
BioMed CentralBMC Cardiovascular Disorders

ss
Open AcceResearch article
Variation in the human soluble epoxide hydrolase gene and risk of 
restenosis after percutaneous coronary intervention
Silke Kullmann*1, Priska Binner1, Kirsten Rackebrandt1, Andreas Huge2, 
Georg Haltern3, Mark Lankisch3, Reiner Füth3, Eberhard von Hodenberg4, 
Hans-Peter Bestehorn5 and Thomas Scheffold1

Address: 1Institute for Heart and Circulation Research, University of Witten/Herdecke, 44227 Dortmund, Germany, 2Leibniz-Institute for 
Arteriosclerosis Research, University of Muenster, 48149 Muenster, Germany, 3Heart Center Wuppertal Helios-Kliniken, 42117 Wuppertal, 
Germany, 4Internal Medicine/Cardiology, Heart Center Lahr/Baden, 77933 Lahr, Germany and 5Heart Center Bad Krozingen, 79189 Bad 
Krozingen, Germany

Email: Silke Kullmann* - kullmann@herz-kreislaufforschung.de; Priska Binner - binner@herz-kreislaufforschung.de; 
Kirsten Rackebrandt - rackebrandt@herz-kreislaufforschung.de; Andreas Huge - a.huge@uni-muenster.de; 
Georg Haltern - georg.haltern@helios-kliniken.de; Mark Lankisch - mark.lankisch@helios-kliniken.de; Reiner Füth - reiner.fueth@helios-
kliniken.de; Eberhard von Hodenberg - eberhard.hodenberg@heart-lahr.com; Hans-Peter Bestehorn - hans-peter.bestehorn@herzzentrum.de; 
Thomas Scheffold - scheffold@herz-kreislaufforschung.de

* Corresponding author    

Abstract
Background: Restenosis represents the major limiting factor for the long-term efficacy of percutaneous
coronary intervention (PCI). Several genetic factors involved in the regulation of the vascular system have been
described to play a role in the pathogenesis of restenosis. We investigated whether the EPHX2 K55R
polymorphism, previously linked to significantly higher risk for coronary heart disease (CHD), was associated with
the occurrence of restenosis after PCI. The association with incident CHD should have been confirmed and a
potential correlation of the EPHX2 K55R variant to an increased risk of hypertension was analysed.

Methods: An overall cohort of 706 patients was studied: This cohort comprised of 435 CHD patients who had
undergone successful PCI. Follow-up coronary angiography in all patients was performed 6 months after
intervention. Another 271 patients in whom CHD had been excluded by coronary angiography served as controls.
From each patient EDTA-blood was drawn at the baseline ward round. Genomic DNA was extracted from these
samples and genotyping was performed by real-time PCR and subsequent melting curve analysis.

Results: In CHD patients 6 month follow-up coronary angiography revealed a restenosis rate of 29.4%, classified
as late lumen loss as well as lumen re-narrowing ≥ 50%.

Statistical analysis showed an equal genotype distribution in restenosis patients and non-restenosis patients (A/A
82.0% and A/G + G/G 18.0% versus A/A 82.1% and A/G + G/G 17.9%). Moreover, neither a significant difference
in the genotype distribution of CHD patients and controls nor an association with increased risk of hypertension
was found.

Conclusion: The results of the present study indicate that the EPHX2 K55R polymorphism is not associated with
restenosis after PCI, with incidence of CHD, or with an increased risk of hypertension and therefore, can not
serve as a predictor for risk of CHD or restenosis after PCI.
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Background
Percutaneous coronary intervention (PCI) is a well estab-
lished treatment strategy for patients suffering from symp-
tomatic coronary heart disease (CHD). However, in
numerous patients restenosis limits the clinical efficacy of
this procedure. Restenosis represents a multifactorial
process affected by a wide range of clinical, anatomic and
procedural factors [1]. This includes, amongst others, the
type of intervention such as PCI with or without intracor-
onary stent placement, type of stent, the nature of the
affected vessels and the baseline characteristics of the
patients [2-4]. Late lumen loss occurs due to a complex
succession of processes, which have only been partially
clarified so far. From this, vessel recoil, negative vascular
remodelling and neointimal formation contributes to the
development of restenosis [5,6].

