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Enhanced nonlinear interactions in quantum
optomechanics via mechanical amplification
Marc-Antoine Lemonde1, Nicolas Didier1,2 & Aashish A. Clerk1

The quantum nonlinear regime of optomechanics is reached when nonlinear effects of the

radiation pressure interaction are observed at the single-photon level. This requires couplings

larger than the mechanical frequency and cavity-damping rate, and is difficult to achieve

experimentally. Here we show how to exponentially enhance the single-photon opto-

mechanical coupling strength using only additional linear resources. Our method is based on

using a large-amplitude, strongly detuned mechanical parametric drive to amplify mechanical

zero-point fluctuations and hence enhance the radiation pressure interaction. It has the

further benefit of allowing time-dependent control, enabling pulsed schemes. For a two-cavity

optomechanical set-up, we show that our scheme generates photon blockade for experi-

mentally accessible parameters, and even makes the production of photonic states with

negative Wigner functions possible. We discuss how our method is an example of a more

general strategy for enhancing boson-mediated two-particle interactions and nonlinearities.
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T
he field of quantum cavity optomechanics aims at
synthesizing quantum states of light and motion using
radiation pressure, the fundamental nonlinear interaction

between photons and phonons. Considerable effort is currently
devoted to reaching the true quantum regime, where nonlinear
signatures are observed at the single-photon level1,2. In the
canonical system of a cavity comprising a movable mirror, the
quantum nonlinear regime requires the single-photon coupling
constant g to be comparable to both the mechanical resonator
frequency oM, as well as the cavity-damping rate k (refs 3–6).
Current experiments are still far from this regime.

The simplest strategy to enhance the optomechanical interac-
tion is to coherently drive the cavity. This approach has facilitated
a wide variety of interesting phenomena, ranging from ground-
state cooling of the mechanical resonator7,8 to mechanically medi-
ated state transfer9, and the generation of squeezed light10–12.
The optomechanical interaction is however effectively linearized in
this strong driving regime, and hence there is generally no
enhancement of quantum nonlinear effects. For enhanced
nonlinearity, one can tune the strong drive so that the weak
residual optomechanical nonlinearity becomes resonant13,14. The
quantum regime is then reached for gBk, where the damping rate
of the cavity k can be much smaller than oM. A similar
enhancement of quantum nonlinear effects is found in undriven
two-cavity set-ups15, where the energy difference between the
optical modes is set to render the nonlinear optomechanical
interaction resonant16 or nearly resonant17,18. Enhancement of the
nonlinearity has also been proposed in a transient scheme19 and in
optomechanical arrays20. Experimentally, these approaches are still
not sufficient: for systems in the optimal good cavity regime
(oM4k), the largest achieved couplings g are at most a percent of
k (refs 1,2,21).

In this paper, we present a new method for enhancing the
single-photon optomechanical interaction for systems deep in the
well-resolved sideband regime. It enables true quantum non-
linearity even when the single-photon coupling g is much smaller
than the cavity-damping rate k. Crucially, our scheme results in a
tunable nonlinearity, and only requires additional linear
resources: it does not require a coupling to an auxiliary quantum
nonlinear system (like a qubit22–24). The key idea is to use
detuned parametric driving of the mechanics to increase the
effective scale of mechanical zero-point position fluctuations xzpf.
This amplification directly enhances the coupling strength
(as gpxzpf), while the large detuning allows the mechanics to
still effectively mediate a photon–photon interaction. So far,
parametric mechanical driving has been studied only in the
linearized regime of optomechanics25–27.

Combined with the resonant enhancement possible in two-
cavity set-ups16–18, our novel approach lets one reach the
quantum regime in current state-of-the-art experiments
(gB10� 2k). In addition, by controlling the parametric-drive
amplitude, the nonlinear interaction can be rapidly turned on and
off in time, greatly extending its utility. We stress that due to the
fundamental asymmetry between photons and phonons in the
optomechanical interaction, parametrically driving the cavity28

does not enhance single-photon quantum effects. While such
photonic parametric driving generates an enhanced nonlinearity,
this nonlinearity necessarily involves states with large photon
numbers (that is, squeezed Fock states), reducing its utility
(Supplementary Fig. 1). As we discuss in detail, parametrically
driving the mechanics results in very different physics and a true
enhancement of single-photon nonlinearity.

