estrogen

treatment is not recommended (85).

3.2.2 Calcitonin
Calcitonin is a type of peptide hormone derived from

thyroid cells and plays a vital role in the treatment of

osteoporosis by directly inhibiting the differentiation and

proliferation of osteoclasts. Then, calcitonin reduces the

number of osteoclasts and destroys the dynamic balance of

bone homeostasis. Calcitonin could also increase the bone

density and relieve pain in osteoporosis. However, adverse

reactions occur in several patients, and the effect of calcitonin

on osteoclasts is transient, which exerts the obvious promotion

in postmenopausal women (95).
FIGURE 3

The roles of circRNA–miRNA–mRNA networks related to Wnt/b-catenin pathways in bone development. CircRNA–miRNA–mRNA networks
participate in maintaining the bone development via Wnt/b-catenin pathways.
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3.2.3 Strontium salts
Strontium salts exhibit multidirectional effects on bone

tissue, not only promoting osteogenesis but also inhibiting

bone resorption and contributing to reduced possibility of

fracture. However, similar to major existing drugs, the

disadvantage is obvious. The risk of myocardial infarction will

dramatically increase after long-term administration in

postmenopausal women (96). Strontium ranelate (SR) is a type

of anti-osteoporosis drug with a multidirectional mechanism of

action caused by strontium ions, which is similar to calcium in

physical and chemical functions, and then plays a key role in

regulating bone metabolism via the calcium-sensing receptor

(CaSR) (92).
3.3 Novel drug therapies

In recent years, with more in-depth research on the

pathogenesis of osteoporosis, a series of therapeutic targets has
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been developed, and new drugs have been gradually applied in

clinical trials.

3.3.1 PTH analogues
Essentially, PTH is a single-chain polypeptide secreted by

the main cells of the parathyroid gland and joins in the regulative

process of calcium homeostasis. Discontinuous action of PTH

will stimulate bone formation and increase bone mass, but long-

term action will lead to opposite effects, which are bone

resorption enhancement and bone mass reduction (97).

Recombinant human parathyroid hormone 1-34 (PTH1-34),

which is also called teriparatide, is an active fragment of PTH.

Teriparatide is the representative drug in osteoporosis and

significantly reduces both vertebral and non-vertebral fractures

in postmenopausal patients with osteoporosis (98).

3.3.2 RANKL inhibitors
Denosumab, approved in 2010, competitively binds to

receptor activator of NF-kB ligand (RANKL), thereby

preventing merging with its receptor, RANK, and then inhibits
TABLE 3 The routine drug therapy in osteoporosis.

Bone resorption inhibiter drugs

Drug
category

Typical drug Function Adverse reaction References

ERT Estrogen Reducing bone resorption and suppressing the
apoptosis of osteoblasts and osteocytes

The adverse effects of uterus, breast, and cardiovascular system
increases

(83)

SERMs Raloxifene Reducing vertebral fracture risk Hot flushes and venous thromboembolism (84)

Calcitonin Migaixi nasal
spray

Increasing BMD and relieve pain Pruritus, epistaxis, and arthralgia (85)

NBP Alendronate Reducing the risk of vertebral and hip fractures Gastrointestinal disturbance, osteonecrosis of the jaw, and
atypical femoral fractures

(86)

RANKL
inhibitor

Denosumab Simple to use, and reducing bone turnover markers Discontinuation can result in a rebound of curative effect and
loss of BMD

(87)

Cathepsin K
inhibitors

Odanacatib and
ONO-5334

Suppression of bone resorption markers Pycnodysostosis (88)

Bone formation promoter drugs

Drug
category

Typical drug Function Adverse reaction References

PTH1R Teriparatide Reducing both vertebral and non-vertebral fractures
in postmenopausal patients

Persistent hypercalcemia, transient bone loss in clinic, and
osteosarcoma caused by receiving high dose in rodents

(89)

PTHrP Abaloparatide Enhancing bone mass and lowers the risk of fracture High cost and palpitations and heart rate increase (90)

DKK-1
antibody

DKK-1 antibody The Wnt-b-catenin signaling pathway physiological
antagonists and increasing bone formation

Bone safety issues need further research (91)

Dual-action drugs

Drug
category

Typical drug Function Adverse reaction References

Strontium
salt

Strontium
ranelate

Intensify osteoblastogenesis while inhibiting
osteoclastogenesis

The risk of myocardial infarction increases (92)

Sclerostin
antibodies

Romosozumab
and blosozumab

Increasing bone formation and decreases bone
resorption

Concern about the cardiovascular safety profile (93)

GLP-1RAs GLP-1RAs Promoting bone formation and inhibiting bone
resorption

The impact of fracture risk and osteoporosis needs to be
further explored

(94)
fr
ERT, estrogen replacement therapy; SERM, selective estrogen receptor modulator; NBP, nitrogen-containing bisphosphonate; RANKL, receptor activator of NF-kB ligand; PTH,
parathyroid hormone; PTH1R, PTH-1 receptor; PTHrP, PTH-related protein; DKK-1, dickkopf-1; GLP-1RAs, Glucagon-like peptide-1 receptor agonists.
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osteoclast differentiation and activation, also reducing the

osteoclastic activity. In clinical studies, it has been found that

denosumab brings positive effects to higher spine BMD in the

patient with postmenopausal osteoporosis. Dinoselmer is easy to

use and a large number of clinical trials have proved that it can

significantly reduce bone turnover markers (87, 99). However,

discontinuation of denosumab can result in a rebound of the

markers and even loss of accrued BMD.