Beside the classical risk factors and intervention proce-
dures, several reports have demonstrated that genetic fac-
tors may be involved in the pathogenesis of restenosis
after PCI. Here, gene products which engage in diverse
physiological mechanisms, e.g. in the renin-angiotensin
system, platelet aggregation, the inflammatory response,
and smooth muscle cell proliferation, have been
described to be associated with restenosis [7,8].

Several investigations have revealed regulatory functions
of arachidonic acid metabolites within the vascular sys-
tem [9,10]. Arachidonic acids are metabolized by cyto-
chrome P450 epoxigenases to hydroxyeicosatetraenoic
acids (HETEs) and epoxyeicosatrienoic acids (EETs), par-
ticularly in the kidney and vascular endothelium [11].
Among these eicosanoids, EETs represent potent vasodila-
tors playing an important role in the regulation of vascu-
lar tone [11-13]. Additionally, EETs have anti-
inflammatory properties [14,15], inhibit platelet aggrega-
tion [16] and promote fibrolysis [17,18].

The degradation of endogenous EETs to their correspond-
ing diols, dihydroxyeicosatrienoic acids (DHETs), is cata-
lyzed by soluble epoxide hydrolase (sEH) encoded by the
EPHX2 gene located on chromosome 8p21-p12 [19,20].
Thus, the modulation of EET levels by sEH in the endothe-
lium represents an important mechanism in the regula-
tion of vascular functions. Several studies have validated
an association between alterations in EET levels by the
modulation of EPHX2 gene expression and cardiovascular
risks in animal models and humans. For instance,
sequence variation within the EPHX2 gene has been
reported to reduce blood pressure in spontaneously
hypertensive rats [21,22]. EPHX2 knockout mice exhib-
ited significantly lower blood pressure than wild-type
mice [23,24]. Furthermore, the effect of pharmacological
inhibition of sEH in human blood vessels [25] as well as
the association between EPHX2 sequence variants and risk
of subclinical atherosclerosis has been published [26,27].

Previously, a study reported the correlation of the K55R
single nucleotide polymorphism (rs41507953) within
the EPHX2 gene with CHD in Caucasians [28]. The
authors analysed a total of ten polymorphisms in coding
and non-coding regions of EPHX2, which were selected
based on their previously published functional relevance
in vitro [29,30] and/or haplotype-tagging properties.

The K55R variant within the exon 2 of the EPHX2 gene
was shown to be significantly more common among CHD
cases than in the controls [28]. Additionally, carriers of
the variant allele showed a higher epoxide hydrolase activ-
ity in vivo, indicated by lower plasma EET levels. No sta-
tistical differences were observed in the comparison of the
genotype distribution in CHD cases and controls in the
other analysed polymorphisms. Therefore, the findings of
this study implicate the EPHX2K55R variant to be a
genetic factor which increases the risk of CHD, even
though this association has not been confirmed by further
studies to date.

Due to the evident effects of EPHX2 in the regulation of
vascular function and the association to CHD in the
reported data, we assumed that the K55R variant may also
be involved into the process of restenosis after percutane-
ous coronary intervention (PCI).

The main focus of the present project was to analyse
whether the EPHX2 K55R variant allele is associated with
the occurrence of restenosis within six months after in
CHD patients. Moreover, we studied the distribution of
genotypic and allelic frequencies of the EPHX2 K55R pol-
ymorphism in CHD patients and controls in order to con-
firm the association of this genetic variant with incident
CHD and to analyse a potential correlation with increased
risk of hypertension.