The approach outlined in our work is a particular example of a
general strategy for enhancing two-particle interactions using
only linear resources. It could thus have applications to
continuous variable quantum information processing, where

strong nonlinearities are crucial for universal control, but often
difficult to achieve29. In our optomechanical system, the
mechanical resonator mediates an effective retarded interaction
between photons3,4,17,30. Our scheme enhances this interaction
by using a parametric drive to manipulate the mechanical
dynamics. Similar improvements can be obtained in any system
where bosonic modes mediate a two-particle interaction: by
parametrically driving the intermediate modes, interactions can
be greatly enhanced (see, for example, phonon-mediated
electron–electron interactions in superconductivity31–33). An
intuitive picture of the physics is provided by the effective
Keldysh action describing the cavity photons in our system. This
approach explicitly connects the nonlinear interaction to the
mechanical Green’s functions, and shows how a large detuning of
the parametric drive is important to get a time-local interaction.

Results
System. We consider an optomechanical (OM) system consisting
of two optical modes coupled to a single mechanical resonator
(MR) via radiation pressure (cf. Fig. 1), where the interaction is of
the form gðây2â1þ ây1â2Þðb̂þ b̂yÞ. Here â1;2 and b̂ are the
annihilation operators of the optical modes 1, 2 and the MR,
respectively. Such three-mode OM systems have been discussed
extensively in the literature16–18 and have been realized
experimentally34–36. As already discussed, if one tunes the
mode splitting o21�o2�o1 to make the optomechanical
interaction resonant, quantum nonlinear effects can be observed
when the OM coupling g is comparable to the damping rate k of
the cavities16–18.

We wish to enhance this generic system so that single-photon
quantum effects are possible even when g � k. To that end, we
introduce a strongly detuned parametric drive to the mechanics.
The generic system Hamiltonian then reads

Ĥ ¼ Db̂yb̂� 1
2 lb̂2þ l�b̂y2
� �

þ g â
y
2 â1b̂e� idt þH:c:

h i
ð1Þ

Here we work in an interaction picture with respect to the free
cavity Hamiltonians and, for the mechanics, with respect to the
pump frequency op. The parameter l is the parametric-drive
strength, D�oM�op and d¼op�o21. We have assumed
opþo21 large enough to neglect highly non-resonant interaction
terms; this approximation is always valid for the parameters
considered in this work (Supplementary Note 2). In what follows,
we always stay in the regime where the MR is stable even without
dissipation, that is, loD. The quadratic part of Ĥ is then
diagonal when expressed in terms of the Bogoliubov mode b̂,
defined as b̂¼b̂ cosh r� b̂ysinh r, with energy Eb¼D/cosh 2r. The
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Figure 1 | Sketch of the system. Tunnelling between two optical cavities

(blue circles) is mediated by a mechanical mode (red ellipse) on which a

large-amplitude, strongly detuned parametric drive is applied to amplify its

X̂ quadrature. This scheme results in an exponential enhancement of the

single-photon coupling constant g, thereby amplifying the resulting effective

photon–photon interaction.
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parameter r is set by the parametric-drive strength, tanh 2r¼ l/D.
Experimentally, detuned parametric drives have already been
employed in optomechanics set-ups37,38, and are particularly
compatible with recent state-of-the-art electromechanical set-
ups39. Large amounts of mechanical parametric amplification has
also recently been obtained in optomechanics (430 dB), albeit in
a non-stationary regime40. In general, the maximum value of
D will be constrained by oM and the desired amount of
amplification, though the form of this constraint depends on
the particular implementation of the mechanical parametric drive
(for example, spring constant modulation or the auxiliary cavity
method, Supplementary Note 3).

