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Abstract

While structural network analysis consolidated the hypothesis of cerebral small vessel

disease (SVD) being a disconnection syndrome, little is known about functional

changes on the level of brain networks. In patients with genetically defined SVD

(CADASIL, n = 41) and sporadic SVD (n = 46), we independently tested the hypothe-

sis that functional networks change with SVD burden and mediate the effect of dis-

ease burden on cognitive performance, in particular slowing of processing speed. We

further determined test–retest reliability of functional network measures in sporadic

SVD patients participating in a high-frequency (monthly) serial imaging study (RUN

DMC—InTENse, median: 8 MRIs per participant). Functional networks for the whole

brain and major subsystems (i.e., default mode network, DMN; fronto-parietal task

control network, FPCN; visual network, VN; hand somatosensory-motor network,

HSMN) were constructed based on resting-state multi-band functional MRI. In

CADASIL, global efficiency (a graph metric capturing network integration) of the

DMN was lower in patients with high disease burden (standardized beta = −.44; p

[corrected] = .035) and mediated the negative effect of disease burden on processing

speed (indirect path: std. beta = −.20, p = .047; direct path: std. beta = −.19, p = .25;

total effect: std. beta = −.39, p = .02). The corresponding analyses in sporadic SVD

showed no effect. Intraclass correlations in the high-frequency serial MRI dataset of
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the sporadic SVD patients revealed poor test–retest reliability and analysis of individ-

ual variability suggested an influence of age, but not disease burden, on global effi-

ciency. In conclusion, our results suggest that changes in functional connectivity

networks mediate the effect of SVD-related brain damage on cognitive deficits. How-

ever, limited reliability of functional network measures, possibly due to age-related

comorbidities, impedes the analysis in elderly SVD patients.

K E YWORD S

cerebrovascular disease, cognition, functional brain imaging, functional networks, resting-state

fMRI, test–retest reliability

1 | INTRODUCTION

Cerebral small vessel disease (SVD) is the leading cause of vascular cog-

nitive impairment and dementia (Dichgans & Leys, 2017; Pantoni,

2010; Wardlaw, Smith, & Dichgans, 2019). Based on the prominent

manifestation of lesions in the white matter and subcortical gray mat-

ter, SVD is commonly regarded as a disconnection syndrome and

research on structural brain networks has consolidated this hypothesis

(ter Telgte, van Leijsen, et al., 2018). Lower structural network integrity

was associated with both higher disease burden and lower cognitive

performance (Heinen et al., 2018; Lawrence, Chung, Morris, Markus, &

Barrick, 2014; Reijmer et al., 2015; Tuladhar et al., 2017; Tuladhar, van

Dijk, et al., 2016), depressive symptoms (Xie, Shi, & Zhang, 2017) and

conversion to dementia (Lawrence, Zeestraten, et al., 2018; Tuladhar,

van Uden, et al., 2016). In addition, network integrity mediated the

effect of MRI-based SVD markers on clinical symptoms (Heinen et al.,

2018; Lawrence et al., 2014; Lawrence, Zeestraten, et al., 2018;

Tuladhar, van Dijk, et al., 2016), underlining the significance of network

disruption for expression of the clinical symptoms of the disease. How-

ever, fewer studies are available on functional connectivity in SVD (ter

Telgte, van Leijsen, et al., 2018) and patient selection criteria in these

studies are often rather broad, creating uncertainty as to the extent by

which effects can be attributed to SVD (Fu et al., 2019; Liu et al., 2019;

Nordahl et al., 2006; van Duinkerken et al., 2012; Yi et al., 2012). Fur-

thermore, the available functional connectivity studies vary substan-

tially in the used approach, ranging from component analysis to various

seed-based methods. In contrast, the above-mentioned studies on

structural brain networks were all based on graph theory, which might

indeed be the preferred approach given its particular power and flexi-

bility to study real-world complex systems (Bullmore & Sporns, 2009;

Rubinov & Sporns, 2010, 2011). To our knowledge, only one recent

study used graph theory for the analysis of functional networks in SVD

patients (Lawrence, Tozer, et al., 2018), but did not find a difference

between patients and control participants. However, that study

included a relatively small number of subjects and did not assess the

effects of functional connectivity on cognition. Another study, which

included a group of well-defined SVD patients but did not use graph

theory, found an association between functional connectivity in

frontoparietal networks and cognitive performance (Cullen et al.,

2016). They also conducted exploratory mediation analyses suggesting

that functional connectivity might mediate the effects of structural

lesions on cognitive performance.

In the current study, we addressed the hypothesis that alterations

in functional networks mediate the effect of SVD burden on cognitive

performance. Graph-theory was used to characterize functional net-

works on the level of the global brain and major subnetworks. We

included two patient samples, genetically defined SVD (cerebral auto-

somal dominant arteriopathy with subcortical infarcts and leu-

koencephalopathy; CADASIL) and sporadic SVD. CADASIL was used

as a model for pure, early-onset SVD and allowed us to largely exclude

effects of age-related comorbidities. Furthermore, the sporadic SVD

patients were recruited through the RUN DMC—InTENse cohort

study (ter Telgte, Wiegertjes, et al., 2018), a high-frequency serial MR

imaging study with monthly assessments over 10 months. This

offered the unique opportunity to explore short-term disease progres-

sion as well as test–retest reliability of functional network measures.

2 | METHODS

2.1 | Study populations

We first performed a cross-sectional analysis in CADASIL patients,

with the aim to subsequently validate results in the independent

dataset of sporadic SVD patients.

The entire CADASIL sample comprised 57 patients (age < 65 years

in order to minimize potential confounding by age-related comorbidities)

recruited through the VASCAMY (Vascular and Amyloid Predictors of

Neurodegeneration and Cognitive Decline in Nondemented Subjects)

study. Diagnosis was confirmed by either molecular genetic testing (cys-

teine-altering NOTCH3 mutation) or skin biopsy (presence of granular

osmiophilic material). Five patients were excluded due to quality issues

during preprocessing of structural and functional scans, and 11 patients

were excluded due to excessive head motion (see below for criterion).

Hence, the final CADASIL sample consisted of 41 patients.

The entire sporadic SVD sample comprised 54 patients recruited

through the RUN DMC – InTENse cohort study (Radboud University

Nijmegen Diffusion tensor and Magnetic resonance imaging Cohort—
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Investigating The origin and EvolutioN of cerebral SVD). Details of the

study protocol have been published previously (ter Telgte et al., 2019;

ter Telgte, Wiegertjes, et al., 2018). In short, this study included

54 patients from the previous prospective RUN DMC study with a

high likelihood of progression of SVD imaging markers while meticu-

lously excluding individuals with stroke etiologies other than SVD. All

patients were scanned monthly, for 10 months. For the cross-

sectional analysis of functional networks, we used only data from the

baseline MRI visit, which was closest to the neuropsychological test-

ing session. Eight patients were excluded due to excessive head

motion (see below for criterion). Hence, the final sporadic SVD sample

for the cross-sectional analysis consisted of 46 patients. The longitu-

dinally acquired data of the same patients were used for test–retest

analysis. Only patients with at least three time-points were included

in this analysis, resulting in 44 patients. These patients had a median

of 8 MRI acquisitions (range from 3 to 9).

All study protocols were approved by local ethics committees of

the respective institutions. Written informed consent was obtained

from all subjects. Apart from covering travel costs, subjects were not

compensated for their participation in the study.

2.2 | Neuropsychological testing

The neuropsychological examination was performed on the previous

or the same day as the MRI examination in the CADASIL patients

(VASCAMY) and between 2 and 17 weeks (median = 8.4 weeks;

IQR = 3.4 weeks) before the MRI visit in the sporadic SVD patients

(RUN DMC – InTENse).

Mini-Mental State Examination (MMSE) was used to capture the

general cognitive performance in the two study samples. In order to

limit the number of statistical tests, we prespecified to focus on the

main cognitive deficit in SVD patients, that is, processing speed and

executive function. For this purpose, we analyzed the time needed to

complete the Trail Making Test matrix B (TMT-B), which has been

shown to be very sensitive toward SVD-related deficits in these cog-

nitive domains (Duering et al., 2011). Raw test scores were trans-

formed into age- and education-corrected z scores based on values

from healthy subjects (Tombaugh, 2004).