Methods
Study Population
Patients aged 35-80 years from Central Europe with symp-
tomatic coronary heart disease who had undergone pri-
mary successful PCI of a native coronary artery were
included into the study as described previously [31]. This
multicenter, placebo-controlled study was designed to
assess the effect of the calcium channel blocker Verapamil
on restenosis after intervention. Successful intervention
was defined by residual stenosis < 30% on visual estima-
tion or desired position of stent. Follow-up coronary ang-
iography was performed 6 months after PCI and the
angiograms were quantitatively analysed.

Restenosis was determined through the measurement of
the late lumen loss as well as the re-narrowing of the
lumen ≥ 50%.
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The study was approved by the local ethic committee and
all patients gave written informed consent for further
studies.

From this collective, a total of 435 patients, aged 35-79
years, were included into the present study to investigate
the potential association between the EPHX2 K55R vari-
ant allele and rate of restenosis. Another 271 patients, in
whom CHD had been excluded by angiography served as
controls.

Blood samples and DNA preparation
EDTA-blood samples were drawn from each patient at
baseline ward round. Genomic DNA was extracted from
350 μl of these samples using the BioRobot EZ1 and the
EZ1 blood extraction kit according to the manufacturer's
instructions (QIAGEN; Hilden, Germany). DNA was
quantified using the BioPhotometer (Eppendorf; Ham-
burg, Germany) and each sample was diluted to a final
concentration of 25 ng/μl.

PCR amplification and genotyping of EPHX2 K55R
PCR and detection of the genetic variants of EPHX2 K55R
were performed on a LightCycler 480 instrument (Roche
Applied Science; Mannheim, Germany) using primers
and sequence specific hybridization probes designed and
synthesized by TIB MOLBIOL (Berlin, Germany).

PCR was carried out in 96-well plates (Roche Applied Sci-
ence; Mannheim, Germany) using 62.5 ng of genomic
DNA as template in a final reaction volume of 10 μl.

The reaction mixture contained 0.5 μM of each primer
(for: 5'-GTGTTTTCCAGAGGACTTCTGA, rev: 5'-GTGACT-
GCAATACTCCCATTAATA), 0.15 μM of SNP-specific
hybridization probes (sensor: 5'-LC640-GCTTATGAAAG-
GAGAGATCACACT-PH; anchor 5'-GGGGACCAGAG-
GGTGCCACTACCC-FL), and 2 μl LightCycler 480
Genotyping Master Mixture (Taq DNA polymerase, reac-
tion buffer, 15 mM MgCl2, and a dNTP mixture with UTP
instead of dTTP) (Roche Applied Science; Mannheim,
Germany).

The cycling program consisted of 10 minutes of initial
denaturation at 95°C, followed by 40 cycles of denatura-
tion at 95°C for 5 seconds (ramp rate 4.4°C/s), annealing
at 55°C for 10 seconds (ramp rate 2.2°C/s), and exten-
sion at 72°C for 10 seconds (ramp rate 4.4°C/s). After
PCR melting curves were generated by holding the reac-
tion mixture at 95°C for 1 minute, lowering the tempera-
ture to 55°C for 30 seconds, holding it for 30 seconds at
45°C, followed by continuously heating to 80°C. Melting
curve analyses were conducted by means of the LightCy-
cler 480 software according to the manufacturer's instruc-
tions (Roche Diagnostics Inc.; Mannheim, Germany).

Statistical analysis
Genotype distributions and allele frequencies of the
EPHX2 K55R polymorphism in CHD patients and con-
trols or the analysed subgroups were compared by chi-
square test using a free program http://statpages.org/
ctab2x2.html. For all data, the association was considered
to be significant for p < 0.05.

Genotypes were tested for Hardy-Weinberg equilibrium
among MI cases and controls using a chi-square test with
one degree of freedom.

Results
Study population
A comparison of the baseline clinical characteristics and
the procedural parameters of CHD cases and controls is
presented in Table 1.