Enhanced, tunable nonlinear interactions. The detuning d can
be chosen to select the nature of the nonlinear interaction that is
effectively amplified. Taking d¼ 0 gives rise to the interaction

ĤSRP ¼ Ebb̂
yb̂þ ~g ây2 â1þ ây1 â2

� �
b̂þ b̂y
� �

þ Ĥ0SRP ð2Þ

For large amplification (that is, for e2r � 1) and a state where the
Bogoliubov mode is not strongly squeezed, the term
Ĥ0SRP¼ 1

2 ge� rðb̂� b̂yÞðây2â1� ây1â2Þ can be dropped and ĤSRP
becomes similar to the standard radiation pressure interaction in
the two-cavity OM system16–18. While the effects of Ĥ0SRP are
negligible for the parameters considered in this work, we keep
their contributions in all subsequent numerical results. We now
however have an exponentially enhanced effective single-photon
coupling constant

~g ¼ 1
2 ger � g ð3Þ

This enhancement is a direct consequence of the parametric
drive: it amplifies the vacuum fluctuations of the mechanical
X̂ � b̂þ b̂y quadrature, and thus enhances the coupling of the
cavities to this quadrature. The effective photon–photon
interaction induced by equation (2) is further enhanced
compared with a standard single-cavity OM set-up, as the
Bogoliubov mode energy Eb is also tunable and can be made
much smaller than oM. However, one also needs this
mechanically mediated interaction to be sufficiently time-local;
as shown below, this further constrains Eb4~g; k. The induced
photon–photon interaction thus scales as ~g2=Eb, as opposed to
� g2=oM in a standard OM cavity3,4. We stress that only the
amplification effect of the parametric drive is crucial here. This
means that the mechanics does not have to be in a vacuum-
squeezed state (that is, the Bogoliubov mode can have a thermal
population).

If one instead tunes frequencies so that d � Eb4~g; k, one can
make an additional rotating wave approximation, yielding the
interaction e2r � 1ð Þ

ĤPAT ¼ Eb� d
� �

b̂yb̂þ ~g ây2 â1b̂þ ây1 â2b̂
y� �

ð4Þ

This is a phonon-assisted photon-tunnelling interaction, with an
enhanced interaction strength ~g again given by equation (3). This
form of interaction (without any parametric enhancement) has
been studied in the resonant regime (Eb¼ d)16, as well as in the
detuned regime ~g; ko Eb� d

�� �� � Ebþ d
�� ��� �

17. While tuning the
parametric-drive frequency lets us pick the form of the effective
nonlinear interaction, tuning its amplitude lets us control the
interaction strength. As discussed below, the possibility to
modulate the interaction strength in time is extremely useful to
prepare the b mode in the desired state while preventing
mechanical heating.

We stress that our scheme allows in principle arbitrarily large
nonlinearity enhancements in optomechanics using only addi-
tional linear resources (that is, a large parametric drive that is
strongly detuned). In practice, the achievable enhancement will
be limited by the maximum detuning D possible (needed to
ensure Eb4~g; k) and by the stability of the parametric drive
(one should not cross the instability threshold). Thus, if one
wants to use large r values to enhance the interaction, the
requirement that Eb4k; ~g implies that the system must be deep
in the well-resolved sideband regime. The requirements on the
parametric drive and the achievable amplification r are
summarized in Table 1. For a standard realization of mechanical
parametric driving via the modulation of the spring constant, D is
furthered constrained by oM and the amount of amplification. A
much weaker constraint applies if the parametric drive is realized
using an auxiliary cavity (Supplementary Note 3). Despite these
caveats, our approach represents a practically attractive route
towards single-photon strong coupling, given the difficulty of
engineering systems with an intrinsically large value of g.

