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The ongoing COVID-19 pandemic has been a major global health challenge since its
emergence in 2019. Contrary to early predictions that sub-Saharan Africa (SSA) would bear
a disproportionate share of the burden of COVID-19 due to the region's vulnerability to
other infectious diseases, weak healthcare systems, and socioeconomic conditions, the
pandemic's effects in SSA have been very mild in comparison to other regions. Interest-
ingly, the number of cases, hospitalizations, and disease-induced deaths in SSA remain low,
despite the loose implementation of non-pharmaceutical interventions (NPIs) and the low
availability and administration of vaccines. Possible explanations for this low burden
include epidemiological disparities, under-reporting (due to limited testing), climatic
factors, population structure, and government policy initiatives. In this study, we formulate
a model framework consisting of a basic model (in which only susceptible individuals are
vaccinated), a vaccine-structured model, and a hybrid vaccine-age-structured model to
assess the dynamics of COVID-19 in West Africa (WA). The framework is trained with a
portion of the confirmed daily COVID-19 case data for 16 West African countries, validated
with the remaining portion of the data, and used to (i) assess the effect of age structure on
the incidence of COVID-19 in WA, (ii) evaluate the impact of vaccination and vaccine
prioritization based on age brackets on the burden of COVID-19 in the sub-region, and (iii)
explore plausible reasons for the low burden of COVID-19 in WA compared to other parts
of the world. Calibration of the model parameters and global sensitivity analysis show that
asymptomatic youths are the primary drivers of the pandemic in WA. Also, the basic and
control reproduction numbers of the hybrid vaccine-age-structured model are smaller
than those of the other two models indicating that the disease burden is overestimated in
the models which do not account for age-structure. This result is confirmed through the
vaccine-derived herd immunity thresholds. In particular, a comprehensive analysis of the
basic (vaccine-structured) model reveals that if 84%(73%) of the West African populace is
fully immunized with the vaccines authorized for use in WA, vaccine-derived herd im-
munity can be achieved. This herd immunity threshold is lower (68%) for the hybrid model.
Also, all three thresholds are lower (60% for the basic model, 51% for the vaccine-structured
model, and 48% for the hybrid model) if vaccines of higher efficacies (e.g., the Pfizer or
Moderna vaccine) are prioritized, and higher if vaccines of lower efficacy are prioritized.
Simulations of the models show that controlling the COVID-19 pandemic in WA (by
reducing transmission) requires a proactive approach, including prioritizing vaccination of
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more youths or vaccination of more youths and elderly simultaneously. Moreover, com-
plementing vaccination with a higher level of mask compliance will improve the prospects
of containing the pandemic. Additionally, simulations of the model predict another COVID-
19 wave (with a smaller peak size compared to the Omicron wave) by mid-July 2022.
Furthermore, the emergence of a more transmissible variant or easing the existing mea-
sures that are effective in reducing transmission will result in more devastating COVID-19
waves in the future. To conclude, accounting for age-structure is important in under-
standing why the burden of COVID-19 has been low in WA and sustaining the current
vaccination level, complemented with the WHO recommended NPIs is critical in curbing
the spread of the disease in WA.

© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Challenges associated with the 2019 coronavirus (COVID-19) pandemic have been enormous. The pandemic has impacted
every country and region of the world with over 543 million reported cases and 6.3 million deaths as of late June 2022 (Dong
et al., Gardner). Although its impact on the African continent has not been as devastating as in other parts of the globe or as
predicted earlier, over 11.7million confirmed cases and 253, 935 deaths had been recorded in Africa and 847, 400 cases and 11,
400 deaths in theWest African sub-region as of June 22, 2022 (Africa Centers for Disease Control and Prevention (CDC), 2019).
In theWest African sub-region, the pandemic has been aggravated by an already weakened economy, healthcare system, and
immunity among a large proportion of the population due to the high prevalence of malnutrition, and other acute and chronic
infectious diseases (Boutayeb, 2010, p. 1171). Specifically, poor socio-economic conditions coupled with the overwhelming
population density that depends largely on face-to-face interactions for their basic livelihoods challenges the practicality of
non-pharmaceutical interventions (NPIs) such as social distancing, self-isolation of confirmed cases, quarantining of sus-
pected cases, and nationwide lockdown and travel ban measures (Walker et al., 2020). The secondary ramifications of
imposing these measures with strict compliance can impact the survival and livelihoods of these populations negatively, with
a potential increase in morbidity and mortality arising from hunger, financial difficulties and non-utilization of essential
services such as primary health care (Walker et al., 2020; Roberton et al., 2020; Li et al., Wong et al.).

Notwithstanding these challenges, sub-Saharan Africa (SSA) appears to be minimally impacted by the pandemic, with
fewer confirmed and reported COVID-19 cases and mortalities than elsewhere. The demographic distribution (a key epide-
miological indicator of disease transmission), low case detection rate due to insufficient testing capacity, epidemiological
disparities, and timely implementation of NPIs best explain the variations in the burden of COVID-19 observed across
different settings (Evans et al., 2020; Favas et al., 2022; Ram & Schaposnik, 2021; Taboe et al., 2020). The young population
age-structure in Africa with a median age of 19 years is significant in limiting morbidity and mortality associated with the
disease (Favas et al., 2022; Ram & Schaposnik, 2021). Evidence from various studies has associated a greater risk of disease
severity and mortality with older and immunocompromised individuals (Davies et al., 2020; Sadarangani et al., 2021; Simeni
Njonnou et al., 2021). Increased resistance to infections can be acquired through enhanced immunity from vaccination or
cross-protection from previous infections (Huang et al., Rodriguez-Barraquer et al.). The latter is more conceivable among
younger individuals who are more likely to be exposed to other coronaviruses and respiratory viruses (Davies et al., 2020;
Simeni Njonnou et al., 2021; Tsagarakis et al., Papadogeorgaki). Moreover, the younger population is more likely to experience
milder (asymptomatic or paucisymptomatic) disease conditions, which are rarely noticed or reported (Davies et al., 2020),
though, they remain transmissible. The high prevalence of subclinical infections among young people justifies the low
number of reported clinical cases, hospitalizations, and mortality in populations with significant proportions of younger
individuals, as observed in many low-income countries (Sadarangani et al., 2021). Youths tend to have a broader network of
social contacts than the elderly and contribute substantially to the transmission of the pathogen. Due to their milder and
subclinical disease nature, most of them are usually unaware of their disease status (Eames et al., 2012). On the contrary, the
elderly with fewer interactions and more cautious nature bear the brunt of clinical disease, hospitalization, and death.

Considering the socio-economic structure and population demographics of most countries in West Africa (WA), effective
pharmaceutical interventions (vaccines and anti-viral medications) stand out as the strategy of choice to reduce transmission
and/or curtail the burden of the pandemic (Sultana et al., 2020). Conventionally, the tenet of vaccination can be achieved by
directly vaccinating individuals at high risk of severe disease, hospitalization, and death and/or protecting these vulnerable
groups by vaccinating those primarily responsible for transmitting the pathogen (Bubar et al., 2021). The WHO authorized
COVID-19 vaccines presently in use in Africa include AstraZeneca, Sinopharm, Sputnik V, BioNTech, Sinovac, Covaxin, Sputnik
Light, Pfizer, andModerna (Africa Centers for Disease Control and Prevention (CDC)). These vaccines effectivelymeet the tenet
of vaccination explained above, although with varying efficacy ranging between 51% and 95% (World Health Organization
(WHO)). As of June 28, 2022, 72% of vaccines doses supplied in Africa have been administered, with 18% of the population
fully vaccinated since the commencement of the vaccination program in December 2020 (Africa Centers for Disease Control
and Prevention (CDC)). The low vaccination intake can be attributed to vaccine hesitancy arising from misinformation and
risk perception of available vaccines (Adepoju; Tlale et al., 2022). Despite efforts to address this challenge, there remain a gap
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in the quantity of vaccine supplied. The limited availability of COVID-19 vaccines in most low-income countries, mainly
obtained from the COVAX assistance program or donor supports (Diarra et al., 2022), calls for the prioritization of vaccine
administration to achieve its maximum impact. Understanding the influence of the population age structure on the trans-
mission and incidence of COVID-19 in WA will ensure efficient utilization of resources for maximum impact.

Mathematical models have provided comprehensive insight into COVID-19 dynamics and informed various interventions
(Eikenberry et al., 2020; Gumel et al., Ngwa; Ngonghala et al., 2019; Ngonghala et al., 2020a; Ferguson et al. 2020; Ngonghala
et al., 2020b; Ngonghala et al., 2021a; Ngonghala et al., 2021b; Ngonghala & Gumel, 2022; Taboe et al., 2020). These models
have been instrumental in developing effective policies that have steered public health directions and effected change in
many settings. A study that deployed an age-structured model fitted to COVID-19 epidemic data from China, Italy, Japan,
Singapore, Canada, and South Korea (Davies et al., 2020) showed a significant increase of 57e82% in clinical infections among
individuals 70 years and over. In a similar study in (Diarra et al., 2022), the authors demonstrated that vaccinating not just
those above 60 years but also those from 5 to 60 years reduced disease incidence substantially. Findings from (Richard et al.,
2021) using an age-structured epidemiological model proved that regardless of vaccine efficacy, control measures and im-
munity dynamics, prioritizing vaccine administration among the elderly (> 60 years) had the highest relative reduction in
deaths. Although prioritizing vaccination of the adult population will reduce severe disease and mortality, focusing on
younger people can reduce transmission and decrease the incidence of the disease (Foy et al., 2021; Wang et al., Tang). These
studies justify prioritizing the more aging population in high-income countries during the initial phase of vaccine allocation.