2.3 | MRI acquisition

MRI scans were performed on 3 Tesla scanners using harmonized pro-

tocols (CADASIL: Magnetom Skyra with a 64-channel head coil; spo-

radic SVD: Magnetom Prisma with 32-channel head coil; Siemens

Healthineers, Erlangen, Germany). Protocols in both studies included

3D-T1, 3D fluid-attenuated inversion recovery (FLAIR), fast low angle

shot (FLASH, T2*-weighted), a multi-shell diffusion-weighted imaging

sequence, together with a b = 0 image with inverted phase encoding

direction for correcting susceptibility induced distortions, and a

resting-state multi-band echo planar imaging pulse sequence (TR/TE

700/39 ms, flip angle 52�, multi-band acceleration factor 8, number of

volumes 675 [CADASIL] or 700 [sporadic SVD], in-plane resolution

and slice thickness 3 mm [CADASIL] or 2.4 mm [sporadic SVD])

together with two spin-echo echo planar images with opposing phase

encoding directions for field map calculation. Complete acquisition

parameters are listed in Table S1. All scans from both study samples

underwent rigorous visual quality control by B.G., M.D., and M.H.

2.4 | Conventional SVD imaging markers

White matter hyperintensity (WMH) volume, number and volume of

lacunes, and number of cerebral microbleeds were assessed according to

consensus criteria (Wardlaw et al., 2013). In the VASCAMY dataset

(CADASIL patients), WMH were segmented from registered and bias-

corrected T1 and FLAIR images, using a variant of the 3D U-Net (Long,

Shelhamer, & Darrell, 2015; Ronneberger, Fischer, & Brox, 2015) deep

learning algorithm. This algorithm was trained and validated in an inde-

pendent sample of 117 patients with CADASIL from a previous, prospec-

tive study (Duering et al., 2013). The WMH segmentations were then

manually edited and cleaned from misclassified artifacts using a custom

3D editing tool, written in MATLAB (R2016b, The MathWorks, Natick,

MA). Lacunes were detected manually on T1 images, and segmented

using seed-growing with a manually selected intensity threshold.

Microbleeds were visually rated on T2*-weighted images. In the RUN

DMC—InTENse dataset (sporadic SVD patients), these markers were

assessed as previously described (ter Telgte et al., 2019). All volumes

were normalized to the total intracranial volume, which was approxi-

mated from tissue probability maps produced using the Statistical Para-

metric Mapping (SPM) toolbox tissue segmentation algorithm (v12;

Wellcome Department of Cognitive Neurology, London, UK; http://

www.fil.ion.ucl.ac.uk/spm). The tissue maps for gray matter, white mat-

ter, and cerebrospinal fluid were thresholded and combined in order to

obtain the total intracranial volume. Brain volume was estimated as the

combined volume of the thresholded gray and white matter tissue maps,

and normalized for by dividing through total intracranial volume.

2.5 | Diffusion imaging based SVD burden marker

Diffusion tensor imaging is the gold-standard method to assess dis-

ease burden in SVD. We have previously shown that diffusion tensor

imaging alterations in SVD, such as an increase in mean diffusivity or

decrease in fractional anisotropy, are largely driven by an increased

extracellular free water (FW) content (Duering et al., 2018). Thus, it is

sufficient to determine the FW content in order to fully capture diffu-

sion tensor imaging alterations in SVD. The FW measure ranges from

0 to 1 and corresponds to the relative content of freely diffusing,

extracellular water in the observed volume (i.e., each voxel). Before

calculating FW, we preprocessed diffusion data in order to reduce the

effect of spatially varying noise (Veraart, Fieremans, et al., 2016;

Veraart, Novikov, et al., 2016), Gibbs ringing artifacts (Kellner, Dhital,

Kiselev, & Reisert, 2016), susceptibility-induced distortions

(J. L. Andersson, Skare, & Ashburner, 2003), and eddy current-induced
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distortions and head motion (J. L. R. Andersson & Sotiropoulos, 2016).

This was done using tools from MRtrix3 (http://www.mrtrix.org/,

dwidenoise, mrdegibbs) and the Functional Magnetic Resonance Imag-

ing of the Brain (FMRIB) Software Library (FSL; version 5.0.9, eddy,

topup) (Smith et al., 2004). After preprocessing, fractional anisotropy

and FW were calculated as previously described (Duering et al., 2018).

Briefly, diffusion tensors were estimated using linear least squares

implemented in MATLAB. FW was estimated using a nonlinear regular-

ized minimization process (Pasternak, Sochen, Gur, Intrator, & Assaf,

2009). Using the Tract-Based Spatial Statistics pipeline from FSL, the

fractional anisotropy images were registered nonlinearly to the

FMRIB58 standard space image and projected onto a custom white

matter skeleton (Baykara et al., 2016). The nonlinear warps and skeleton

projections from this processing step were then applied to the FW

images, in order to project voxels from the native diffusion image space

onto the standard space white matter skeleton template. Finally, the

hereby produced skeletonized FW images were averaged, resulting in a

global score for FW in the main white matter tracts. This global score

was used throughout this study as a measure for the SVD burden and,

for simplicity, will be referred to hereafter as FW.

2.6 | Resting-state functional MRI processing

Processing of resting-state functional MRI data was done with a particu-

lar effort to account for the heavily lesioned SVD brains during spatial

normalization and to minimize head motion effects. The first 10 EPI vol-

umes were discarded, to allow the magnetization to stabilize to a steady

state. The remaining volumes were realigned and corrected for static

and dynamic distortions in a single step, using the “realign & unwarp”

function in SPM together with a field map, calculated with FSL topup

from spin-echo EPI images with opposite phase encoding directions.

Images were then normalized to Montreal Neurological Institute (MNI)

space using the Advanced Normalization Tools (ANTs, version 2.1.0,

[Avants et al., 2011]) and a bimodal custom template (consisting of T1

and FLAIR), created with ANTs from an independent set of 15 healthy

(mean age 70 years) and 15 CADASIL patients (mean age 51 years)

acquired during a previous study (Baykara et al., 2016). For each patient,

the mean EPI volume was registered to the T1 image. The T1 and FLAIR

images were (co-)registered nonlinearly to the bimodal custom template,

which again was normalized into MNI space. WMH and lacune lesion

masks were provided to the normalization algorithm to avoid image dis-

tortions, typically resulting during nonlinear normalization of lesioned

brains. Each EPI volume was transformed into MNI space by applying

the combined transformations. EPI volumes in standard space were spa-

tially smoothed (6 mm FWHM) and independent component analysis

(ICA)-AROMA (Pruim, Mennes, Buitelaar, et al., 2015; Pruim, Mennes,

van Rooij, et al., 2015) was applied, using the nonaggressive denoising

strategy. ICA-AROMA is a strategy based on ICA to further reduce

motion artifacts in fMRI data. Finally, nuisance regression (6 motion

parameters and signal time-courses from regions in the white matter, the

cerebrospinal fluid and the whole brain), linear trend removal, band-pass

filtering (0.01–0.08 Hz), and motion scrubbing was conducted. Motion

scrubbing followed a previously established protocol (Power et al., 2014;

Power, Barnes, Snyder, Schlaggar, & Petersen, 2012) based on framewise

displacement, calculated using custom MATLAB code (BRAMILA pipe-

line v2.0, available at https://git.becs.aalto.fi/bml/bramila/). Volumes that

exhibited a framewise displacement >0.5 mm were removed together

with one preceding and two subsequent volumes. Participants were

excluded if the acquisition time, after removing censored volumes,

amounted to less than 5 min. We chose this threshold, because it has

been previously shown that estimates of correlation strength stabilize

with acquisition times as brief as 5 min (Van Dijk et al., 2010). As men-

tioned above, this applied to 11 CADASIL, 8 sporadic SVD patients and

60 out of 378 visits from the 44 sporadic SVD patients in the longitudi-

nal dataset. As consequence of motion scrubbing, the median number

(and the first and third quartile) of remaining volumes was

653 (608, 665) in the 41 CADASIL patients, 674 (643, 686) in the 46 spo-

radic SVD patients, and 674 (641, 686) in the longitudinal dataset.

2.7 | Network reconstruction and graph analysis

Functional brain networks were represented using graph theory. A

graph is defined as a mathematical object consisting of a set of items,

called nodes, and pairwise relationships between them, called edges.

As nodes we used a set of 264 putative functional areas (10 mm

diameter spheres), defined by Power et al. (2011), which spans the

cerebral cortex, subcortical structures and cerebellum. The authors

also suggested a partitioning of their set of 264 areas into 12 non-

overlapping functional systems. Based on this partitioning we defined

five networks: A global network of the brain was based on the

232 areas assigned to any of the 12 functional systems (32 nodes

were not assigned to any network). The other four networks were

based on the areas of the four largest functional systems: the default

mode network (DMN, containing 58 areas), the fronto-parietal task

control network (FPCN; 25 areas), the somatosensory-motor network

of the hand (HSMN; 30 areas), and the visual network (VN; 31 areas).