The age of the CHD patients compared to the controls was
approximately equal in both groups (61 ± 8.9 versus 59 ±
9.6). However, the proportion of male subjects was signif-

Table 1: Baseline characteristics of the study population

Characteristic CHD cases
(n = 435)

Controls
(n = 274)

Age at recruitment 61 ± 8.9 59 ± 9.6

Men 365 (83.9) 129 (47.1)

BMI -- kg/m2 28 ± 3.5 27 ± 5.3
≥ 30 kg/m2 103 (23.7) 49 (17.9)

Medication
Verapamil 220 (50.6) --
Placebo 215 (49.4) --

Event
Intracoronary stent 362 (83.2) --
Previous CABG 17 (3.9) --
Previous PTCA 43 (9.9) --
Previous MI 156 (35.9) --

Cardiovascular risk factor
Diabetes mellitus 54 (12.4) 22 (8.0)
Hypertension 279 (64.1) 139 (50.7)
Hyperlipidaemia 373 (85.7) 138 (50.4)
Current smoker 103 (23.7) 40 (14.6)
Former smoker 163 (37.5) 47 (17.2)

Family history of CHD 166 (38.2) n/a

Restenosis 128 (29.4) --

Data presented are number (%) of patients; plus-minus values are 
mean ± standard deviation. BMI body mass index, CABG coronary 
artery bypass grafting, PTCA percutaneous transluminal coronary 
angioplasty, MI myocardial infarction, CHD coronary heart disease, n/a 
not applicable.
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icantly higher in CHD patients than in the control group
(83.9% versus 47.1%). As expected, patients suffering
from coronary heart disease revealed a higher prevalence
of hypertension, diabetes mellitus, hyperlipidaemia and
smoking habit compared to the controls.

EPHX2 K55R and restenosis
CHD cases were subdivided into two groups according to
the occurrence or lack of restenosis at the 6 month follow
up. For the further analysis, no differentiation was made
between patients with late lumen loss and angiographic
restenosis.

Over this period, 29.4% of the investigated 435 patients
developed a restenosis.

The EPHX2 K55R genotype distribution was determined
and compared between both groups, whereby A/A repre-
sented the wild-type, A/G the heterozygous and G/G the
homozygous mutant genotype.

The distribution was 82.0% A/A and 18.0% A/G + G/G in
patients with restenosis compared to 82.1% A/A and
17.9% A/G + G/G in patients without (p = 0.989) (Table
2). Hence, this analysis failed to show any significant
influence of the EPHX2 K55R polymorphism on angio-
graphic restenosis after PCI.

Additionally, an alignment of the genotype distribution
was conducted in subgroups of CHD patients who
received verum (n = 220) and placebo (n = 215) to ensure
an approximately equal distribution in these groups. With
this analysis, any effects on the development of restenosis
by random interactions between medication and geno-
type were excluded (Data not shown).

EPHX2 K55R and CHD
In order to confirm the previously reported association of
EPHX2 K55R with an increased risk of CHD the genotype
and allele frequencies in 435 CHD patients and 271 con-

trols with no pathological findings shown by coronary
angiography, were analysed. The genotype distribution
did not significantly (P > 0.1) deviate from the Hardy-
Weinberg equilibrium (Table 3).

As demonstrated in table 3 the distribution of genotypes
was 82.1% A/A and 17.9% A/G + G/G in CHD cases ver-
sus 80.8% A/A and 19.2% A/G + G/G in the control group
(p = 0.675). Consequently, no statistically significant dif-
ferences in the distribution of genotypes of CHD cases
compared to controls could be observed. Thus, the associ-
ation of the K55R allele variant with CHD could not be
confirmed in the examined study population.

Additional analysis was performed to investigate the
potential relevance of EPHX2 K55R to the early-onset of
CHD. Therefore, male patients with early-onset CHD,
defined as clinical CHD occurring at the age of ≤ 55 years
and matched controls were divided into groups and statis-
tical analysis was performed. This analysis also showed no
significant difference in the genotype distribution and
allele frequencies of CHD cases and controls according to
the age of the subjects (Table 3).