Here, we formulate and use a mathematical framework that accounts for vaccination and age-structure to assess the
contributions of youths and elderly to COVID-19 prevalence in WA. The framework is used to evaluate the impact of vacci-
nation and vaccine prioritization based on age brackets on the burden of COVID-19 in the sub-region and to explore possible
reasons why the burden of the COVID-19 pandemic has been less severe in WA compared to other regions.

2. Methods

Three compartmental models depicting the transmission dynamics of COVID-19 in the West African sub-region are
developed. The first model (referred to asModel 1 or the basic model) accounts for vaccine-derived immunity and thewaning
effects of vaccine-derived (natural) immunity for vaccinated (recovered) individuals. The second model (referred to as Model
2)ean extension of the first model, caters for the heterogeneity in vaccination status; it is structured based on whether in-
dividuals in each of the classes are vaccinated or unvaccinated. The third model (referred to as Model 3) is an extension of the
second model that accounts for age structure, with individuals subdivided into two age groups determined by disease risk. In
all three models, vaccinated individuals are those who have been fully vaccinated (i.e., individuals who have received all
required vaccine doses, including booster doses).

2.1. Model 1: The basic model

The model, that is based on an extended Kermack-Mckenderick type framework (Kermack &McKendrick, 1927) splits the
entire human population into nine distinct groups based on disease and vaccination status. The classes include unvaccinated
susceptible (Su), vaccinated susceptible (Sv), latent (E), presymptomatic infectious (Ip), symptomatic infectious (Ii), asymp-
tomatic infectious (Ia), confirmed cases (Ic), hospitalized (Ih), and recovered (R). Hence, the total population denoted by N is

N ¼ Su þ Sv þ E þ Ip þ Ii þ Ia þ Ic þ Ih þ R:
The model (2.1), assumes no vertical transmission of COVID-19, hence, births from all the classes enter into the unvac-
cinated susceptible class (Su) at rate L. Natural deaths in each class occur at per capita rate m. Vaccination of susceptible
individuals is at per capita rate x, while vaccine-derived immunity of vaccinated susceptible individuals wanes at per capita
rate usv, and natural immunity of recovered individuals wanes at per capita rate ur. Unvaccinated (vaccinated) susceptible
individuals become infected and progress to the latent class (E) at per capita rate l ¼ (bpIp þ baIa þ biIi þ bcIc þ bhIh)/N ((1 � e)
l), where bj, j2 {p, a, i, c, h} is the effective contact rate for members of the Ijth class and 0� e� 1 is the efficacy of vaccines in
preventing vaccinated individuals from contracting the virus. Latent individuals progress to the presymptomatic infectious
class at per capita rate se, while at the end of the incubation period, presymptomatic infectious individuals join the symp-
tomatic (asymptomatic) infectious class at per capita rate rsp ((1 � r)sp), where 0 � r � 1 is the fraction of presymptomatic
infectious individuals who develop clinical disease symptoms. The confirmed class is populated by detected individuals (i.e.,
individuals who test positive) from the latent, presymptomatic infectious, and asymptomatic infectious classes at per capita
rate, ta, and detected individuals from the symptomatic infectious class at per capita rate, ti. It should be mentioned that in
WA, apart from travel and administrative reasons, most of the people who are tested are the symptomatic infectious.
Therefore, ti > ta. Confirmed (symptomatic infectious) individuals are hospitalized at per capita rate 4c (4i), while confirmed,
symptomatic infectious, asymptomatic infectious, and hospitalized individuals recover from infection at per capita rate, gc, gi,
ga, and gh, respectively. COVID-19 related deaths occur in the confirmed, symptomatic infectious, and hospitalized classes at
per capita rate, dc, di, and dh, respectively. Descriptions of the variables and parameters of the basic model (2.1) are sum-
marized in Tables S1eS2 of the supplementary information (SI), while the model is depicted schematically in Fig. 1.
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Fig. 1. Schematic diagram of the basic model depicting the flow of individuals between classes based on the disease and vaccination status. The classes are
unvaccinated susceptible (Su), vaccinated susceptible (Sv), latent (E), presymptomatic infectious (Ip), symptomatic infectious (Ii), asymptomatic infectious (Ia),
confirmed infectious (Ic), hospitalized (Ih), and recovered (R). Descriptions of the model variables and parameters are provided in Tables S1eS2 of the SI.
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_Su ¼ Lþ ur Rþ usv Sv � l Su � ðxþ mÞ Su;
_Sv ¼ x Su � usv Sv � ð1� eÞl Sv � m Sv;
_E ¼ l ðSu þ ð1� εÞ SvÞ � ðta þ se þ mÞ E;
_Ip ¼ se E � �

tþ sp þ m
�
Ip;

_Ii ¼ r sp Ip � ðti þ 4i þ gi þ di þ mÞ Ii;
_Ia ¼ ð1� rÞsp Ip � ðta þ ga þ mÞ Ia;
_Ic ¼ ta

�
E þ Ip þ Ia

�þ tiIi � ðgc þ 4c þ dc þ mÞ Ic;
_Ih ¼ 4i Ii þ 4cIc � ðgh þ dh þ mÞ Ih;
_R ¼ gi Ii þ ga Ia þ gh Ih þ gcIc � ðmþ urÞR:

(2.1)
2.2. Model 2: The vaccine-structured model

The vaccine-structured model is derived by splitting the population into non-vaccinated and vaccinated groups (with
subscripts u and v, respectively). Hence, the total population (N) is N ¼ Nu þ Nv, where Nu is the total non-vaccinated pop-
ulation and Nv is the total vaccinated population. The total non-vaccinated population, is subdivided into non-vaccinated
susceptible (Su), latent (Eu), presymptomatic infectious (Ipu), symptomatic infectious (Iiu), asymptomatic infectious (Iau),
confirmed cases (Icu), hospitalized (Ihu), and recovered (Ru). The vaccinated population is subdivided into similar classes with
the subscript u replaced with v. Hence, the total unvaccinated and vaccinated populations are

Nu ¼ Su þ Eu þ Ipu þ Iau þ Iiu þ Icu þ Ihu þ Ru and Nv ¼ Sv þ Ev þ Ipv þ Iav þ Iiv þ Icv þ Ihv þ Rv:
A schematic depiction of the framework is given in Fig. 2, while the variables and parameters are further described in
Tables S3eS4 of the supplementary Information (SI).

In addition to the parameters described in Section 2.1, unvaccinated latent, presymptomatic infectious, asymptomatic
infectious, and recovered individuals are vaccinated at per capita rate x. As a result of therapeutic benefits of COVID-19
vaccines in reducing severe infection, hospitalization, and mortality, the transmission rates, hospitalization, disease-
induced mortality, and recovery rates for the non-vaccinated and vaccinated populations are different and distinguished
through the use of the additional subscripts u and v, respectively. Additionally, natural (vaccine-derived) immunity for un-
vaccinated (vaccinated) recovered individuals wanes at per capita rate uru (urv). The brief description above, together with the
schematics (Fig. 2) and the variable and parameter descriptions in Tables S3eS4 of the SI lead to the following system of
ordinary differential equations for the population dynamics of non-vaccinated individuals:

_Su ¼ Lþ uru Ru þ usv Sv þ urv Rv � ðluu þ lvuÞ Su � ðxþ mÞ Su;
_Eu ¼ ðluu þ lvuÞ Su � ðxþ ta þ se þ mÞ Eu;
_Ipu ¼ se Eu �

�
xþ ta þ sp þ m

�
Ipu;

_Iiu ¼ r sp Ipu � ðti þ 4iu þ giu þ diu þ mÞ Iiu;
_Iau ¼ ð1� rÞsp Ipu � ðxþ ta þ gau þ mÞ Iau;
_Icu ¼ ta

�
Eu þ Ipu þ Iau

�þ tiIiu � ðgc þ 4cu þ dcu þ mÞ Icu;
_Ihu ¼ 4iu Iiu þ 4cuIcu � ðghu þ dhu þ mÞ Ihu;
_Ru ¼ giu Iiu þ gau Iau þ ghu Ihu þ gcuIcu � ðxþ mþ uruÞRu:

(2.2)
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Fig. 2. Schematic diagram of the vaccine-structured model depicting the flow of individuals between compartmentalized classes (based on disease and vacci-
nation status). The total population (N) consist of unvaccinated (Nu) and vaccinated (Nv) groups. The unvaccinated population is made of susceptible (Su), latent
(Eu), presymptomatic infectious (Ipu), symptomatic infectious (Iiu), asymptomatic infectious (Icu), confirmed infectious (Icu), hospitalized (Ihu), and recovered (Ru)
classes. Also, the vaccinated population is made of similar classes with the subscript u replaced with v. Descriptions of the model variables and parameters (rates)
are provided in Tables S3eS4 of the SI.
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Also, using the brief description above, together with the schematics in Fig. 2 and the variable and parameter descriptions
in Tables S3eS4 of the SI, we obtain the following system of equations for the dynamics of vaccinated individuals:

_Sv ¼ xSu � ðluv þ lvvÞ Sv � ðm þ usvÞSv;
_Ev ¼ xEu þ ðluv þ lvvÞ Sv � ðta þ se þ mÞ Ev;
_Ipv ¼ xIpu þ se Ev �

�
ta þ sp þ m

�
Ipv;

_Iiv ¼ r sp Ipv � ðti þ 4iv þ giv þ div þ mÞ Iiv;
_Iav ¼ xIau þ ð1� rÞsp Ipv � ðta þ gav þ mÞ Iav;
_Icv ¼ ta

�
Ev þ Ipv þ Iav

�þ tiIiv � ðgcv þ 4cv þ dcv þ mÞ Icv;
_Ihv ¼ 4iv Iiv þ 4cvIcv � ðghv þ dhv þ mÞ Ihv;
_Rv ¼ xRu þ giv Iiv þ gav Iav þ ghv Ihv þ gcvIcv � ðmþ urvÞRv:

(2.3)
The vaccine-structured model is described by Eqs. (2.2)-(2.3), with the forces of infection lmn, m, n 2 {u, v} (depicting
transmission from a jm, j 2 {p, a, i, c, h} infectious class to an n susceptible class) are given by

lmn ¼ bpmnIpm þ bamnIam þ bimnIim þ bcmnIcm þ bhmnIhm
N

: (2.4)
2.3. Model 3: Integrated (hybrid) vaccine-structured and age-structured model

The vaccine-structured model described by Eqs. (2.2)-(2.3) is now extended to account for age-structure. Here, only two
age-groups based on COVID-19 risk are considered. Group 1 denoted by the additional subscript 1 consists of individuals
below 65 years old (youths), while Group 2 denoted by the additional subscript 2, consists of individuals aged 65 and above
(elderly). It should be mentioned that in addition to being at high risk (due to underlying health conditions and weakened
immune systems) individuals aged 65 and above, have significantly different contact and mixing behaviors compared to
individuals below 65 (Pastorino et al., 2022; Richard et al., 2021; Sadarangani et al., 2021). Other studies on COVID-19 have
also broken the population into two-age groups (Davies et al., 2020; Diarra et al., 2022; Foy et al., 2021; Wang et al., Tang). It
should be noted that although, we have considered only two age groups here, more than two age groups defined based on
disease risk, possibility of mixing, severity of disease, etc., can be accounted for. Based on our two age-group assumption, we
have four coupled systems of equations that characterize the population dynamics of 1) unvaccinated individuals in age
Group 1 (Eq. (2.5)), 2) vaccinated individuals in age Group 1 (Eq. (2.7)), 3) unvaccinated individuals in age Group 2 (Eq. (2.7)),
713
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and 4) vaccinated individuals in age Group 2 (Eq. (2.8)). Group 1 individuals progress to Group 2 at per capita rate, r. The total
unvaccinated Group 1 population (Nu1), vaccinated Group 1 population (Nv1), unvaccinated Group 2 population (Nu2), and
vaccinated Group 2 population (Nv2) are:

Nu1 ¼ Su1 þ Eu1 þ Ipu1 þ Iau1 þ Iiu1 þ Icu1 þ Ihu1 þ Ru1; Nv1 ¼ Sv1 þ Ev1 þ Ipv1 þ Iav1 þ Iiv1 þ Icv1 þ Ihv1 þ Rv1;
Nu2 ¼ Su2 þ Eu2 þ Ipu2 þ Iau2 þ Iiu2 þ Icu2 þ Ihu2 þ Ru2; Nv2 ¼ Sv2 þ Ev2 þ Ipv2 þ Iav2 þ Iiv2 þ Icv2 þ Ihv2 þ Rv2:
Schematics of the integrated or hybrid vaccine-structured and age-structured model are depicted in Fig. 3, the model
equations are given in Eqs. (2.5)-(2.8) and the forces of infection are given by Eq. (2.9).
Fig. 3. Schematics of the integrated vaccine-structured and age-structured model depicting the flow of individuals between compartmentalized classes (based on
age, vaccination, and disease status). The total population (N) is divided into age group 1 (denoted by the subscript 1) and age group 2 (denoted by the subscript
2). Each age group is further split into the subgroups of unvaccinated (denoted by the subscripts u) and vaccinated (denoted by the subscript v), so that un-
vaccinated individuals in Group 1 (Group 2) carry the subscript, u1(u2), and vaccinated individuals in Group 1 (Group 2) carry the subscript, v1(v2). Furthermore,
individuals in each of these subgroups are partitioned into susceptible (Smk), latent (Emk), presymptomatic infectious (Ipmk), symptomatic infectious (Iimk),
asymptomatic infectious (Iamk), confirmed infectious (Icmk), hospitalized (Ihmk), and recovered (Rmk), where m ¼ u, v and k ¼ 1, 2 classes. Group 1 individuals
progress to Group 2 at per capita rate, r. Descriptions of the model variables and the other parameters (rates) are provided in Tables S5eS6 of the SI.
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The population dynamics of unvaccinated individuals in age Group 1 are described by the system of equations:

_Su1 ¼ Lþ uru1 Ru1 þ usv1 Sv1 þ urv1 Rv1 � ðlu11 þ lv11 þ lu21 þ lv21ÞSu1 � ðx1 þ m1 þ rÞSu1;
_Eu1 ¼ ðlu11 þ lv11 þ lu21 þ lv21ÞSu1 � ðx1 þ ta þ se þ m1 þ rÞEu1;
_Ipu1 ¼ se Eu1 �

�
x1 þ ta þ sp þ m1 þ r

�
Ipu1;

_Iiu1 ¼ r1sp Ipu1 � ðti1 þ 4iu1 þ giu1 þ diu1 þ m1 þ rÞIiu1;
_Iau1 ¼ ð1� r1ÞspIpu1 � ðx1 þ ta þ gau1 þ m1 þ rÞIau1;
_Icu1 ¼ ta

�
Eu1 þ Ipu1 þ Iau1

�þ ti1Iiu1 � ðgcu1 þ 4cu1 þ dcu1 þ m1 þ rÞIcu1;
_Ihu1 ¼ 4iu1Iiu1 þ 4cu1Icu1 � ðghu1 þ dhu1 þ m1 þ rÞIhu1;
_Ru1 ¼ giu1Iiu1 þ gau1Iau1 þ ghu1Ihu1 þ gcu1Icu1 � ðx1 þ m1 þ uru1 þ rÞRu1;

(2.5)
while the population dynamics of vaccinated individuals in age Group 1 are described by the system of equations:

_Sv1 ¼ x1Su1 � ð1� eÞðlu11 þ lv11 þ lu21 þ lv21Þ Sv1 � ðm1 þ usv1 þ rÞSv1;
_Ev1 ¼ x1Eu1 þ ð1� eÞðlu11 þ lv11 þ lu21 þ lv21Þ Sv1 � ðta þ se þ m1 þ rÞEv1;
_Ipv1 ¼ x1Ipu1 þ seEv1 �

�
ta þ sp þ m1 þ r

�
Ipv1;

_Iiv1 ¼ r1spIpv1 � ðti1 þ 4iv1 þ giv1 þ div1 þ m1 þ rÞIiv1;
_Iav1 ¼ x1Iau1 þ ð1� r1ÞspIpv1 � ðta þ gav1 þ m1 þ rÞIav1;
_Icv1 ¼ ta

�
Ev1 þ Ipv1 þ Iav1

�þ ti1Iiv1 � ðgcv1 þ 4cv1 þ dcv1 þ m1 þ rÞIcv1;
_Ihv1 ¼ 4iv1Iiv1 þ 4cv1Icv1 � ðghv1 þ dhv1 þ m1 þ rÞIhv1;
_Rv1 ¼ x1Ru1 þ giv1Iiv1 þ gav1Iav1 þ ghv1Ihv1 þ gcv1Icv1 � ðm1 þ urv1 þ rÞRv1:

(2.6)
The population dynamics of unvaccinated individuals in age Group 2 are governed by the system of equations:

_Su2 ¼ rSu1 þ uru2Ru2 þ usv2 Sv2 þ urv2Rv2 � ðlu22 þ lv22 þ lu12 þ lv12ÞSu2 � ðx2 þ m2ÞSu2;
_Eu2 ¼ rEu1 þ ðlu22 þ lv22 þ lu12 þ lv12ÞSu2 � ðx2 þ ta þ se þ m2ÞEu2;
_Ipu2 ¼ rIpu1 þ seEu2 �

�
x2 þ ta þ sp þ m2

�
Ipu2;

_Iiu2 ¼ rIiu1 þ r2spIpu2 � ðti2 þ 4iu2 þ giu2 þ diu2 þ m2ÞIiu2;
_Iau2 ¼ rIau1 þ ð1� r2ÞspIpu2 � ðx2 þ ta þ gau2 þ m2ÞIau2;
_Icu2 ¼ rIcu1þ ta

�
Eu2 þ Ipu2 þ Iau2

�þ ti2Iiu2 � ðgcu2 þ 4cu2 þ dcu2 þ m2ÞIcu2;
_Ihu2 ¼ rIhu1 þ 4iu2Iiu2 þ 4cu2Icu2 � ðghu2 þ dhu2 þ m2ÞIhu2;
_Ru2 ¼ rRu1 þ giu2Iiu2 þ gau2Iau2 þ ghu2Ihu2 þ gcu2Icu2 � ðx2 þ m2 þ uru2ÞRu2;

(2.7)
while the population dynamics of vaccinated individuals in age Group 2 are governed by the system of equations:

_Sv2 ¼ r Sv1 þ x2Su2 � ð1� eÞðlu22 þ lv22 þ lu12 þ lv21Þ Sv2 � ðm2 þ usv2Þ Sv2;
_Ev2 ¼ rEv1 þ x2Eu2 þ ð1� eÞðlu22 þ lv22 þ lu12 þ lv12ÞSv2 � ðta þ se þ m2ÞEv2;
_Ipv2 ¼ rIpv1 þ x2Ipu2 þ seEv2 �

�
ta þ sp þ m2

�
Ipv2;

_Iiv2 ¼ rIiv1 þ r2spIpv2 � ðti2 þ 4iv2 þ giv2 þ div2 þ m2ÞIiv2;
_Iav2 ¼ rIav1 þ x2Iau2 þ ð1� r2ÞspIpv2 � ðta þ gav2 þ m2ÞIav2;
_Icv2 ¼ rIcv1 þ ta

�
Ev2 þ Ipv2 þ Iav2

�þ ti2Iiv2 � ðgcv2 þ 4cv2 þ dcv2 þ m2ÞIcv2;
_Ihv2 ¼ rIhv1 þ 4iv2Iiv2 þ 4cv2Icv2 � ðghv2 þ dhv2 þ m2ÞIhv2;
_Rv2 ¼ rRv1 þ x2Ru2 þ giv2Iiv2 þ gav2Iav2 þ ghv2Ihv2 þ gcv2Icv2 � ðm2 þ urv2ÞRv2:

(2.8)
The full vaccine-age-structured model (Model 3) is described by Eqs. (2.5)-(2.8) with the forces of infection:

lmkl ¼
bpmkIpmk þ bapmkIapmk þ bipmkIipmk þ bcpmkIcpmk þ bhpmkIhpmk

N
;m2fu; vg; k; l2f1;2g: (2.9)
3. Results

3.1. Analytical results for the basic model

First, we demonstrate that the basic model is well-posed from a mathematical and epidemiological stand point. Consider
the model (2.1) for positive time (i.e., t > 0) with the initial condition
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�
Suð0Þ; SV ð0Þ; Eð0Þ; Ipð0Þ; Iið0Þ; Iað0Þ; Icð0Þ; Ihð0Þ;Rð0Þ

� ¼ �
Su0; SV0; E0; Ip0; Ii0; Ia0; Ic0; Ih0;R0

�
;

and the epidemiologically feasible region

U ¼
��

Su; SV ; E; Ip; Ii; Ia; Ic; Ih;R
�
2R9

þ : N � L

m

�
:

The dynamics of the total population (N) is described by the equation

_N ¼ L� mN � ðdiIi þ dcIc þ dhIhÞ � L� mN:

�mt � �mt��
This leads to NðtÞ � N0e þ L 1� e m, where N(0) ¼ N0 is the initial total population size. Hence, N(t)/ L/m as t/
∞. Accordingly, all solutions of the basic model (2.1) that originate from U remain trapped in U. That is, U is positively-
invariant and attracting for the model (2.1).

The disease-free equilibrium of Eq. (2.1) is

�
S*u; S

*
v ; E

*; I*p; I
*
i ; I

*
a; I

*
c ; I

*
h;R

*
�
¼

	
Lðmþ usvÞ

mðmþ usv þ xÞ;
Lx

mðmþ usv þ xÞ; 0;0; 0;0; 0;0;0


:

Through the next generationmatrix method (Diekmann et al., 1990; van den Driessche&Watmough, 2002), we obtain the
following basic reproduction number for Model 1 (Eq. (2.1)) in the absence of vaccination or any control measure (see Section
2.1 of the SI for details of the calculations):

R0 ¼ Rp þ Ra þ Ri þ Rc þ Rh; (3.1)

where
Rp ¼ bpseAaAcAhAi

AaAcAeAhAiAp
; Ra ¼ bað1� rÞsespAcAhAi

AaAcAeAhAiAp
; Ri ¼

birsespAaAcAh

AaAcAeAhAiAp
;

Rc ¼ bcAh
�½rtiAa þ ð1� rÞtaAi�sesp þ taAaAi

�
se þ Ap

� �
AaAcAeAhAiAp

;

Rh ¼ bh
�½rAað4iAc þ 4ctiÞ þ ð1� rÞ4ctaAi�sesp þ 4ctaAaAi

�
se þ Ap

� �
AaAcAeAhAiAp

;

Aa ¼ ta þ ga þ m, Ac ¼ gc þ 4c þ dc þ m, Ae ¼ ta þ se þ m, Ah ¼ gh þ dh þ m, Ai ¼ ti þ 4i þ gi þ di þ m, and
Ap ¼ ta þ sp þ m. In the presence of vaccination and/or other control and mitigation measures, the control reproduction
number is

Rc ¼ R0
S*u þ ð1� eÞS*v

S*u þ S*v
; (3.2)

where S*u ¼ LðmþusvÞ=½mðmþusv þxÞ� and S*v ¼ Lx=½mðm þ usv þ xÞ�. Using Theorem 2 in (van den Driessche & Watmough,
2002), we have the following result on the local asymptotic stability of the disease-free equilibrium of Model 1 (i.e., Eq. (2.1)):

Theorem 3.1. The disease-free equilibrium of Model 1 is locally-asymptotically stable if Rc < 1, and unstable if Rc > 1.

The threshold quantity Rc, referred to as the vaccination reproduction number of Model 1, quantifies the expected number
of new COVID-19 cases caused by one infectious individual introduced into a population in which a certain fraction of the
population is vaccinated against COVID-19. Epidemiologically, Theorem 1 indicates that a small influx of COVID-19 cases will
not trigger a large epidemic if the vaccination reproduction number is reduced to, or remains below one.

Let fv be the proportion of the susceptible population to be vaccinated to attain vaccine-derived herd immunity, then from
the equation Rc ¼ 1, we obtain the herd-immunity threshold

f cv ¼
1
e

	
1� 1

R0



: (3.3)
This, together with the methodology for calculating the reproduction number leads to the following result on the local
stability of the disease-free equilibrium:
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Theorem 3.2. Achieving vaccine-derived herd immunity (and hence eliminating COVID-19) inWA using an imperfect anti-COVID-
19 vaccine is possible if fv > f cv (i.e., if Rc < 1) and impossible if fv < f cv (i.e., if Rc > 1).

In epidemiological terms, the interpretation of Theorem 3.2 and hence vaccine-derived herd immunity is that vaccination
of theWest African populace with an imperfect vaccine against COVID-19 can result in COVID-19 elimination inWest Africa, if
a sufficient number of West Africans is vaccinated, such that fv > f cv . On the other hand, disease elimination through the
vaccination will not be possible if fv < f cv . That is, while vaccination will always lead to a reduction in disease burden, disease
elimination can only be attained if the herd immunity threshold ðf cvÞ is reached. Thus, the herd immunity threshold depicts
the minimum proportion of the West African population required to be vaccinated with an imperfect anti-COVID vaccine to
contain the COVID-19 pandemic in the region.