3.3.3 Cathepsin K Inhibitors
Cathepsin K is a member of the family of cysteine proteases,

which has the highest expression and bone dissolution in

osteoclasts. It decomposes bone tissue by degrading osseocolla

and promotes the formation of cavities in bone, and then

generates bone homeostasis disorder. Fortunately, two

cathepsin K inhibitors, named odanacatib and ONO-5334,

have been currently applied in the clinical treatment of

osteoporosis. Such medicines will offer new therapeutic

options for osteoporosis patients. Odanacatib is a reversibly

selective, orally administered cathepsin K inhibitor.

Odanacatib could reduce bone resorption and increase BMD

and eventually achieve the goal of treating the disease via

inhibiting the absorptive activity of osteoclasts, rather than

decreasing their number (100). The other inhibitor, ONO-

5334, is affirmed to exert the action of increasing BMD and

bone strength parameters in the osteoporosis models of

ovariectomized monkey and is associated with suppressing

bone resorption markers in clinical settings (88). Hence,

ONO-5334 was demonstrated as a late-model mode of

function which could be used as a potential agent for the

treatment of osteoporosis.

3.3.4 Sclerostin antibodies
Sclerostin, a regulatory factor that affects bone remodeling, is

secreted only by mature osteocytes and restrains osteogenesis by

binding low-density lipoprotein receptor-related protein 5

(LRP5) and LRP6 receptors to inhibit the Wnt/b-catenin
pathway (91). Sclerostin monoclonal antibodies, such as

romosozumab and blosozumab, have been verified to inhibit

sclerotin activity and reduce the sclerotin inhibition of Wnt

signaling in multiple animal models. In the meantime,

romosozumab could significantly increase the bone mass and

reduce fracture risk by reducing bone resorption and promoting

bone formation in comparison with alendronate at the lumbar

spine (101, 102). Sclerostin antibody shows promise in the

treatment of established osteoporosis, although there are some

existing problems that need to be solved, including optimal

duration and order of administration (103).
3.3.5 CircRNA–miRNA–mRNA networks
As the research progressed, the role of circRNA–miRNA–

mRNA networks in regulating bone metabolism balance and
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diagnosing bone-related diseases, and even in providing new

ways of treatment to osteoporosis, was gradually proposed. For

example, both the circ_0001795/miR-339-5p/YAP1 axis and the

hsa_circ_0006766/miR-4739/Notch2 axis could attenuate

osteoporosis progression and could be used as potential

candidate therapeutic targets of bone regenerative medicine

(36, 45). On the contrary, the circ_0006873-miR-142-5p-

PTEN/Akt signaling pathway and the hsa_circ_0006859/miR-

431-5p/ROCK1 signaling pathway could reverse the positive

effects of osteogenic differentiation and promote the

development of osteoporosis, which may provide treatment

approaches for osteoporosis (56, 57). Overall, these results are

helpful in exploring the pathogenesis of osteoporosis and in

providing new strategies for its treatment.
4 Conclusions and perspectives

Above all, osteoporosis is a kind of complex multiple-factor

chronic disease that needs further research to solve the problem

of pathogenesis. Along with the advancement of osteoblast and

osteoclast biology research, researchers have found a variety of

regulatory transcription factors and signal pathways in the

development of osteoporosis, including circRNA–miRNA–

mRNA networks. The circRNA-associated ceRNA networks

are closely related to the pathogenesis of osteoporosis by

regulating osteoporosis-related key genes. Based on these

findings on c ircRNA–miRNA–mRNA networks in

osteoporosis, subsequent studies are needed to verify the

application of circRNA–miRNA–mRNA networks in the

prevention and treatment for osteoporosis. Targeting key

circRNAs or miRNAs, identified as potentially crucial

mechanisms underlying osteoporosis, might be a novel

therapeutic method for osteoporosis.

Plenty of evidence suggest that these networks play

significant roles in modulating the osteogenic/adipogenic

differentiation in numerous types of cells and then dedicate to

the osteoporosis. These findings are dramatically helpful to

improve the current understanding of circRNA–miRNA–

mRNA networks’ function in osteogenesis. In addition,

existing drugs have obvious adverse reactions or are not

suitable for long-term use. Therefore, the adverse reactions

limit the longer and widespread use of these drugs. With the

emergence of more in-depth studies, new target drugs are

gradually proposed, which might be more effective in

maintaining the dynamic balance in bone reconstruction,

reducing the patient’s pain and improving the quality of life.

Meanwhile, the corresponding therapeutics of circRNA–

miRNA–mRNA networks are hoped to be applied in clinic

and might be novel therapeutic targets in osteoporotic

patients. As we mentioned, overexpression or knockdown of

key circRNA/miRNAs might be a novel therapeutic strategy for

osteoporosis. These important circRNA/miRNAs may be
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applied as a potential target to develop promising anti-

osteoporotic drugs. However, the functions of more potential

circRNA–miRNA–mRNA networks in the development of

osteoporosis should be verified. A deep understanding of the

osteoporosis-specific dysregulated circRNA–miRNA–mRNA

network-mediated gene regulation in the development of

osteoporosis is necessary to lay a firm foundation to develop

promising therapeutic targets for osteoporosis.
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