All other functional systems of the partitioning contained less than

20 areas and were not analyzed as separate networks, following the

recommendation of the Brain Connectivity Toolbox for a minimum

number of 20 network nodes in order to conduct a meaningful graph

theoretical analysis. The nodes of the global and the four selected

functional systems are shown in Figure 1a. The edges of these net-

works were defined as the functional connectivity between all pairs of

nodes, calculated as the temporal correlation (Pearson's r) in the

blood-oxygen-level-dependent (BOLD) signal between nodes. Hence,

for a network with N nodes, the entirety of all edges was defined as a

N × N correlation matrix. One such correlation matrix (connectivity

matrix) was calculated for each of the five networks and for each par-

ticipant. The diagonal of each matrix was set to zero. A critical step of

graph analysis is thresholding of the correlation matrices to remove

spurious connections and to obtain sparsely connected matrices (van

den Heuvel et al., 2017; van Wijk, Stam, & Daffertshofer, 2010). We

used proportional thresholding, which keeps the network density con-

stant across subjects, because network density has a direct effect on
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many graph metrics (van Wijk et al., 2010). Proportional thresholding

is conducted by keeping the same, predefined number of strongest

edges for all subjects. However, proportional thresholding may also

lead to modified network topologies by enforcing nonsignificant con-

nections or ignoring significant connections, depending on differences

across subjects in overall functional connectivity (van Wijk et al.,

2010). To account for this possible pitfall, we tested whether SVD

burden affected overall functional connectivity, which we calculated

by averaging across all positive valued edges in the network matrix as

suggested by van den Heuvel et al. (2017). To evaluate robustness of

findings, networks were thresholded repeatedly for a range of 9 den-

sity thresholds from 5 to 45%, with a step-size of 5%. Densities higher

than 45% were not analyzed, since this would have caused inclusion

of negative valued edges. For illustration, Figure 1b shows the edge-

wise percentage of patients for whom an edge was included in the

graph analysis when using the 20% density threshold.

Graph theoretic measures were calculated for each of the five func-

tional networks, for each of the nine density thresholds and for each par-

ticipant, using the Brain Connectivity Toolbox (Rubinov & Sporns, 2010).

We a priori selected two measures: the weighted global efficiency (GE),

reflecting functional integration in the network, and the weighted cluster-

ing coefficient (CC), reflecting functional segregation in the network. These

two graph theoretic measures (GE and CC) are commonly used and were

previously reported to be sensitive also to structural network changes in

SVD (Lawrence, Tozer, et al., 2018). There were strong correlations

between the two network measures at less stringent thresholds (25% den-

sity and above), but not at the more stringent thresholds (Figure S1).

2.8 | Statistical analysis

All statistical analyses were performed in R (version 3.6.0; [R Core

Team, 2016]). Sample characteristics were compared between the

CADASIL and sporadic SVD samples using Chi-squared test (for cate-

gorical variables) or Wilcoxon rank sum test (for numerical variables).

For all other analyses, variables were first power-transformed using

the Yeo-Johnson transformation (Yeo & Johnson, 2000), as

implemented in the R package “car” (version 3.0-0; (J. Fox &

Weisberg, 2011)), to approximate normal distribution.

For the cross-sectional analysis, we first tested for simple

pairwise associations between disease burden (i.e., FW), network

measures (i.e., GE and CC calculated for the global network, FPCN,

DMN, HSMN, and VN) and processing speed (i.e., TMT-B z-scores),

using simple linear regression models. These analyses were repeated

for all density thresholds. We considered the number of multiple com-

parisons for these simple regression models to be n = 10, resulting

from multiplying the numbers of analyzed networks (n = 5) and net-

work measures (n = 2). The repetition of analyses for the range of

density thresholds (n = 9) was not considered for multiple comparison

correction, given strong dependencies of network measures across

thresholds. Correction was performed using the Bonferroni method.

In case of significant pairwise associations between the three

types of variables (i.e., disease burden, network measure, processing

speed), a formal mediation analysis was performed using path analysis

as implemented in the R package “lavaan” (version 0.6-3; (Rosseel,

2012)), with processing speed as dependent variable, disease burden

as predictor and the respective network measure as mediator. P-

values were estimated using bootstrap analysis (50,000 repetitions).

Longitudinal analysis was performed in sporadic SVD patients (RUN

DMC—InTENse study) to assess changes in disease burden (i.e., FW)

and functional network measures (i.e., GE, CC) over time. We estimated

linear mixed models with the R package “lme4” (version 1.1-21; [Bates,

Mächler, Bolker, & Walker, 2014]), and calculated p-values with the R

package “lmerTest” (version 3.1.0; (Kuznetsova, Brockhoff, &

Christensen, 2017)). Time of MRI visits (relative to baseline visit) was

modeled as fixed effect, including a random intercept and slope for each

subject. Test–retest reliability of disease burden and functional network

measures was estimated using intraclass correlation coefficient (ICC)

with the R package “psych” (1.8.12; (Revelle, 2019)) and applying the

one-way ANOVA model, that is, ICC(1,1) (Shrout & Fleiss, 1979). The

F IGURE 1 Network reconstruction. (a) Functional areas used as network nodes: the default mode network (DMN; red), fronto-parietal task
control network (FPCN; yellow), visual network (VN; blue), and hand somatosensory-motor network (HSMN; cyan). For reconstruction of the
global network, nodes of other functional systems (gray) were included as well. (b) Percentage of patients for whom an edge was included in the
graph-analysis, using the 20% density threshold. Functional systems are indicated by colors as in Panel a
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ICC is the ratio of variance due to subjects (intersubject variance) to the

total variance (sum of intersubject and intrasubject/error variance) and

is a measure of how correlated (similar) measurements are within the

same person. According to commonly used guidelines for clinical

research (Fleiss, 1986), ICC results were considered to be “excellent”

(ICC >0.75), “fair to good” (0.40–0.75) or “poor” (<0.40).

We determined the influence of multiple variables (i.e., age, sex,

mean framewise displacement as a summary score for head motion,

FW, brain volume, WMH volume, hypertension, diabetes, hypercho-

lesterolemia, smoking) on the variability of network measures across

visits. For this purpose, we first calculated the standard deviation of

both network measures (GE and CC) across visits for each subject.

These standard deviations (one per subject) were then regressed

against the above listed explanatory variables. Similarly, as in the con-

text of the cross-sectional analyses described above, we considered

the number of multiple comparisons done for each explanatory vari-

able to amount to n = 10, and corrected using Bonferroni method.

3 | RESULTS

3.1 | Demographics, cognition and disease burden

The demographic, clinical and radiological characteristics of CADASIL and

sporadic SVD patients are depicted in Table 1. A direct comparison

between groups was not intended by this study and the differences in age

and disease burden are consequences of the study design (intentionally

including young CADASIL patients to avoid age-related comorbidities).

A comparable association between disease burden (measured by

FW) and processing speed (measured by TMT-B) could be observed in

CADASIL (standardized beta = −.39; adjusted R2 = 13.3%; p = .011)

and sporadic SVD patients (standardized beta = −.36; adjusted

R2 = 11.2%; p = .013), confirming suitability of FW as a measure for

SVD burden in both patient groups.

3.2 | Cross-sectional functional network analysis

We tested associations of network measures (i.e., GE and CC) with disease

burden (i.e., FW) as well as with processing speed (i.e., TMT-B), using sim-

ple regression analysis. In CADASIL, there was a significant association

between GE and FW. This association was specifically present in the

DMN (20% density threshold, adjusted R2 = 17.7%, corrected p = .036;

Figure 2). Importantly, a significant association was also found between

GE and TMT-B, again only in the DMN (density thresholds from 10 to

25%, maximum adjusted R2 = 27.5% and minimum corrected p = .0026 at

density 20%; Figure 2). No significant associations were found in the spo-

radic SVD patients (Figure S2). Therefore, mediation analysis was only

conducted in CADASIL, and only with GE in the DMN (calculated at 20%

density threshold) as mediator. The effect of disease burden on processing

TABLE 1 Characteristics of the samples at baseline visit

Variable CADASIL (VASCAMY) Sporadic SVD (RUN DMC–InTENse) p

n 41 46

Demographic characteristics

Age, years 54 (14.8) [32,64] 68 (8.4) [61,90] <.001

Female, n (%) 27 (65.9) 18 (39.1) .013

Education, years 10 (3) [8,20] 11 (4) [8,18] .180

Vascular risk factors

Smoking (current and past), n (%) 27 (65.9) 31 (67.4) .879

Hypertension, n (%) 11 (26.8) 37 (80.4) <.001

Hypercholesterolemia, n (%) 18 (43.9) 21 (45.7) .870

Diabetes, n (%) 0 (0) 6 (13.0) .017

Neuropsychology

TMT-B, Z-score −0.4 (2.1) [−9.2,1.5] 0 (1.8) [−9.0,1.6] .322

MMSE score 29 (2) [23,30] 29 (2) [26,30] .252

MRI SVD markers

FW 0.28 (0.09) [0.18,0.56] 0.17 (0.04) [0.14,0.31] <.001

WMH volume, % 4.1 (5) [0.08,15.1] 0.3 (0.6) [0.03,3.1] <.001

Lacune volume, % 0 (0) [0,0.08] 0 (0) [0,0.05] <.001

Lacune count 2 (3) [0,21] 0 (0) [0,20] <.001

Brain volume, % 76.0 (7.2) [66.9,86.2] 77.3 (5.5) [64.4,85.8] .131

Cerebral microbleeds count 2 (6) [0,21] 0 (1) [0,9] <.001

Note: Lesion and brain volumes are normalized by the total intracranial volume. For numeric variables median (interquartile range) [min, max] is shown.