This analysis can be extended to Models 2 and 3 with slight modifications (see Section 3 of the SI).
3.2. Model fitting and parameter estimation

Some of the parameters for Models 1e3 (i.e., Eqs. (2.1), (2.2)-(2.3), and (2.7)-(2.8)) are available in the literature, while
others are unknown. In this section, the unknown parameters for each of the three models are estimated by fitting the
correspondingmodel to daily confirmed COVID-19 case data for the sixteenWest African countries (Benin, Burkina Faso, Cape
Verde, Côte D'Ivoire, Gambia, Ghana, Guinea, Guinea-Bissau, Liberia, Mali, Mauritania, Niger, Nigeria, Senegal, Sierra Leone,
and Togo) (Taboe et al., 2020; Sahel& SWAC, ). To incorporate the entire COVID-19 data from the onset of the pandemic inWA
(i.e., from February 28, 2020) toMay 24, 2022, a simplified version of the basic model (2.1) with no vaccination is fitted to data
for the pre-vaccination period (i.e., the period from February 28, 2020 to May 30, 2021), while each of the three models (i.e.,
Eqs. (2.1), (2.2)-(2.3), and (2.7)-(2.8)) is fitted to the data for the vaccination period. Since data for WA is reported by country
and not for the entire region, the data used for fitting themodels is obtained by aggregating the daily country-wise confirmed
COVID-19 case data. Using raw (daily case) data to fit the models is important in avoiding common errors that might arise
with cumulative case data (King et al., 1806). The model fitting and parameter estimation was performed using a nonlinear
least-squares algorithm implemented in MATLAB (version R2021a) that minimizes the sum of the squared differences be-
tween the number of daily confirmed cases from the data (for the period from February 28, 2020 to May 24, 2022 and the
number of daily confirmed cases from each of the models for the same period. Furthermore, a bootstrapping approach
(Davison & Hinkley, 1997) with 1, 000 replicates was used to compute the 95% confidence intervals for the fitted parameters,
while the rest of the confirmed daily case data fromMarch 15, toMay 24, 2022, and cumulative case data for the entire period
from February 28, 2020 to May 24, 2022 were used for validation purposes. The fits for Models 1e3 (i.e., Eqs. (2.1), (2.2)-(2.3),
and (2.7)-(2.8)) are illustrated in Fig. 4 (a)-(c), respectively, while an illustration of how well each of the models matches the
Fig. 4. (a)e(c): Time series plots depicting the fitting of Models 1e3 (i.e., Eqs. (2.1), (2.2)-(2.3), and (2.7)-(2.8)) to confirmed daily case data for WA from February
28, 2020 to May 24, 2022. (d)e(f): Simulations of Models 1e3 using the estimated model parameters showing how well the cumulative number of confirmed
COVID-19 cases from the model matches those from the West African data. The green curve, i.e., the portion of the curve from March 15, 2022 to May 24, 2022
demonstrates the performance of the models in predicting daily and cumulative COVID-19 cases in WA. The fixed and fitted parameter values are given in Tables
S7eS11 of the (SI).
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Fig. 5. Partial Rank Correlation Coefficients (PRCCs) depicting the influence of selected model parameters on the peak number of new daily COVID-19 cases
during the first Omicronwave (i.e., the overall 4th wave) of the COVID-19 pandemic in WA for (a) Model 1, (b) Model 2, and (c) Model 3. Only parameters for which
the magnitude of the PRCCs are greater than or equal to 0.3 are displayed. The baseline parameters values used for this simulation are given in Tables S7eS11.
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confirmed case data is illustrated in Fig. 4 (d)e(f). In each of the figures for the confirmed new daily cases, the green curve
depicts the model validation using the portion of the data that was not used for fitting. The estimated parameters and their
95% confidence intervals, together with the corresponding baseline values of the control reproduction numbers of themodels
are tabulated in the online supplementary information (Tables S7eS11).
3.3. Global sensitivity analysis

Since uncertainty or variability in somemodel parameters can lead to substantial uncertainty or variability in somemodel
outputs (response functions), it is instructive to carry out an uncertainty and sensitivity analysis to identify model parameters
that significantly influence the model response functions. Here, the Latin Hypercube sampling (LHS) and Partial Rank Cor-
relation Coefficient (PRCC) methodology, as well as the associated MATLAB code provided by (Marino et al., 2008) are used to
perform a global uncertainty and sensitivity analysis. Assuming a uniform distribution between the minimum and maximum
values of the parameters, the range of each parameter is split into 5, 000 equal sub-intervals. A Latin-Hypercube Sampling
matrix, which is used to solve each model system, is generated by sampling at random without replacement from each
parameter distribution. The simulation results are used to compute PRCCs corresponding to the response function (the peak
number of confirmed daily COVID-19 cases in WA). The results of this analysis, depicted in Fig. 5, show that uncertainty or
variability in the community transmission rate of asymptomatic infectious individuals (ba for Model 1, bau for Model 2, and
bau1 for Model 3), the recovery rates of asymptomatic infectious individuals (gh, gau, and gau1), and the detection rates of
symptomatic infectious individuals (t, tiu, and tiu1), will generate the greatest uncertainty or variability in the peak number of
COVID-19 cases inWA. Also, changes in the transmission rates of presymptomatic infectious individuals (bp, bpu, and bpu1), the
recovery rates of symptomatic infectious individuals (gi, giu, and giu1), the proportion of pre-symptomatic infectious in-
dividuals who develop COVID-19 symptoms at the end of the incubation period (r for Models 1 and 2 and r1 for Model 3) and
the hospitalization rates of symptomatic infectious individuals (4i, 4iu, and 4iu1), are amongst the most influential parameters
with significant impact on the response function. This analysis shows that asymptomatic infectious individuals, especially the
youths are among the leading drivers of the pandemic in WA and that reducing disease transmission among asymptomatic
infectious youths will go a long way in curtailing the burden of the pandemic.
3.4. Numerical simulation results

In this section, Models 1e3 (i.e., the models given by Eq. (2.1), Eqs. (2.2)-(2.3), and Eqs. (2.5)-(2.8)) are simulated to assess
the impact of vaccination, control measures that result in a reduction in disease transmission, relaxation of control measures,
and the impact of more transmissible new COVID-19 variants on the burden of the COVID-19 pandemic in WA. Unless
otherwise specified, by vaccinated individuals, we are referring to fully vaccinated individuals (i.e., individuals who have
received all required vaccine, including booster doses). Also, unless otherwise specified, the fixed and estimated baseline
parameters in Tables S7eS11 of the SI are used for the simulations.

3.4.1. Investigating the impact of vaccine efficacy and vaccine coverage on the burden of COVID-19 in WA
Contour plots of control reproduction number (Rc) of each of the three models (i.e., Eq. (2.1), Eqs. (2.2)-(2.3), and Eqs. (2.5)-

(2.8)) plotted as functions of the efficacy of vaccines (e) and the proportion of vaccinated individuals (fv) are presented in Fig. 6.
It should be mentioned that while Model 3 offers a chance for vaccine prioritization between age-groups, Models 1e2 do not.
The results of Model 1 show that to reduce the control reproduction number below unity (i.e., to contain the pandemic) inWA
using only the widely available vaccines in the region (e.g., the AstraZeneka, Sinopharm, sputnik light, Covaxin, Sputnik V,
Johnson and Johnson, Sinovac, etc., vaccines with an average efficacy of ez 0.67), at least 84% of the West African population
(i.e., z357 million people) must be vaccinated (Fig. 6 (a)). Lower vaccine coverages are required for Models 2e3. Specifically,
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with Model 2, at least 73% of the population of WA (i.e., z306 million people) must be vaccinated (Fig. 6 (b)), while using
Model 3, at least 68% of theWest African populace (i.e.,z289million people) must be vaccinated (Fig. 6 (c)) in order to reduce
the control reproduction number below one. Hence, the vaccine-derived herd immunity thresholds for Models 1e3 are 84%,
73%, and 68%, respectively. If the West African populace adopts a vaccination policy that relies on the use of highly effective
vaccines such as the Pfizer or Moderna vaccines with efficacies of z95% (Centers for Disease Control and Prevention, 2019;
Keeling et al., 2019), these thresholds reduce to 60% for Model 1, 51% for Model 2, and 48% for Model 3. If on the other hand,
vaccines with lower efficacies are adopted, then containing the pandemic in WA will become more difficult. In particular, if
only the vaccine with the lowest efficacy of z51% is used in the sub-region, Model 1 indicates that reducing the control
reproduction number before one will be impossible even if the entire West African population is vaccinated (Fig. 6 (a)). With
Model 2, at least 95% of the population must be vaccinated to reduce the control reproduction number below one (Fig. 6 (b)),
while withModel 3, at least 90% vaccine coverage is required to contain the disease (Fig. 6 (c)). Additional coverage thresholds
for corresponding vaccine efficacies are given in Table S14 of SI. To summarize, prioritizing highly effective vaccines is
important in curtailing the burden of the COVID-19 pandemic inWA. Also, not accounting for age-structure overestimates the
effort required to contain COVID-19 in WA.