Dissipation and mechanical state preparation. In addition to
the coherent dynamics described by equation (1), we take into
account the coupling of the MR and both optical modes to
Markovian baths; these cause the cavities to be damped at a rate
k, and the mechanics at a rate g. In the presence of a parametric
drive, the noise coming from the MR bath is also amplified. In the
weak mechanical dissipation limit ðg� EbÞ, a MR bath of ther-
mal occupancy �nth

M corresponds to a bath for the b mode of
effective temperature �nth

b ¼�nth
M cosh 2rþ sinh2 r. For mechanical

excitations off-resonant with the optical modes, that is,
Eb� d4k; ~g and e2r � 1, the cavities are heated through the
OM interaction at a rate G / g½~ger

�
ðEb� dÞ	2ð2�nth

Mþ 1Þ
(Supplementary Note 4); left unchecked, this heating could
corrupt any nonclassical behaviour induced by the enhanced
single-photon OM interaction. To circumvent amplified noise
from the mechanical bath, a possible strategy is to add an optical
mode to the system, and use it to keep the Bogoliubov mode in its
ground state via dissipative squeezing41–47. This steady-state
technique has recently been implemented experimentally48–50.

Table 1 | Parameter regime needed to get important amplification of the single-photon coupling constant ~g ¼ger=2 using a
parametric drive on the mechanical resonator.

Necessary parameter regime
Good cavity limit k � oM

Large parametric-drive detuning k � D
Strong parametric drive l-D

Optimal enhanced interaction Regime

Requirement for local-in-time interaction
~gopt � g=2ð Þ2=3D1=3 (g/2)2D4k3

~gopt � g
ffiffiffiffiffiffiffiffiffiffiffi
D=2k

p
(g/2)2Dok3

The enhanced single-photon coupling that leads to maximal photon blockade, which corresponds to having an effectively local-in-time photon–photon interaction, is denoted as ~gopt .
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As an alternative to using an additional optical mode, one can
instead take advantage of the tunability of the parametric drive.
Indeed, one can first turn on the parametric drive on a timescale
ton short enough to avoid significant perturbation of the initial
photon state, tono1=k; 1=~g. Then, one can let the system interact
for a time t sufficient to observe nonclassical signatures, t41=~g.
This protocol has to be performed in a total time short enough to
avoid unwanted cavity heating, tonþ to1=G. This is possible
given that G remains � ~g even for large enhancement factors
e2r � 1, as the intrinsic mechanical damping g is extremely low
in state-of-the-art experiments.

In such pulsed schemes, it is crucial that the initial ramp of the
parametric-drive amplitude prepares the b mode reasonably close
to its ground state; this is needed to obtain the radiation pressure
interaction in equation (2) (i.e. the effects of Ĥ0SRP remain
negligible). If the mechanics b̂ remains in its ground state, as it
would occur for an abrupt turn on of the parametric drive, then
the b mode is in a highly squeezed state and this squeezing
completely negates the exponential enhancement of the interac-
tion in equation (2). While an adiabatic protocol would prevent
b-mode squeezing, it would be too slow to prevent important
perturbation of initial cavity states. Indeed, for Eb�k; ~g,
adiabaticity is ensured for turn-on times much longer than
1=Eb� 1=k; 1=~g. An appropriate solution is to use the so-called
‘counterdiabatic’ or ‘transitionless’ driving (TD) protocols51–53.
These require one to control the amplitude and the phase of the
parametric drive, l(t)¼ l0(t)þ il1(t) (cf. Fig. 2a). The term l0(t)
defines the instantaneous Bogoliubov mode of interest through
tanh 2r(t)¼ l0(t)/D, with l(0)¼ 0 and l tonð Þ¼l. The correction
l1 tð Þ¼� _r tð Þ ensures that the MR stays in the ground state of the
instantaneous Bogoliubov mode despite non-adiabatic effects. In
Fig. 2b, we show the evolution of the b mode without nonlinear
interaction (g¼ 0) and for a MR initially in its ground state.
Using TD, the final b mode is prepared in its ground state for

ton � 1=k. Such an ideal preparation is not possible if one just
suddenly turns on l(t).