EPHX2 K55R and risk of hypertension
To investigate the correlation between increased risk of
hypertension and the K55R variant allele subgroup analy-
sis was conducted. The EPHX2 K55R genotype distribu-
tion in patients with raised blood pressure was 83.5% A/
A and 16.5% A/G + G/G in CHD cases versus 83.2% A/A
and 16.8% A/G + G/G in the control group (Table 4).
Therefore, the K55R variant allele was not significantly
associated with an increased risk of hypertension (p =
0.938).

None of the other cardiovascular risk factors was signifi-
cantly associated with a higher frequency of the risk vari-
ants A/G and G/G of the EPHX2 polymorphism in CHD
patients examined by means of subgroup analysis (Table
4).

Discussion
Several polymorphisms within the EPHX2 gene have been
reported to influence the enzyme activity and stability of
soluble epoxide hydrolase causing alterations in EET lev-
els [29,30,32]. Therefore, genetic variations in EPHX2
may affect the beneficial properties of EETs on the vascu-
lar system and thus, could be linked to risks for cardiovas-
cular events [26,27].

Based on the previously reported association of the
EPHX2 K55R polymorphism with incident CHD in an
American study population of Caucasian origin [28], we
investigated whether the K55R variant allele was associ-
ated with restenosis in patients who had undergone pri-

Table 2: EPHX2 K55R in restenosis and non-restenosis patients

CHD cases
Restenosis
(n = 128)

CHD cases
No Restenosis
(n = 307)

P value

Genotype
A/A 105 (82.0) 252 (82.1)
A/G + G/G 23 (18.0) 55 (17.9) 0.989

Allele frequencies
A 0.91 0.91
G 0.09 0.09

Data presented as absolute (%) genotype frequency and allele 
frequency.
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mary successful PCI. Our results demonstrate no
significant correlation between the EPHX2 variant and the
occurrence of restenosis within 6 month after PCI investi-
gated by means of subgroup analysis. None of the known
risk factors for restenosis, such as diabetes mellitus or
hypertension, could be identified as the cause for the
occurrence of restenosis in 29.4% of our patient cohort.
We assume that late lumen loss in the studied patient
cohort is mainly caused by hyperplasia of the vascular
endothelium [33,34]. The findings in the present study
indicate that an involvement of the EPHX2 K55R variant
on this mechanism can largely been excluded.

As no association between K55R and restenosis could be
observed, we assumed that the previously reported associ-
ation of the EPHX2 K55R polymorphism with incident
CHD could be validated in the present study. However,

we could not observe this association with the incidence
of CHD in the present study.

It was shown that the association of polymorphisms
within the EPHX2 gene with cardiovascular risks strongly
depends on the ethnical background of the analysed pop-
ulations [26,35]. Indeed, the reported association could
only be observed in Caucasian CHD cases and not in Afri-
can-Americans. The CHD cases in our study were of Cau-
casian origin, hence this could not explain the contrary
findings of the both studies. However, due to the inclu-
sion of patients who were exclusively from Central Europe
and the resulting well defined demography it is assumed
that the ethnical background of our study cohort is more
homogenous than in the previously reported study.

Furthermore, in the reported study the mean age of the
population was significantly younger (CHD cases: 55.8 ±
0.17 years, controls: 53.8 ± 0.10 years) than in the present
study. This indicates that association of EPHX2 K55R may
be only detectable in early-onset CHD. To review this
hypothesis, the genotype distribution in CHD cases as
well as in the control group was analysed with respect to
the age of the patients. Our findings revealed no signifi-
cant difference in the genotype distribution when only
patients aged ≤ 55 years were analysed. This fact elimi-
nates the possibility of an exclusive effect on early-onset
CHD.