3.4.2. Investigating the impact of vaccinating youths versus the elderly on the burden of COVID-19 in WA
Fig. 7 depicts contour plots of the control reproduction number (Rc) of Model 3 as functions of the vaccination rate of the

youths (x1) and the vaccination rate of the elderly (x2) to assess the combined impact of vaccine prioritization by age-group
and additional mask-use compliance. The results show that reducing the control reproduction number below one by
vaccinating only youths or the elderly is unattainable, even when the vaccination policy is complemented with up to a 20%
increase inmask-use compliance, unless when a very high number ofWest Africans are vaccinated daily. However, the disease
can be contained if both youths and the elderly are vaccinated at specific target rates. In particular, for the case with no
additional transmission reducing measure from baseline, xc1 ¼ xc2 ¼ 2:9� 10�3 is identified as a threshold vaccination rate for
reducing the control reproduction number below one (Fig. 7 (a)). This corresponds to vaccinating 1.1 million youths and 0.2
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million elderly daily. To reduce the control reproduction number below one, the vaccination rate of the elderly must be
greater than that for youths when x1 < xc1, and the vaccination rate of the elderly must be less than that for youths when
x1 > xc1. This threshold vaccinating rate will be used as a point of reference to assess the impact of relative changes in the
vaccination rates of youths and the elderly. Specifically, if the threshold number of youths vaccinated is reduced by 10% (i.e., if
the vaccination rate of youths is reduced from x1 ¼ 2.9 � 10�3 to x1 ¼ 2.6 � 10�3), then at least 24% more elderly individuals
must be vaccinated (i.e., the vaccination rate of the elderlymust increase from x2¼ 2.9� 10�3 to x2¼ 3.6� 10�3) to reduce the
reproduction number below one. Additionally, if the threshold number of youths vaccinated is increased by 10% (i.e., if the
vaccination rate of youths is now x1 ¼ 3.2 � 10�3), then 14% less elderly people are required to be vaccinated (i.e., x2 ¼ 2.5 �
10�3) to reduce the reproduction number below one. On the other hand, if the threshold number of the elderly people
vaccinated is reduced by 10% (i.e., if x2 ¼ 2.6 � 10�3), then at least 7% more youths must be vaccinated (i.e., x1 ¼ 3.1 �10�3) to
reduce Rc below one. Furthermore, if the threshold number of the elderly vaccinated is increased by 10% (i.e., if x2 ¼ 3.2 �
10�3), then 3% less elderly are required to be vaccinated (i.e., x1 ¼ 2.8 � 10�3) to reduce Rc below one.

For the case in which additional transmission rate reducing controls are implemented, the numbers of youths and elderly
required to be vaccinated to bring the control reproduction number below one are reduced. In particular, if the vaccination
rate of youths is x1 ¼ 2.9 � 10�3 per day and the current level of transmission reducing control measures is increased by 10%,
then the vaccination rate of the elderly must be x2 ¼ 1.1 �10�3 per day (Fig. 7 (b)), while if the current level of transmission
reducing control measures is increased by 20%, then the vaccination rate of the elderly must be x2 ¼ 0.4 � 10�3 to reduce the
reproduction number below one (Fig. 7 (c)). However, if the vaccination rate of the elderly is x1 ¼ 2.9 � 10�3 per day and the
current level of transmission reducing control measures is increased by 10%, then the vaccination rate of youths must be x2 ¼
1.5 � 10�3 per day (Fig. 7 (b)), while if the current level of transmission reducing control measures is increased by 20%, then
the vaccination rate of youths must be x2 ¼ 0.7 � 10�3 to reduce the reproduction number below one (Fig. 7 (c)). It should be
noted that for the 10% transmission rate reducing scenario, a 34.5% reduction in the vaccination threshold is attained (i.e., x1¼
x2¼ 1.9� 10�3.), while for the 20% transmission rate reducing scenario, there is a 58.6% reduction in the threshold vaccination
rate (i.e., x1 ¼ x2 ¼ 1.2 � 10�3). To summarize, vaccinating more youths than the elderly is a good strategy for containing the
COVID-19 pandemic in WA, while vaccinating more youths and the elderly simultaneously is a better strategy. Under any of
these scenarios, prospects of containing the pandemic are improved if the mask-use compliance level is raised.

3.4.3. Investigating the impact of vaccination on the dynamics of COVID-19 in WA
The three models given by Eq. (2.1), Eqs. (2.2)-(2.3), and Eqs. (2.5)-(2.8) are simulated to assess the impact of vaccination

on the number of confirmed daily COVID-19 cases in WA. The results obtained (Fig. 8), show that vaccination has a significant
impact in reducing the peak number of confirmed daily cases in WA. Specifically, if the vaccination rate in Model 1 is
maintained at its baseline value of 1.174 � 10�5 (i.e., onlyz5;000 West Africans are vaccinated daily), there is a possibility of
multiple pandemic waves, with the next wave peaking by mid November 2022 and milder than the Omicron wave. If the
vaccination rate is increased from baseline to 2.9 � 10�3 per day (i.e., z1:2 million West Africans are vaccinated daily), a 14%
reduction in the baseline peak number of daily confirmed cases will be recorded using Model 1 (comparing the major blue
and the magenta peaks in Fig. 8 (a)), while a 21% reduction in the baseline peak size will be recorded using Model 2
(comparing the blue and magenta curves in Fig. 8 (b)). In this case, elimination is possible by April 18, 2022 using Model 2,
while another minor pandemic wave that will peak by mid February 2023 is possible for Model 1. For the same vaccination
rate, an additional 7% reduction in the peak number of confirmed cases is recorded with Model 2 compared to Model 1
(comparing the difference between the major blue andmagenta peaks in Fig. 8 (a) and the difference between the major blue
and magenta peaks in Fig. 8 (b)). Furthermore, if the vaccination rate in is increased from its baseline value to 1.2 � 10�2 per
day (i.e., ifz2:3millionWest Africans are vaccinated daily) thenmore significant reductions in the peak number of confirmed
daily cases are recorded for both Models 1 and 2. Specifically, a 26% reduction is recorded using Model 1 (comparing the blue
Fig. 8. Simulations of (a) Model 1, (b) Model 2, and (c) Model 3 illustrating the number of new daily COVID-19 cases in West Africa for different vaccination rates
(x for Models 1e2 and x1 and x2, where x ¼ x1 ¼ x2 for Model 3). The other parameter values used in the simulations are provided in Tables S7eS11 of the SI.
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and green curves in Fig. 8 (a)), while a 41% reduction is recorded using Model 2 (comparing the blue and magenta curves in
Fig. 8 (b)). It should be noted that an additional reduction of 25% in the peak number of confirmed cases is recorded if Model 2
is used instead of Model 1 (comparing the difference between the blue and green curves in Fig. 8 (a) and the difference
between the blue and green curve in Fig. 8 (b)). Thus, Model 1 overestimates diseased burden and the required effort to
contain the disease compared to Model 2.

In the case of Model 3, if the vaccination rates of youths (x1) and elderly (x2) increase from their respective baseline values
to 2.9 � 10�3 (i.e., if x1 ¼ x2 per day, or 1.05 million youths and 185 thousands elderly are vaccinated daily), there is a 10%
decrease in the peak number of daily confirmed cases (comparing the blue andmagenta curves in Fig. 8 (c)). A further increase
in the vaccination rates of youths and the elderly will lead to a more significant decrease in the peak number of daily
confirmed cases. In particular, if x1 ¼ x2 ¼ 1.2 � 10�2, a 36% reduction in the pandemic peak size is recorded (comparing the
blue and green curves in Fig. 8 (c)). On the other hand, if the vaccination rate of the elderly is maintained at its baseline value
of x2 ¼ 9.4�10�6, while that of youths is increased to x1 ¼ 2.9� 10�3 (i.e.,z1:05 million youths are vaccinated daily), there is
a 8% decrease in the peak number of daily confirmed cases (comparing the blue and the light green curves in Fig. S1 of the SI).
But if the vaccination rate of youths is maintained at its baseline value of x1 ¼ 2.3� 10�6, while that of the elderly is increased
to x2¼ 2.9�10�3, there is a 2% decrease in the peak number of confirmed daily cases (comparing the blue andmagenta curves
in Fig. S1 of the SI). If x1 ¼1.2� 10�2 and x2 ¼ 2.9� 10�3, a 34% reduction in the peak size is recorded (comparing the blue and
yellow curves in Fig. S1 of the SI), if x2¼1.2�10�2 and x1¼2.9�10�3, a 13% reduction in the peak size is recorded (comparing
the blue and grey curves in Fig. S1 of the SI). Hence, increasing vaccination rate among youth leads to more reduction in the
peak size (comparing the yellow and grey curves in Fig. S1 of the SI). To summarize, vaccinating more youths than the elderly
or vaccinating both more youths and more elderly is critical in controlling the COVID-19 pandemic in West Africa.