Abbreviations: FW, free water content; MMSE, Mini-Mental State Examination; SVD, small vessel disease; TMT-B, Trail Making Test matrix B, age and

education adjusted z-scores; WMH, white matter hyperintensity.

2634 GESIERICH ET AL.



speed was mediated by GE in the DMN (indirect path: standardized

beta = −.20, p = .047; direct path: standardized beta = −.19, p = .25; total

effect: standardized beta = −.39, p = .02; Figure 3).
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Regressing overall functional connectivity in the DMN of CADASIL

patients against FW (uncorrected p = .74) confirmed that the association

between disease burden and the graph-theoretical network measure GE

was not indirectly driven by a disease burden associated difference in

overall functional connectivity (van den Heuvel et al., 2017). There was

also no effect of disease burden on overall functional connectivity in

any other network, neither in CADASIL (smallest uncorrected p = .32, in

the visual network) nor in the sporadic SVD sample (smallest

uncorrected p = .11, in the global network).

3.3 | Longitudinal analysis and test–retest
reliability in sporadic SVD

Disease burden, as measured by FW, increased over time (median

31 weeks follow-up) in the sporadic SVD sample (linear mixed model,

beta = .00017, p = 1.8e − 08, Figure 4a). In contrast, network mea-

sures (GE and CC) did not change over time for any threshold or net-

work (range of uncorrected p-values .059–.999, Figure 4b).

Test–retest reliability was assessed in the longitudinal dataset

for the network measures GE and CC, calculating ICC at all den-

sity thresholds and for all networks. The ICC(1,1) was in all cases

below or marginally above 0.4 (GE: median = 0.364; min/

max = 0.091/0.475; CC: median = 0.344; min/max = 0.134/0.448;

Figure 5), indicating poor to fair reliability. In comparison, FW

showed excellent reliability (ICC(1,1) = 0.988; 95% confidence

interval = [0.982,0.992]).

Finally, we explored factors explaining differences across sub-

jects, regarding the variability of network measures across visits.

We tested the effect of age, sex, head-motion (mean framewise

displacement), SVD markers (FW, brain volume, WMH volume),

and vascular risk factors (hypertension, diabetes, hypercholesterol-

emia, smoking). The variability across visits of GE in the DMN

was higher in older patients (maximum standardized beta = .58

and minimum corrected p = 4.1e − 04 at density 35%, Figure S3).

Similar, but only marginally significant effects of age on network

measure variability were also found for CC in the DMN (standard-

ized beta = .41 and corrected p = .061 at density 20%) and for

GE in the global network (standardized beta = .40 and corrected

p = .07 at density 25%). No significant effects were found for the

other variables.

4 | DISCUSSION

We found lower functional integration in the DMN (as measured by

global efficiency) in patients with higher disease burden in the

genetically defined SVD study group. This functional disintegration

in the DMN mediated the effect of disease burden on processing

speed, the cognitive domain predominantly affected in SVD. While

these findings in CADASIL patients support the view of SVD being

a disconnection syndrome, we were not able to independently vali-

date these results in sporadic SVD patients. A plausible explanation

is the poor test–retest reliability of network metrics in sporadic

SVD patients, as revealed by the analysis of high-frequency serial

imaging data. Age was the only factor associated with increased var-

iability across visits, suggesting that age-related comorbidities other

than SVD might underlie the poor reliability of functional network

measures.

4.1 | Functional network properties mediate the
effect of disease burden

In CADASIL patients, the effect of disease burden on cognition was

mediated by decreased network efficiency in the DMN. While we can

only speculate on why disease burden was specifically associated with

alterations in this network, there is supporting evidence from another

study in CADASIL (Cullen et al., 2016). That study used ICA to define

networks and analyzed mean connectivity in four of the resulting

components, which the authors labeled as attentional or executive.

Importantly, these networks showed considerable overlap with areas

typically considered part of the DMN. In particular, the strongest cor-

relations with processing speed as well as executive function were

found by Cullen et al. for one component dominated by a large cluster

in the bilateral precuneus, an area typically implicated in the DMN.

When comparing to the atlas used in our study (Power et al., 2011),

the cluster is indeed in vicinity to a ROI assigned to the DMN.

0

0.2

0.4

0.8

1

5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

IC
C

threshold (density [%])

global FPCN HSMN VNDMN

GE
CC

0.6

F IGURE 5 Test–retest reliability of network measures in the sporadic SVD sample. The intraclass correlation (ICC) coefficient is shown for all
networks and for different density thresholds (x-axis). Point estimates and 95% confidence interval are shown. Abbreviations: CC, weighted
clustering coefficient; DMN, default mode network; FPCN, fronto-parietal task control network; GE, weighted global efficiency; global, global
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The DMN is involved in a wide variety of cognitive functions, such

as episodic memory, envisioning the future, mentalizing and self-

referential mental activity (Buckner, Andrews-Hanna, & Schacter, 2008;

Davey, Pujol, & Harrison, 2016; K. C. Fox, Spreng, Ellamil, Andrews-

Hanna, & Christoff, 2015; Raichle, 2015; Spreng, Mar, & Kim, 2009).

One hypothesis suggests that the DMN supports all these different cog-

nitive activities by allowing cognition to uncouple from the actual per-

ceptual experience and to be shaped by information from stored

representations (Konishi, McLaren, Engen, & Smallwood, 2015; Murphy

et al., 2018; Smallwood et al., 2013; Spreng et al., 2014). The TMT-B

used in our study was designed to probe processing speed and execu-

tive functioning. However, the test also relies strongly on the ability to

guide cognition by memory rather than sensory input alone. In order to

identify the next target symbol, the preceding symbol has to be remem-

bered. Compared to the complex cognitive activities predominantly

associated with the DMN, such as envisioning the future or mentalizing,

the TMT-B is a simple task. However, the involvement of the DMN in

rather simple cognitive functions has been confirmed by task fMRI

(Konishi et al., 2015), thus making a role of the DMN for processing

speed performance in SVD patients plausible.

4.2 | Test–retest reliability

The value of a measure depends strongly on its precision relative to

its normative intersubject variation, which can be assessed by ICC. In

the group of sporadic SVD patients, we had the unique opportunity to

assess reliability of imaging measures using multiple timepoints

(median = 8) from a monthly serial imaging study. Across all tested

networks and thresholds, we found poor test–retest reliability of

functional network measures, with most ICC values below 0.4. To our

knowledge there is only one study investigating test–retest reliability

of graph based functional network metrics in SVD patients, which

found ICC values close to zero (Lawrence, Tozer, et al., 2018). The

lower ICC values in that study could be due to methodological differ-

ences, which have been shown to strongly influence reliability of

graph analysis of functional network metrics (Andellini, Cannata, Gaz-

zellini, Bernardi, & Napolitano, 2015; Termenon, Jaillard, Delon-Mar-

tin, & Achard, 2016).

We further explored determinants of high within-subject variability of

network metrics and found higher variability with older age, but not with

increased SVD burden. To our knowledge, only few studies investigated

factors impacting on reliability of functional network metrics in normal

and pathological aging. Seemingly in contrast with our study, which found

no effect of SVD burden, the above-mentioned study by Lawrence and

colleagues found lower reliability in SVD patients compared with healthy

controls. Since all of our subjects had SVD, we cannot exclude that the

presence of SVD has an effect on reliability. However, our data suggests

that the degree of SVD severity plays a minor role. Another study com-

pared young and elderly healthy subjects and found that age reduced the

reliability of functional connectivity, calculated as correlation coefficients

between BOLD signal time series in 92 regions of interest (Song et al.,

2012). Although not investigated by these authors, a likewise reduced

reliability of derived graph metrics seems very plausible. A further study

found test–retest reliability of graph based functional network metrics in

older adults to be low (Guo et al., 2012), but did not explore the effect of

age or age-related pathologies. A study, comparing subjects with mild cog-

nitive impairment to healthy seniors, found a reduced test–retest reliability

of ICA-derived resting-state networks (Blautzik et al., 2013). In summary,

our findings suggest that aging and age-related pathologies other than

SVD severity contribute to decreased reliability of graph based functional

network metrics in elderly subjects.