The fundamental difference of our study population com-
pared to the previous study was the diagnostic inclusion
criteria of the patients. In the present study all CHD
patients had undergone a PCI with exclusion of cases suf-
fering from acute coronary syndrome, whereas in the pre-
viously cited study more than half of all the patients
suffered from acute myocardial infarction. The difference
in patient characteristics may be the cause for the contrary
findings.

Since several studies revealed an influence of EPHX2 gene
expression on blood pressure by alterations in EET levels,

Table 3: EPHX2 K55R genotype distribution in incident CHD and early-onset CHD cases

CHD
(n = 435)

Controls
(n = 271)

HW P value CHD
55 years
(n = 117)

Controls
55 years
(n = 91)

P value

Genotype
A/A 357 (82.1) 219 (80.8) 92 (78.6) 75 (82.4)
A/G + G/G 78 (17.9) 52 (19.2) 0.527 0.675 25 (21.4) 16 (17.6) 0.496

Allele frequencies
A 0.91 0.90 0.89 0.91
G 0.09 0.10 0.11 0.09

Data presented as absolute (%) genotype frequency and allele frequency. HW: P-value for Hardy-Weinberg equilibrium test.

Table 4: EPHX2 K55R genotype distribution in subgroups of 
cardiovascular risk factors

CHD cases Controls P value

Hypertension n = 279 n = 137
A/A 233 (83.5) 114 (83.2)
A/G + G/G 46 (16.5) 23 (16.8) 0.938

Male n = 365 n = 126
A/A 299 (81.9) 106 (84.1)
A/G + G/G 66 (18.1) 20 (15.9) 0.574

Diabetes mellitus n = 54 n = 20
A/A 44 (81.5) 17 (85.0)
A/G + G/G 10 (18.5) 3 (15.0) 0.724

Hyperlipidaemia n = 373 n = 133
A/A 304 (81.5) 106 (79.7)
A/G + G/G 69 (18.5) 27 (20.3) 0.649

Current Smoker n = 103 n = 39
A/A 87 (84.5) 31 (79.5)
A/G + G/G 16 (15.5) 8 (20.5) 0.480

Data presented as absolute (%) genotype frequency and allele 
frequency in subgroups for cardiovascular risk factor.
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the association of the K55R variant with increased risk of
hypertension was investigated. Our findings showed no
correlation between the EPHX2 K55R variant and
decreased blood pressure in the studied population. Pre-
vious studies revealed that changes in blood pressure are
accompanied with alterations in the epoxide enzyme
activity. For instance, higher soluble epoxide hydrolase
activity in carriers of at least one K55R variant allele was
described in CHD patients of Caucasian origin [28]. In
our study the enzyme activity of the soluble epoxide
hydrolase and EET levels were not quantified because they
where not defined as target parameters of this genetic
study.

To our knowledge, the present study is the first to investi-
gate the effect of the EPHX2 K55R polymorphism on the
occurrence of restenosis after primary successful PCI.
However, not even an association with incident CHD
could be confirmed.

Certainly, the value of our results is limited due to the rel-
atively low number of analysed individuals. Assuming a
case-control design and type I error α = 0.05, we had a
power of 0.47 to detect proportions of the K55R variant
allele of 20.8% in CHD cases and 15.3% in the controls
derived from the previous report [28]. It has to be noted
that, in genome wide scans of large patient cohorts, no
association was found between CHD and the locus of
EPHX2 on chromosome 8p21-p12 [36]. This fact supports
the findings of the present study.

Conclusion
The results of the present study show no significant asso-
ciation of the EPHX2 K55R allele variant with the develop-
ment of restenosis in patients over a period of six month
after PCI. Furthermore, the association of this genetic var-
iant with incident CHD could not even confirmed.

In conclusion, the present results suggest that the EPHX2
K55R polymorphism can be excluded as independent pre-
dictor for coronary heart disease or for the occurrence of
restenosis in patients who had undergone primary suc-
cessful PCI.
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