3.4.4. Investigating the impact of additional masking on the dynamics of COVID-19 in WA
To investigate the impact of additional control measures that result in a reduction in the effective transmission rate in each

of the three models on the daily and cumulative COVID-19 cases in WA, the models are simulated using the following three
(arbitrary) values of the transmission reduction-related parameters: 1) low additional reduction (cm ¼ 0.15), 2) moderate
additional reduction (cm ¼ 0.30), and (c) high additional reduction (cm ¼ 0.45). The results obtained and displayed in Fig. 9
show the possibility of another wave with a lower peak size for the baseline, low, and moderate additional reduction in
transmission scenarios if Model 1 is used. For example, under the low andmoderate additional reduction in transmission rate
scenarios, 21%, and 50% reductions in the minor peak sizes are recorded (comparing the minor blue peak with the minor
magenta and yellow peaks in Fig. 9 (a)). Inwhat follows, we focus on the major wave (i.e., the wavewith the larger peak size).
Fig. 9 shows that significant reductions in the burden of COVID-19 inWest Africawill be achievedwith additional reduction in
transmission, especially for the cases of Models 1 and 2. In particular, usingModel 1 with the low additional mask compliance
level, a 31% reduction in the baseline peak number of daily cases is recorded (comparing the major blue andmagenta peaks in
Fig. 9 (a)). For this same low additional mask compliance level, a 32% reduction in the baseline peak number of daily cases is
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Fig. 9. Simulations of Model 1 ((a) and (d)), Model 2 ((b) and (e)), and Model 3 ((c) and (f)) showing the daily number of confirmed cases ((a)e(c)) and the
cumulative number of cases ((d)e(f)) for various additional reductions (cm) in the transmission rate. The values of the other parameters used for the simulations
are given in Tables S7eS11 of the SI.
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recorded (comparing themajor blue andmagenta peaks in Fig. 9 (b)), whilewithModel 3, a 17% reduction in the baseline peak
number of daily cases is recorded (comparing the major blue and magenta peaks in Fig. 9 (c)). Under the moderate additional
reduction in transmission rate scenario, a 60% reduction from the baseline peak number of daily cases is recorded with Model
1 (comparing the major blue and yellow peaks in Fig. 9 (a)), a 66% reduction from the baseline peak numbers of daily cases is
recorded with Model 2 (comparing the major blue and yellow peaks in Fig. 9 (b)), while a 36% reduction from the baseline
peak numbers of daily cases is recorded with Model 3 (comparing the major blue and yellow peaks in Fig. 9 (c)). Even more
significant reductions are obtained under the high additional reduction in transmission rate scenario. Specifically, an 88%
reduction in the peak numbers of daily cases is obtained with Model 1 (comparing the major blue and green peaks in Fig. 9
(a)), a 94% reduction is obtained withModel 2 (comparing themajor blue and green peaks in Fig. 9 (b)), and a 56% reduction is
obtained with Model 3 (comparing the major blue and green peaks in Fig. 9 (c)). For each of the three reductions in trans-
mission rate scenarios, the reduction in the peak size for Model 2 is lower than that for Model 1, while the reductions for
Models 1 and 2 are lower than those for Model 3 (comparing the same curve colors in Fig. 9 (a)e(c)). Similar reductions are
obtained for the cumulative number of confirmed cases (Fig. 9 (d)e(f)).

3.4.5. Investigating the combined impact of vaccination and additional masking on the dynamics of COVID-19 in WA
The three models described by Eq. (2.1), Eqs. (2.2)-(2.3), and Eqs. (2.5)-(2.8) are simulated to explore the combined impact

of vaccination and additional reduction in disease transmission (resulting from additional mask-use compliance) on the
number of daily cases of COVID-19 in West Africa. Here, only the arbitrarily selected low and moderate levels, corresponding
to þ 15% and 30% additional reductions in transmission rates are considered. The results of the simulations presented in Fig.
10 show drastic reductions in the peak number of daily cases when additional reduction in transmission is combined with
increased vaccination. In particular, for a 15% additional reduction in transmission, if the vaccination rate is x¼ x1 ¼ x2 ¼ 2.9�
10�3, a 42% reduction in the peak number of daily cases will be registered forModel 1 (comparing themajor blue andmagenta
peaks in Fig. 10 (a)), a 55% reduction in the peak number of daily cases will be registered for Model 2 (comparing the major
blue and magenta peaks in Fig. 10 (b)), and a 27% reduction in the peak number of daily cases will be registered for Model 3
(comparing the major blue and magenta peaks in Fig. 10 (c)).

On the other hand, for a 15% additional reduction in transmission, if the vaccination rate is x ¼ x1 ¼ x2 ¼ 1.2 � 10�2, a 73%
reduction in the peak number of daily cases will be registered for Model 1 (comparing the major blue and green peaks in Fig.
10 (a)), a 91% reduction in the peak number of daily cases will be registered for Model 2 (comparing the major blue and green
peaks in Fig. 10 (b)), and a 54% reduction in the peak number of daily cases will be registered for Model 3 (comparing the
major blue and green peaks in Fig. 10 (c)). The reductions are even more drastic for the moderate reduction in transmission
case, i.e., when cm ¼ 0.30 (Fig. 10 (d)e(f)).
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Fig. 10. Simulations of Model 1 ((a) and (d)), Model 2 ((b) and (e)), and Model 3 ((c) and (f)) to assess the impact of a 15% additional reduction in COVID-19
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722



11
/20

/21

02
/20

/22

05
/23

/22

08
/23

/22

11
/23

/22

02
/23

/23

05
/26

/23
0.00

2.06

4.12

6.18

8.24

11
/20

/21

02
/20

/22

05
/23

/22

08
/23

/22

11
/23

/22

02
/23

/23

05
/26

/23

11
/20

/21

02
/20

/22

05
/23

/22

08
/23

/22

11
/23

/22

02
/23

/23

05
/26

/23

Fig. 11. Simulations of (a) Model 1, (b) Model 2, and (c) Model 3 showing the effects of reinforcing or relaxing control measures that result in a change in the
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3.5. Assessing the impact of relaxing transmission reduction measures or more transmissible new variants of COVID-19

At the time of this writing, the number of new daily cases of COVID-19 inWAwas very low (z100 cases per day). This could
be attributed to limited testing, under-reporting, or the lack of reporting from some countries. The low case numbers have led
to the relaxation of most of the control measures. In this section, Models 1e3 are simulated to assess the impact of reinforcing
or relaxing existing transmission control strategies, as well as the emergence of new more transmissible variants of SARS-
CoV-2 in WA. The results obtained (Fig. 11) show that reinforcing existing transmission control strategies can prevent sub-
sequent waves of the pandemic from occurring, while relaxing the existing control measures can lead to additional waves in
West Africa. If control measures are maintained at their current level, another wave of the pandemic with a peak size 74% less
than that of the Omicron wave for Model 1 will be possible (Fig. 11 (a)). If additional measures that can result in a 50%
reduction in COVID-19 transmission in WA are implemented, then the disease can be contained for each of the three models
with no subsequent waves (magenta curves in Fig. 11 (a)e(c)). However, if the existing control measures are relaxed to a level
that triggers a 50% increase in the effective transmission rate increases or if is a new variant that is 1.5 times more trans-
missible emerges, then containing the pandemic in theWAwill bemore difficult since this will lead to subsequent waveswith
peak sizes lower than those of the Omicronwave forModels 1 and 2 (black curves in Fig.11 (a)e(b)). In this case, the size of the
newwavewill be 90% that of the Omicronwave for Model 1 and 69% that of the Omicronwave for Model 2. Further relaxing of
the control measures will lead to more devastating subsequent waves (yellow curves in Fig. 11 (a)e(c)).

4. Discussion, limitations, and conclusion

4.1. Discussion and limitations

A significant impact of COVID-19 has been felt in almost every nation throughout the world. Although NPIs and the design
and deployment of several safe and effective vaccines for use within a very short time helped significantly in limiting the
spread of the virus, COVID-19 is becoming increasingly difficult to combat due to the emergence of VOC against which
existing vaccines provide only some degree of cross-protection. Additionally, limited supply of these vaccines to some regions,
e.g., WA calls for prioritization of vaccine administration to certain target groups. In this study, three mathematical models
that account for vaccination strategies are formulated and used to explain and predict the burden of COVID-19 in WA. In the
first model, only susceptible individuals are vaccinated, while in the second model, exposed, presymptomatic, and asymp-
tomatic individuals are also vaccinated since we are not aware of their disease status unless when they are tested. In this
extended model, we track two different groups of individuals (namely, vaccinated and unvaccinated individuals) in each of
the classes. The third model extends the second through the introduction of a dichotomous age structure of the population.
Accounting for age structure in the dynamics of COVID-19 inWA is critical for vaccine prioritization since the risk of COVID-19
is associated with age and underlying medical conditions and since there is a wide gap between the youthful and elderly
populations in WA (Mbow et al., 2020; The World Bank). The importance of accounting for age structure in models aimed at
explaining the spread and control of COVID-19 have been highlighted in (Blyuss & Kyrychko, 2021; Richard et al., 2021).

Standard techniques from nonlinear dynamical systems and infectious disease modeling are used to acquire rigorous
insights into the dynamics of the models. These include computing the basic and control reproduction numbers and using
them to establish the existence and stability of disease-free equilibria and for computing vaccine-derived herd immunity
thresholds (i.e., the proportion of the population to vaccinate in order to contain the disease) of the models.