4.3 | Missing generalization to sporadic SVD

Results in the sporadic SVD sample were negative and, hence, we were

not able to generalize our findings from genetically defined to sporadic

SVD. Although previous studies in SVD differed in terms of methodol-

ogy, they support the notion that the investigation of functional connec-

tivity is more challenging in sporadic SVD compared with genetically

defined SVD. While a previous study in CADASIL patients linked

resting-state connectivity to cognitive performance (Cullen et al., 2016),

a study in sporadic SVD did not find differences in function connectivity

between patients and healthy controls (Lawrence, Tozer, et al., 2018).

The findings on test–retest reliability provide a plausible explanation

why the mediation effect was only found in the relatively young CADASIL

patients. Age and age-related comorbidities might have reduced reliability

of the network metrics in the older sporadic SVD patients, thus reducing

statistical power. However, as we could not assess test–retest reliability in

our CADASIL sample, this conclusion remains speculative.

Age-related comorbidities might not only reduce reliability, but

exert their own effects on network metrics. In this way, even subclini-

cal comorbidities might introduce noise and potentially mask the

SVD-related effect on network metrics. Another explanation might be

the difference in SVD burden, as reflected by the MRI markers (see

Table 1). The higher and more variable SVD burden in CADASIL

patients might have provided more statistical power to explore associ-

ations with functional connectivity.

4.4 | Strengths and limitations

The current study has several strengths. First, we used two indepen-

dent study samples, genetically defined SVD (CADASIL) and sporadic

SVD. This allowed us to study functional network changes first in a

pure form of SVD, minimizing the confounding of results by other

age-related changes and comorbidities, which indeed might have ham-

pered the analysis in the sporadic SVD group. A further strength is the

relatively large number of participants in each study sample, which is

high compared with previous studies on functional connectivity in

SVD (Cullen et al., 2016; Lawrence, Tozer, et al., 2018). Also, the

state-of-the-art spatial normalization of the data into MNI space con-

stitutes an important strength. Structural images are heavily affected

by SVD-related lesions and normalization with standard procedures

can lead to highly inaccurate results (Duering et al., 2011). We
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accounted for this difficulty, using a custom template, lesion masking

and an advanced normalization algorithm.

Finally, a unique strength of our study is the availability of high-

frequency, serial MRI in 44 sporadic SVD patients, which enabled us

to assess test–retest reliability and explore sources of variability based

on both a large sample size and a high number of tests per subject

(in total 319 MRI scans).

Our study also has limitations. The effect of disease burden on

functional network integrity in CADASIL is based on cross-sectional

data only. Hence, we cannot infer how functional connectivity

changes over the course of the disease in individual patients. Longitu-

dinal studies with long-term follow-ups would be needed to address

these questions. In addition, with resting-state data alone, we cannot

investigate how functional connectivity during rest relates to activity

in the DMN during cognitive tasks. Future studies using task fMRI

might shed more light on the role of the DMN in SVD-related cogni-

tive impairment. A further limitation concerns the longitudinal analy-

sis. Measuring network metrics over time is challenging, because the

thresholding of the connectivity matrices might cause a slightly differ-

ent set of edges to be included at each time point. In addition, the lack

of a healthy control group precludes to study the effect of SVD on

functional network reliability in comparison to healthy elderly. Finally,

we did not collect data on neurovascular coupling, and therefore can-

not assess the extent to which disease related changes in neuro-

vascular coupling, rather than changes in neuronal activity, underlie

our results. Changes in neurovascular coupling might cause delayed or

decreased BOLD responses to neural activity (Dumas et al., 2012;

Huneau et al., 2018; Iadecola, 2017), which could have contributed to

the reduced test–retest reliability and negative result in the sporadic

SVD sample. On the other hand, we regard it as unlikely that BOLD

changes caused predominantly by changes in neurovascular coupling

(rather than by changes in neuronal activity) result in an association

between functional-connectivity-based network measures and

cognition.

5 | CONCLUSION

Our study corroborates the concept of SVD being a disconnection syn-

drome, with altered functional network integrity mediating the effect of

subcortical SVD burden on the typical cognitive deficits. While these

effects were present in the genetically defined CADASIL patients, they

could not be generalized to sporadic SVD. A plausible explanation for

the lack of findings in the sporadic SVD sample is the reduced reliability

of functional network metrics with higher age, as demonstrated by our

serial imaging study. This finding of low reliability in the older, sporadic

SVD patients also has implications beyond SVD, highlighting the chal-

lenges of applying graph-based measures of functional network proper-

ties in studying populations of elderly people.

ACKNOWLEDGMENTS

We thank Ofer Pasternak for providing the toolbox and support for

estimating free water from diffusion weighted images. B.G. and

M.D. were supported by German Research Foundation (DFG

DU1626/1-1). R.S., L.P., and M.K. were supported by the Austrian Sci-

ence Fund (FWF grant number: I2889-B31). A.M.T. was supported by

the Dutch Heart Foundation (grant number 2016T044) and by The

Netherlands CardioVascular Research Initiative (CVON 2018-28 and

2012-06 Heart Brain Connection). A.A. was supported by grant

173880 of the Swiss National Science Foundation. P.zE. was

supported by the German Federal Ministry of Education and Research

(BMBF 01 EO 0901). F.E.dL. was supported by the VIDI Innovational

Research grant (ZonMW 016-126-351) and the Clinical established

investigator Dutch Heart Foundation grant (2014 T060). M.D. was

supported by the Radboud Excellence Initiative (18U.018651).

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available on

request from the corresponding author. The data are not publicly

available due to privacy or ethical restrictions.

ORCID

Benno Gesierich https://orcid.org/0000-0003-2842-7105

Anil Man Tuladhar https://orcid.org/0000-0002-4815-2834

Annemieke ter Telgte https://orcid.org/0000-0003-4841-6761

Kim Wiegertjes https://orcid.org/0000-0001-7480-1482

Lukas Pirpamer https://orcid.org/0000-0002-4390-9703

Marisa Koini https://orcid.org/0000-0002-1756-1379

Ahmed Abdulkadir https://orcid.org/0000-0003-4679-8081

Nicolai Franzmeier https://orcid.org/0000-0001-9736-2283

Peter zu Eulenburg https://orcid.org/0000-0002-3729-4570

Michael Ewers https://orcid.org/0000-0001-5231-1714

Marco Duering https://orcid.org/0000-0003-2302-3136

REFERENCES

Andellini, M., Cannata, V., Gazzellini, S., Bernardi, B., & Napolitano, A.

(2015). Test-retest reliability of graph metrics of resting state MRI

functional brain networks: A review. Journal of Neuroscience Methods,

253, 183–192. https://doi.org/10.1016/j.jneumeth.2015.05.020

Andersson, J. L., Skare, S., & Ashburner, J. (2003). How to correct suscepti-

bility distortions in spin-echo echo-planar images: Application to diffu-

sion tensor imaging. NeuroImage, 20(2), 870–888. https://doi.org/10.
1016/S1053-8119(03)00336-7

Andersson, J. L. R., & Sotiropoulos, S. N. (2016). An integrated approach to

correction for off-resonance effects and subject movement in diffu-

sion MR imaging. NeuroImage, 125, 1063–1078. https://doi.org/10.
1016/j.neuroimage.2015.10.019

Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A., & Gee, J. C.

(2011). A reproducible evaluation of ANTs similarity metric perfor-

mance in brain image registration. NeuroImage, 54(3), 2033–2044.
https://doi.org/10.1016/j.neuroimage.2010.09.025

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear mixed-

effects models using lme4. arXiv Preprint arXiv, 1406.5823.

Baykara, E., Gesierich, B., Adam, R., Tuladhar, A. M., Biesbroek, J. M.,

Koek, H. L., … Duering, M. (2016). A novel imaging marker for small

vessel disease based on Skeletonization of white matter tracts and dif-

fusion histograms. Annals of Neurology, 80(4), 581–592. https://doi.
org/10.1002/ana.24758

Blautzik, J., Keeser, D., Berman, A., Paolini, M., Kirsch, V., Mueller, S., …
Meindl, T. (2013). Long-term test-retest reliability of resting-state net-

works in healthy elderly subjects and with amnestic mild cognitive

2638 GESIERICH ET AL.

https://orcid.org/0000-0003-2842-7105
https://orcid.org/0000-0003-2842-7105
https://orcid.org/0000-0002-4815-2834
https://orcid.org/0000-0002-4815-2834
https://orcid.org/0000-0003-4841-6761
https://orcid.org/0000-0003-4841-6761
https://orcid.org/0000-0001-7480-1482
https://orcid.org/0000-0001-7480-1482
https://orcid.org/0000-0002-4390-9703
https://orcid.org/0000-0002-4390-9703
https://orcid.org/0000-0002-1756-1379
https://orcid.org/0000-0002-1756-1379
https://orcid.org/0000-0003-4679-8081
https://orcid.org/0000-0003-4679-8081
https://orcid.org/0000-0001-9736-2283
https://orcid.org/0000-0001-9736-2283
https://orcid.org/0000-0002-3729-4570
https://orcid.org/0000-0002-3729-4570
https://orcid.org/0000-0001-5231-1714
https://orcid.org/0000-0001-5231-1714
https://orcid.org/0000-0003-2302-3136
https://orcid.org/0000-0003-2302-3136
https://doi.org/10.1016/j.jneumeth.2015.05.020
https://doi.org/10.1016/S1053-8119(03)00336-7
https://doi.org/10.1016/S1053-8119(03)00336-7
https://doi.org/10.1016/j.neuroimage.2015.10.019
https://doi.org/10.1016/j.neuroimage.2015.10.019
https://doi.org/10.1016/j.neuroimage.2010.09.025
https://doi.org/10.1002/ana.24758
https://doi.org/10.1002/ana.24758


impairment patients. Journal of Alzheimer's Disease, 34(3), 741–754.
https://doi.org/10.3233/JAD-111970

Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain's

default network: Anatomy, function, and relevance to disease. Annals

of the New York Academy of Sciences, 1124, 1–38. https://doi.org/10.
1196/annals.1440.011

Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoret-

ical analysis of structural and functional systems. Nature Reviews. Neu-

roscience, 10(3), 186–198. https://doi.org/10.1038/nrn2575
Core Team, R. (2016). A language and environment for statistical computing.