Although some parameters of each of the three models are known and available in the literature, others are unknown. To
estimate the unknown parameters, each of the models is fitted to confirmed new daily COVID-19 case data fromWest Africa.
The segment of data from February 28, 2020 to March 24, 2022 is used for fitting, while the remaining segment for the period
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fromMarch 25, 2022 toMay 24, 2022 is used for validation. Additionally, cumulative case data for the entire region is used for
validation of the model. In both cases, there is a good match between the number of confirmed cases from the data and the
number of confirmed cases from the model. The estimated parameters show that the transmission rates of asymptomatic
infectious individuals are greater than those for symptomatic infectious individuals. For example, during the Omicron wave,
asymptomatic infectious youths were three times more infectious than symptomatic youths, whereas for the elderly, there
was no significant difference in the transmission rates of the symptomatic and asymptomatic infectious. Also, disease
transmission between the elderly population is lower than between the younger population, while transmission from youths
to the elderly is higher than transmission from the elderly to the youths. This is consistent with results from a study by
Richard et al. (Richard et al., 2021), which show a relatively low contact rate among individuals aged 60 years and older in
Burkina-Faso. Our study points to the fact that infectious individuals who exhibit very mild or no disease symptoms,
particularly those younger than 65 years old are the main drivers of the COVID-19 pandemic in WA. This is reasonable since
most of the population of WA is young and younger people have wider networks of contacts and interactions. Also, because
most infected youths experience only mild or no disease symptoms at all, they are not aware that they are infectedwith SARS-
CoV-2. These results are consistent with those in (Moghadas et al., 2020; Ngonghala et al., 2020b; Tindale et al., 2020).
Curtailing SARS-CoV-2 spread by asymptomatic infectious individuals (e.g., through mass testing of youths and education on
safe practices) can have a significant impact in reducing the burden of the pandemic in the West African sub-region.

The numerical values of the herd immunity thresholds computed using the known and estimated values of the parameters
of the three models are 84% for Model 1, 73% for Model 2, and 68% for Model 3, which are in the range of herd immunity
thresholds reported in (Ilesanmi et al., Afolabi; Altmann et al., 2020). Also, the African Centers for Disease Control's COVID-19
vaccine program recommends that 70% of the population be fully vaccinated (with 30% of this target by the African Vaccine
Acquisition Trust (AVAT) program and the remaining 40% by the COVID-19 Vaccines Global Access (COVAX) in Africa (Africa
(CDC), 2019Centers for Disease Control and Prevention)). Despite this recommendation, a verywide gap between the required
and available number of vaccine doses still exists. Specifically, only 6.7% of the 843.2 million vaccine dose target by AVAT and
only about 52.2% of the required vaccine doses from the COVAX program had been received by late June 2022 (Africa (CDC),
2019Centers for Disease Control and Prevention). To compound matters, even with this failure in vaccine delivery, not all the
delivered doses have been administered as a result of factors such as vaccine hesitancy. At the current baseline vaccination
rates, it will take 5.7 years to attain herd immunity with Model 1, 5 years to attain herd immunity with model 2, and 4.6 years
to attain herd immunity with Model 3. However, with the availability of more vaccine doses, if the current vaccination rates
for youths and the elderly in Model 3 are tripled, then herd immunity will be attainable in WA by the end of 2023. This result
aligns with studies in (Afolabi et al., 2021) calling for a substantial ramp up in COVID-19 vaccination in WA to achieve herd
immunity. Another issue with the vaccination program in WA is that many of the vaccines used in the area are of lower
efficacy. Our study shows that higher proportions of the population are required to be vaccinated to achieve vaccine-derived
herd immunity if the efficacies of the vaccines used in WA are low. For example, if only the vaccine with the lowest efficacy
(i.e., the Sinovac-CoronaVac vaccine with an efficacy of z51%) is used, then vaccine-derived herd immunity threshold for
Model 2 (Model 3) is 95%(90%). But if the region prioritizes the use of highly efficacious vaccines such as the Pfizer-BioNTech
or Moderna vaccine, the vaccine-derived herd immunity thresholds are lower (51% for Model 2 and 48% for Model 3.
Computations of the reproduction numbers of the threemodels show that the reproduction number of Model 1 is bigger than
that of Model 2, which in turn is bigger than the reproduction number of Model 3. In particular, the computed reproduction
number for Model 3 (i.e., Rc z 1.3) is in the range of the average computed reproduction numbers for WA for the same period
(Ritchie et al., Roser). Hence, the reproduction numbers and herd immunity thresholds of the models show that disease
burden and the required control efforts are overestimated in models in which age-structure is not accounted for. Thus, ac-
counting for age-structure is critical in explaining the control and transmission dynamics of COVID-19. This is consistent with
results presented in (Blyuss & Kyrychko, 2021; Richard et al., 2021).

A global sensitivity analysis identifies model parameters that are associated with asymptomatic infectious individuals
among the parameters with the most significant impact on the peak size of the number of confirmed COVID-19 cases for each
of the three models. This, again, confirms the fact that asymptomatic infectious individuals, especially those within the
youthful group are at the center of COVID-19 transmission of in WA. When most individuals within this age group become
infected, they either do not exhibit any clinical symptoms of COVID-19 or they exhibit only mild symptoms. Because they
constitute the greater proportion of the population and have larger contact networks, they easily spread the virus un-
knowingly. Therefore, preventing COVID-19 spread by asymptomatic infectious individuals (e.g., through mass testing and
isolation of detected infectious youths and extensive education on safe COVID-19 practices) can have a significant impact in
reducing the burden of the pandemic.

Simulations of the models show that vaccination is important in reducing the spread of COVID-19, especially if vaccines of
higher efficacy than most of those currently used in WA are prioritized. Also, vaccinating a high proportion of the population
below 65 years compared to that 65 and above is critical for containing the pandemic, while vaccinating more youths and the
elderly simultaneously is even a better control strategy. This suggests a different vaccination policy compared to that
implemented in high-income countries such as the U.S., where the elderly and most vulnerable (i.e., those with pre-existing
medical conditions) were first vaccinated during the initial phase of vaccine allocation and booster vaccine dose adminis-
tration (Centers for Disease Control and Prevention (CDC), 2021; Mehrabi Nejad et al., 2022). This strategy will be unsuc-
cessful in sub-Saharan Africa andWA in particular with a very young population. However, it should be mentioned that while
prioritizing vaccination of the elderly population is critical in reducing severe illness, hospitalization, and mortality (Richard
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et al., 2021), directingmore vaccine administration towards the youths is essential in reducing the spread of COVID-19 (Foy et
al., 2021; Wang et al., Tang). Additional simulations of the model show that reinforcing current control and mitigating
measures, especially those measures that translate to a direct reduction in the spread of COVID-19 has a significant impact in
curtailing the burden of the pandemic, especially when such measures are combined with vaccination policies. On the other
hand, relaxing the current measures, or the emergence of new more transmissible variants of SARS-CoV-2 can trigger more
devastating waves of the pandemic.

The accuracy of our estimates is limited by the use of incidence data in building ourmodels, which is less precise compared
to wastewater data or data on severe and hospitalized cases. These additional data sources were not readily available at the
time this researchwas carried out. Additionally, under reporting of cases and low testing capacity within the sub-region could
have affected our findings. The gap in the literature regarding the extent of social contacts among various age groups in WA
inspired our use of a dichotomous age structure instead of deploying a contact matrix in assessing the impact of age structure
on the transmission dynamics of COVID-19 in the sub-region. The proposed framework can be extended to account for
multiple dose vaccines explicitly. The models assume that vaccine-derived natural immunity wanes completely so that in-
dividuals from the vaccinated susceptible and recovered classes progress directly to the susceptible class. However, evenwith
waning some of vaccinated susceptible and recovered individuals might still have some level of protection compared to
unvaccinated susceptible individuals. Individuals with pre-existingmedical conditions (who can be from both age groups) are
not accounted for explicitly. Furthermore, we did not account for specific variants of the virus and the reduced efficacy of
vaccines against these variants.

4.2. Conclusion

A compartmental model framework for COVID-19 transmission dynamics with different vaccination strategies including
vaccination allocation based on two age groups (high or low risk of transmission, severe disease, hospitalization, and death
from COVID-19) is developed, parameterized, analyzed rigorously, and used to assess the influence of age structure and
vaccine prioritization based on age brackets on the burden of COVID-19 in WA. The results of the study indicate that in-
dividuals below 65 years old are the major drivers of the COVID-19 pandemic in WA. This provides one reason for which the
reported number of COVID-19 cases in WA is low in comparison to other regions. Therefore, incorporating age-structure in
COVID-19models is important in understanding why the burden of COVID-19 has been low inWA. This result calls for COVID-
19 control measures which target individuals below 65 years old as opposed to the elderly as was the case in many high-
income countries when the availability of vaccines was limited or during the initial stages of booster vaccine dose admin-
istration. Furthermore, the study shows that prioritizing vaccines with higher efficacies will enhance prospects of containing
the disease and that the pandemic can be contained in West Africa if 68% of the population is fully vaccinated. However, a
drastic change in the current vaccination rate is required for the sub-region to achieve the vaccine-derived herd immunity
threshold of 68%. Additionally, the study shows that the emergence of a newmore transmissible variant of concern, or easing
current control measures in WA could lead to a more devastating wave depending on the easing level. Hence, to curtail the
spread of the disease in WA, it is imperative to improve on existing measures (e.g., the vaccination level in conjunction with
the WHO recommended NPIs).
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