Vienna, Austria: R Foundation for Statistical Computing.

Cullen, B., Moreton, F. C., Stringer, M. S., Krishnadas, R., Kalladka, D.,

Lopez-Gonzalez, M. R., … Muir, K. W. (2016). Resting state connectiv-

ity and cognitive performance in adults with cerebral autosomal-

dominant arteriopathy with subcortical infarcts and

leukoencephalopathy. Journal of Cerebral Blood Flow and Metabolism,

36(5), 981–991. https://doi.org/10.1177/0271678X16636395
Davey, C. G., Pujol, J., & Harrison, B. J. (2016). Mapping the self in the

brain's default mode network. NeuroImage, 132, 390–397. https://doi.
org/10.1016/j.neuroimage.2016.02.022

Dichgans, M., & Leys, D. (2017). Vascular Cognitive Impairment. Circulation

Research, 120(3), 573–591. https://doi.org/10.1161/CIRCRESAHA.

116.308426

Duering, M., Csanadi, E., Gesierich, B., Jouvent, E., Herve, D., Seiler, S., …
Dichgans, M. (2013). Incident lacunes preferentially localize to the

edge of white matter hyperintensities: Insights into the pathophysiol-

ogy of cerebral small vessel disease. Brain, 136(Pt 9), 2717–2726.
https://doi.org/10.1093/brain/awt184

Duering, M., Finsterwalder, S., Baykara, E., Tuladhar, A. M., Gesierich, B.,

Konieczny, M. J., … Dichgans, M. (2018). Free water determines diffusion

alterations and clinical status in cerebral small vessel disease. Alzheimer's &

Dementia, 14, 764–774. https://doi.org/10.1016/j.jalz.2017.12.007
Duering, M., Zieren, N., Herve, D., Jouvent, E., Reyes, S., Peters, N., …

Dichgans, M. (2011). Strategic role of frontal white matter tracts in

vascular cognitive impairment: A voxel-based lesion-symptom map-

ping study in CADASIL. Brain, 134(Pt 8), 2366–2375. https://doi.org/
10.1093/brain/awr169

Dumas, A., Dierksen, G. A., Gurol, M. E., Halpin, A., Martinez-Ramirez, S.,

Schwab, K., … Greenberg, S. M. (2012). Functional magnetic resonance

imaging detection of vascular reactivity in cerebral amyloid

angiopathy. Annals of Neurology, 72(1), 76–81. https://doi.org/10.

1002/ana.23566

Fleiss, J. L. (1986). The design and analysis of clinical experiments. New York,

NY: Wiley.

Fox, J., & Weisberg, S. (2011). An R companion to applied regression (2nd

ed.). Thousand Oaks, CA: SAGE Publications.

Fox, K. C., Spreng, R. N., Ellamil, M., Andrews-Hanna, J. R., & Christoff, K.

(2015). The wandering brain: Meta-analysis of functional neuroimaging

studies of mind-wandering and related spontaneous thought pro-

cesses. NeuroImage, 111, 611–621. https://doi.org/10.1016/j.

neuroimage.2015.02.039

Fu, Z., Caprihan, A., Chen, J., Du, Y., Adair, J. C., Sui, J., … Calhoun, V. D.

(2019). Altered static and dynamic functional network connectivity in

Alzheimer's disease and subcortical ischemic vascular disease: Shared

and specific brain connectivity abnormalities. Human Brain Mapping,

40, 3203–3221. https://doi.org/10.1002/hbm.24591

Guo, C. C., Kurth, F., Zhou, J., Mayer, E. A., Eickhoff, S. B., Kramer, J. H., &

Seeley, W. W. (2012). One-year test-retest reliability of intrinsic con-

nectivity network fMRI in older adults. NeuroImage, 61(4), 1471–1483.
https://doi.org/10.1016/j.neuroimage.2012.03.027

Heinen, R., Vlegels, N., de Bresser, J., Leemans, A., Biessels, G. J.,

Reijmer, Y. D., & Utrecht Vascular Cognitive Impairment study, g.

(2018). The cumulative effect of small vessel disease lesions is

reflected in structural brain networks of memory clinic patients.

NeuroImage: Clinical, 19, 963–969. https://doi.org/10.1016/j.nicl.

2018.06.025

Huneau, C., Houot, M., Joutel, A., Beranger, B., Giroux, C., Benali, H., &

Chabriat, H. (2018). Altered dynamics of neurovascular coupling in

CADASIL. Annals of Clinical Translational Neurology, 5(7), 788–802.
https://doi.org/10.1002/acn3.574

Iadecola, C. (2017). The neurovascular unit coming of age: A journey

through neurovascular coupling in health and disease. Neuron, 96(1),

17–42. https://doi.org/10.1016/j.neuron.2017.07.030
Kellner, E., Dhital, B., Kiselev, V. G., & Reisert, M. (2016). Gibbs-ringing

artifact removal based on local subvoxel-shifts. Magnetic Resonance in

Medicine, 76(5), 1574–1581. https://doi.org/10.1002/mrm.26054

Konishi, M., McLaren, D. G., Engen, H., & Smallwood, J. (2015). Shaped by

the past: The default mode network supports cognition that is inde-

pendent of immediate perceptual input. PLoS One, 10(6), e0132209.

https://doi.org/10.1371/journal.pone.0132209

Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest

package: Tests in linear mixed effects models. Journal of Statistical

Software, 82(13), 1–26. https://doi.org/10.18637/jss.v082.i13.
Lawrence, A. J., Chung, A. W., Morris, R. G., Markus, H. S., & Barrick, T. R.

(2014). Structural network efficiency is associated with cognitive

impairment in small-vessel disease. Neurology, 83(4), 304–311.
https://doi.org/10.1212/WNL.0000000000000612

Lawrence, A. J., Tozer, D. J., Stamatakis, E. A., & Markus, H. S. (2018). A

comparison of functional and tractography based networks in cerebral

small vessel disease. NeuroImage: Clinical, 18, 425–432. https://doi.
org/10.1016/j.nicl.2018.02.013

Lawrence, A. J., Zeestraten, E. A., Benjamin, P., Lambert, C. P.,

Morris, R. G., Barrick, T. R., & Markus, H. S. (2018). Longitudinal

decline in structural networks predicts dementia in cerebral small ves-

sel disease. Neurology, 90(21), e1898–e1910. https://doi.org/10.

1212/WNL.0000000000005551

Liu, X., Chen, L., Cheng, R., Luo, T., Lv, F., Fang, W., … Jiang, P. (2019).

Altered functional connectivity in patients with subcortical ischemic

vascular disease: A resting-state fMRI study. Brain Research, 1715,

126–133. https://doi.org/10.1016/j.brainres.2019.03.022.
Long, J., Shelhamer, E., & Darrell, T. (2015). Fully Convolutional Networks

for Semantic Segmentation. Paper presented at the 2015 IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR).

Murphy, C., Jefferies, E., Rueschemeyer, S. A., Sormaz, M., Wang, H. T.,

Margulies, D. S., & Smallwood, J. (2018). Distant from input: Evidence

of regions within the default mode network supporting perceptually-

decoupled and conceptually-guided cognition. NeuroImage, 171,

393–401. https://doi.org/10.1016/j.neuroimage.2018.01.017

Nordahl, C. W., Ranganath, C., Yonelinas, A. P., Decarli, C., Fletcher, E., &

Jagust, W. J. (2006). White matter changes compromise prefrontal

cortex function in healthy elderly individuals. Journal of Cognitive Neu-

roscience, 18(3), 418–429. https://doi.org/10.1162/08989290677599
0552

Pantoni, L. (2010). Cerebral small vessel disease: From pathogenesis and

clinical characteristics to therapeutic challenges. Lancet Neurology, 9

(7), 689–701. https://doi.org/10.1016/S1474-4422(10)70104-6
Pasternak, O., Sochen, N., Gur, Y., Intrator, N., & Assaf, Y. (2009). Free

water elimination and mapping from diffusion MRI. Magnetic Reso-

nance in Medicine, 62(3), 717–730. https://doi.org/10.1002/mrm.

22055

Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E.

(2012). Spurious but systematic correlations in functional connectivity

MRI networks arise from subject motion. NeuroImage, 59(3),

2142–2154. https://doi.org/10.1016/j.neuroimage.2011.10.018

Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A.,

Church, J. A., … Petersen, S. E. (2011). Functional network organization

of the human brain. Neuron, 72(4), 665–678. https://doi.org/10.1016/
j.neuron.2011.09.006

GESIERICH ET AL. 2639

https://doi.org/10.3233/JAD-111970
https://doi.org/10.1196/annals.1440.011
https://doi.org/10.1196/annals.1440.011
https://doi.org/10.1038/nrn2575
https://doi.org/10.1177/0271678X16636395
https://doi.org/10.1016/j.neuroimage.2016.02.022
https://doi.org/10.1016/j.neuroimage.2016.02.022
https://doi.org/10.1161/CIRCRESAHA.116.308426
https://doi.org/10.1161/CIRCRESAHA.116.308426
https://doi.org/10.1093/brain/awt184
https://doi.org/10.1016/j.jalz.2017.12.007
https://doi.org/10.1093/brain/awr169
https://doi.org/10.1093/brain/awr169
https://doi.org/10.1002/ana.23566
https://doi.org/10.1002/ana.23566
https://doi.org/10.1016/j.neuroimage.2015.02.039
https://doi.org/10.1016/j.neuroimage.2015.02.039
https://doi.org/10.1002/hbm.24591
https://doi.org/10.1016/j.neuroimage.2012.03.027
https://doi.org/10.1016/j.nicl.2018.06.025
https://doi.org/10.1016/j.nicl.2018.06.025
https://doi.org/10.1002/acn3.574
https://doi.org/10.1016/j.neuron.2017.07.030
https://doi.org/10.1002/mrm.26054
https://doi.org/10.1371/journal.pone.0132209
https://doi.org/10.18637/jss.v082.i13
https://doi.org/10.1212/WNL.0000000000000612
https://doi.org/10.1016/j.nicl.2018.02.013
https://doi.org/10.1016/j.nicl.2018.02.013
https://doi.org/10.1212/WNL.0000000000005551
https://doi.org/10.1212/WNL.0000000000005551
https://doi.org/10.1016/j.brainres.2019.03.022
https://doi.org/10.1016/j.neuroimage.2018.01.017
https://doi.org/10.1162/089892906775990552
https://doi.org/10.1162/089892906775990552
https://doi.org/10.1016/S1474-4422(10)70104-6
https://doi.org/10.1002/mrm.22055
https://doi.org/10.1002/mrm.22055
https://doi.org/10.1016/j.neuroimage.2011.10.018
https://doi.org/10.1016/j.neuron.2011.09.006
https://doi.org/10.1016/j.neuron.2011.09.006


Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L., &

Petersen, S. E. (2014). Methods to detect, characterize, and remove

motion artifact in resting state fMRI. NeuroImage, 84, 320–341.
https://doi.org/10.1016/j.neuroimage.2013.08.048

Pruim, R. H. R., Mennes, M., Buitelaar, J. K., & Beckmann, C. F. (2015).

Evaluation of ICA-AROMA and alternative strategies for motion arti-

fact removal in resting state fMRI. NeuroImage, 112, 278–287. https://
doi.org/10.1016/j.neuroimage.2015.02.063

Pruim, R. H. R., Mennes, M., van Rooij, D., Llera, A., Buitelaar, J. K., &

Beckmann, C. F. (2015). ICA-AROMA: A robust ICA-based strategy for

removing motion artifacts from fMRI data. NeuroImage, 112, 267–277.
https://doi.org/10.1016/j.neuroimage.2015.02.064

Raichle, M. E. (2015). The brain's default mode network. Annual Review of

Neuroscience, 38, 433–447. https://doi.org/10.1146/annurev-neuro-
071013-014030

Reijmer, Y. D., Fotiadis, P., Martinez-Ramirez, S., Salat, D. H., Schultz, A.,

Shoamanesh, A., … Greenberg, S. M. (2015). Structural network alter-

ations and neurological dysfunction in cerebral amyloid angiopathy.

Brain, 138(Pt 1), 179–188. https://doi.org/10.1093/brain/awu316

Revelle, W. R. (2019). psych: Procedures for Psychological, Psychometric,

and Personality Research. Retrieved from https://CRAN.R-project.

org/package=psychch.

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Net-

works for Biomedical Image Segmentation. In: Navab, N.,

Hornegger, J., Wells, W., Frangi, A. (eds) Medical Image Computing and

Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. Lecture

Notes in Computer Science, vol 9351. Springer, Cham.

Rosseel, Y. (2012). Lavaan: An R package for structural equation modeling

and more. Version 0.5–12 (BETA). Journal of Statistical Software, 48

(2), 1–36.
Rubinov, M., & Sporns, O. (2010). Complex network measures of brain

connectivity: Uses and interpretations. NeuroImage, 52(3), 1059–1069.
https://doi.org/10.1016/j.neuroimage.2009.10.003

Rubinov, M., & Sporns, O. (2011). Weight-conserving characterization of

complex functional brain networks. NeuroImage, 56(4), 2068–2079.
https://doi.org/10.1016/j.neuroimage.2011.03.069

Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing

rater reliability. Psychological Bulletin, 86(2), 420–428 Retrieved from

https://www.ncbi.nlm.nih.gov/pubmed/18839484

Smallwood, J., Tipper, C., Brown, K., Baird, B., Engen, H., Michaels, J. R., …
Schooler, J. W. (2013). Escaping the here and now: Evidence for a role

of the default mode network in perceptually decoupled thought.

NeuroImage, 69, 120–125. https://doi.org/10.1016/j.neuroimage.

2012.12.012

Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F.,

Behrens, T. E., Johansen-Berg, H., …Matthews, P. M. (2004). Advances

in functional and structural MR image analysis and implementation as

FSL. NeuroImage, 23(Suppl 1), S208–S219. https://doi.org/10.1016/j.
neuroimage.2004.07.051

Song, J., Desphande, A. S., Meier, T. B., Tudorascu, D. L., Vergun, S.,

Nair, V. A., … Prabhakaran, V. (2012). Age-related differences in test-

retest reliability in resting-state brain functional connectivity. PLoS

One, 7(12), e49847. https://doi.org/10.1371/journal.pone.0049847

Spreng, R. N., DuPre, E., Selarka, D., Garcia, J., Gojkovic, S.,

Mildner, J., … Turner, G. R. (2014). Goal-congruent default net-

work activity facilitates cognitive control. The Journal of Neurosci-

ence, 34(42), 14108–14114. https://doi.org/10.1523/JNEUROSCI.

2815-14.2014

Spreng, R. N., Mar, R. A., & Kim, A. S. (2009). The common neural basis of

autobiographical memory, prospection, navigation, theory of mind,

and the default mode: A quantitative meta-analysis. Journal of Cogni-

tive Neuroscience, 21(3), 489–510. https://doi.org/10.1162/jocn.2008.
21029

ter Telgte, A., van Leijsen, E. M. C., Wiegertjes, K., Klijn, C. J. M.,

Tuladhar, A. M., & de Leeuw, F. E. (2018). Cerebral small vessel

disease: From a focal to a global perspective. Nature Reviews. Neurol-

ogy, 14(7), 387–398. https://doi.org/10.1038/s41582-018-0014-y
ter Telgte, A., Wiegertjes, K., Gesierich, B., Marques, J. P., Huebner, M., de

Klerk, J. J., … de Leeuw, F. E. (2019). The contribution of acute infarcts

to cerebral small vessel disease progression. Annals of Neurology, 86,

582–592. https://doi.org/10.1002/ana.25556
ter Telgte, A., Wiegertjes, K., Tuladhar, A. M., Noz, M. P., Marques, J. P.,

Gesierich, B., … de Leeuw, F.-E. (2018). Investigating the origin and

evolution of cerebral small vessel disease: The RUN DMC – InTENse

study. European Stroke Journal, 3(4), 369–378. https://doi.org/10.

1177/2396987318776088

Termenon, M., Jaillard, A., Delon-Martin, C., & Achard, S. (2016). Reliability

of graph analysis of resting state fMRI using test-retest dataset from

the human Connectome project. NeuroImage, 142, 172–187. https://
doi.org/10.1016/j.neuroimage.2016.05.062

Tombaugh, T. N. (2004). Trail making test a and B: Normative data strati-

fied by age and education. Archives of Clinical Neuropsychology, 19(2),

203–214. https://doi.org/10.1016/S0887-6177(03)00039-8
Tuladhar, A. M., Lawrence, A., Norris, D. G., Barrick, T. R., Markus, H. S., &

de Leeuw, F. E. (2017). Disruption of rich club organisation in cerebral

small vessel disease. Human Brain Mapping, 38(4), 1751–1766.
https://doi.org/10.1002/hbm.23479

Tuladhar, A. M., van Dijk, E., Zwiers, M. P., van Norden, A. G., de

Laat, K. F., Shumskaya, E., … de Leeuw, F. E. (2016). Structural net-

work connectivity and cognition in cerebral small vessel disease.

Human Brain Mapping, 37(1), 300–310. https://doi.org/10.1002/

hbm.23032

Tuladhar, A. M., van Uden, I. W., Rutten-Jacobs, L. C., Lawrence, A., van

der Holst, H., van Norden, A., … de Leeuw, F. E. (2016). Structural

network efficiency predicts conversion to dementia. Neurology, 86

(12), 1112–1119. https://doi.org/10.1212/WNL.000000000000

2502

van den Heuvel, M. P., de Lange, S. C., Zalesky, A., Seguin, C.,

Yeo, B. T. T., & Schmidt, R. (2017). Proportional thresholding in

resting-state fMRI functional connectivity networks and consequences

for patient-control connectome studies: Issues and recommendations.

NeuroImage, 152, 437–449. https://doi.org/10.1016/j.neuroimage.

2017.02.005

Van Dijk, K. R., Hedden, T., Venkataraman, A., Evans, K. C., Lazar, S. W., &

Buckner, R. L. (2010). Intrinsic functional connectivity as a tool for human

connectomics: Theory, properties, and optimization. Journal of Neurophys-

iology, 103(1), 297–321. https://doi.org/10.1152/jn.00783.2009
van Duinkerken, E., Schoonheim, M. M., Sanz-Arigita, E. J., RG, I. J.,

Moll, A. C., Snoek, F. J., … Barkhof, F. (2012). Resting-state brain net-

works in type 1 diabetic patients with and without microangiopathy

and their relation to cognitive functions and disease variables. Diabe-

tes, 61(7), 1814–1821. https://doi.org/10.2337/db11-1358
van Wijk, B. C., Stam, C. J., & Daffertshofer, A. (2010). Comparing brain

networks of different size and connectivity density using graph theory.

PLoS One, 5(10), e13701. https://doi.org/10.1371/journal.pone.

0013701

Veraart, J., Fieremans, E., & Novikov, D. S. (2016). Diffusion MRI noise

mapping using random matrix theory. Magnetic Resonance in Medicine,

76(5), 1582–1593. https://doi.org/10.1002/mrm.26059

Veraart, J., Novikov, D. S., Christiaens, D., Ades-Aron, B., Sijbers, J., &

Fieremans, E. (2016). Denoising of diffusion MRI using random matrix

theory. NeuroImage, 142, 394–406. https://doi.org/10.1016/j.

neuroimage.2016.08.016

Wardlaw, J. M., Smith, C., & Dichgans, M. (2019). Small vessel disease:

Mechanisms and clinical implications. Lancet Neurology, 18(7),

684–696. https://doi.org/10.1016/S1474-4422(19)30079-1
Wardlaw, J. M., Smith, E. E., Biessels, G. J., Cordonnier, C., Fazekas, F.,

Frayne, R., … STandards for ReportIng Vascular changes on nEuroim-

aging (STRIVE v1). (2013). Neuroimaging standards for research into

small vessel disease and its contribution to ageing and

2640 GESIERICH ET AL.

https://doi.org/10.1016/j.neuroimage.2013.08.048
https://doi.org/10.1016/j.neuroimage.2015.02.063
https://doi.org/10.1016/j.neuroimage.2015.02.063
https://doi.org/10.1016/j.neuroimage.2015.02.064
https://doi.org/10.1146/annurev-neuro-071013-014030
https://doi.org/10.1146/annurev-neuro-071013-014030
https://doi.org/10.1093/brain/awu316
https://CRAN.R-project.org/package=psychch
https://CRAN.R-project.org/package=psychch
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1016/j.neuroimage.2011.03.069
https://www.ncbi.nlm.nih.gov/pubmed/18839484
https://doi.org/10.1016/j.neuroimage.2012.12.012
https://doi.org/10.1016/j.neuroimage.2012.12.012
https://doi.org/10.1016/j.neuroimage.2004.07.051
https://doi.org/10.1016/j.neuroimage.2004.07.051
https://doi.org/10.1371/journal.pone.0049847
https://doi.org/10.1523/JNEUROSCI.2815-14.2014
https://doi.org/10.1523/JNEUROSCI.2815-14.2014
https://doi.org/10.1162/jocn.2008.21029
https://doi.org/10.1162/jocn.2008.21029
https://doi.org/10.1038/s41582-018-0014-y
https://doi.org/10.1002/ana.25556
https://doi.org/10.1177/2396987318776088
https://doi.org/10.1177/2396987318776088
https://doi.org/10.1016/j.neuroimage.2016.05.062
https://doi.org/10.1016/j.neuroimage.2016.05.062
https://doi.org/10.1016/S0887-6177(03)00039-8
https://doi.org/10.1002/hbm.23479
https://doi.org/10.1002/hbm.23032
https://doi.org/10.1002/hbm.23032
https://doi.org/10.1212/WNL.0000000000002502
https://doi.org/10.1212/WNL.0000000000002502
https://doi.org/10.1016/j.neuroimage.2017.02.005
https://doi.org/10.1016/j.neuroimage.2017.02.005
https://doi.org/10.1152/jn.00783.2009
https://doi.org/10.2337/db11-1358
https://doi.org/10.1371/journal.pone.0013701
https://doi.org/10.1371/journal.pone.0013701
https://doi.org/10.1002/mrm.26059
https://doi.org/10.1016/j.neuroimage.2016.08.016
https://doi.org/10.1016/j.neuroimage.2016.08.016
https://doi.org/10.1016/S1474-4422(19)30079-1


neurodegeneration. Lancet Neurology, 12(8), 822–838. https://doi.org/
10.1016/S1474-4422(13)70124-8

Xie, X., Shi, Y., & Zhang, J. (2017). Structural network connectivity impair-

ment and depressive symptoms in cerebral small vessel disease. Jour-

nal of Affective Disorders, 220, 8–14. https://doi.org/10.1016/j.jad.

2017.05.039

Yeo, I. K., & Johnson, R. A. (2000). A new family of power transformations

to improve normality or symmetry. Biometrika, 87(4), 954–959.
Yi, L., Wang, J., Jia, L., Zhao, Z., Lu, J., Li, K., … Han, Y. (2012). Structural

and functional changes in subcortical vascular mild cognitive impair-

ment: A combined voxel-based morphometry and resting-state fMRI

study. PLoS One, 7(9), e44758. https://doi.org/10.1371/journal.pone.

0044758

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of this article.

How to cite this article: Gesierich B, Tuladhar AM, ter

Telgte A, et al. Alterations and test–retest reliability of

functional connectivity network measures in cerebral small

vessel disease. Hum Brain Mapp. 2020;41:2629–2641. https://

doi.org/10.1002/hbm.24967

GESIERICH ET AL. 2641

https://doi.org/10.1016/S1474-4422(13)70124-8
https://doi.org/10.1016/S1474-4422(13)70124-8
https://doi.org/10.1016/j.jad.2017.05.039
https://doi.org/10.1016/j.jad.2017.05.039
https://doi.org/10.1371/journal.pone.0044758
https://doi.org/10.1371/journal.pone.0044758
https://doi.org/10.1002/hbm.24967
https://doi.org/10.1002/hbm.24967

	Alterations and test-retest reliability of functional connectivity network measures in cerebral small vessel disease
	1  INTRODUCTION
	2  METHODS
	2.1  Study populations
	2.2  Neuropsychological testing
	2.3  MRI acquisition
	2.4  Conventional SVD imaging markers
	2.5  Diffusion imaging based SVD burden marker
	2.6  Resting-state functional MRI processing
	2.7  Network reconstruction and graph analysis
	2.8  Statistical analysis

	3  RESULTS
	3.1  Demographics, cognition and disease burden
	3.2  Cross-sectional functional network analysis
	3.3  Longitudinal analysis and test-retest reliability in sporadic SVD

	4  DISCUSSION
	4.1  Functional network properties mediate the effect of disease burden
	4.2  Test-retest reliability
	4.3  Missing generalization to sporadic SVD
	4.4  Strengths and limitations

	5  CONCLUSION
	ACKNOWLEDGMENTS
	  DATA AVAILABILITY STATEMENT

	REFERENCES