Standard radiation pressure interaction. We focus in the
remainder of the paper on the case where the relative detuning
d¼ 0, such that the OM interaction is described by ĤSRP,
equation (2); we further take parameters such that Eb4k; ~g to
ensure a sufficiently wide-bandwidth mechanically mediated
photon–photon interaction. This two-photon interaction can be
understood as an effective ‘feedback’ process: the photonic system
first displaces the MR and then this displacement results in an
effective forcing of the photonic system3,4,17,30. The conventional
approach to describing such an interaction uses a polaron
transformation Û¼ expfð~g=EbÞðây2â1þ ây1â2Þðb̂y � b̂Þg on ĤSRP,

leading to the polaron Hamiltonian Ĥpol
SRP¼ÛĤSRPÛy

Ĥpol
SRP ¼ Ebb̂

yb̂�L ây2 â1þ ây1 â2

� �2

ð5Þ

¼ Ebb̂
yb̂�L âys âs� âya âa

� �2
ð6Þ

with L¼~g2=Eb. Equation (6) is written in the symmetric/
antisymmetric photonic basis, defined by the modes
âs;a¼ â1
 â2ð Þ

� ffiffiffi
2
p

. When only one of the photonic modes is
driven (symmetric or antisymmetric)36, the nonlinearity is a Kerr
interaction and the physics of the radiation pressure interaction
in a single-cavity OM system is recovered. As described in refs
3,4, the polaron transformation only diagonalizes the
Hamiltonian of the closed system. When including dissipation
or a drive, the finite displacement of the b mode caused by the
photons has to be accounted for ðhb̂i¼~g=Ebhâys âs� âyaâaiÞ. As a
result, when a photon enters or leaves a cavity, it generates
phonon sideband excitations (that is, excitations of the b mode);
this is analogous to standard Franck Condon physics.

Photon blockade. The photon–photon interaction in
equation (6) can lead to photon blockade, a quantum phenom-
enon characterized by a strong suppression of the probability of
having more than one photon in the cavity together with anti-
bunched photon statistics. It has been thoroughly studied in the
single-cavity set-up3; here we highlight the advantage of
parametrically driving the MR. Photon blockade is typically
quantified by the equal-time intensity correlation function
gð2Þa 0ð Þ¼hâyâyââi=hâyâi2 that drops below the classical bound,
gð2Þa 0ð Þo1. Note that, although gð2Þa 0ð Þo1 can be obtained
with Gaussian states obeying a linear dynamics54, here the
gð2Þa 0ð Þ suppression cannot be reproduced if the interaction
ĤSRP is linearized (Supplementary Fig. 2).

The intensity correlation of the symmetric mode, gð2Þas 0ð Þ, is
calculated in presence of a weak probe drive on âs. We use a
standard quantum master equation to describe the coherent
dynamics governed by ĤSRP and the dissipation to zero-
temperature baths of the b̂ and â1;2 modes. We thus assume
that the MR is either cooled using dissipative squeezing, or has
been prepared in its ground state via the TD protocol. The
resulting gð2Þas 0ð Þ, with and without mechanical parametric drive,
are compared in Fig. 3a. The parametric drive markedly reduces
gð2Þas 0ð Þ, especially in the experimentally accessible regime go0.1k,
for example, for g¼ 0.1k, gð2Þas 0ð Þ � 0:8 ðgð2Þas 0ð Þ � 0:3Þ for 20 dB

(30 dB) of amplification while gð2Þas 0ð Þ � 0:999 without para-

metric drive. In the limit ~g4k, gð2Þas 0ð Þ is minimized for Eb¼2~g,
that is, for a parametric detuning D¼ 1

2 ge3r (cf. insets of Fig. 3).
For 20 dB of amplification and g� 0:1k, this implies D� 100k.
The optimal Eb corresponds to the situation where, in the polaron
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Figure 2 | Initialization of the mechanical state. Fast turn on of

mechanical parametric driving using the TD scheme (see main text).

(a) Time dependence of the parametric driving strength l(t)¼ l0(t)þ il1(t),

corresponding to a Gaussian profile for the instantaneous amplification factor

r(t) [tanh 2r(t)¼ l0(t)/D]. The final value of l(t) corresponds to e2r¼ 20 dB.

The pulse is chosen to ramp up the parametric drive in a time much shorter

than the inverse Bogoliubov-mode energy Eb. (b) Evolution of the mechanical

state, as characterized by the population of the Bogoliubov mode b̂. The solid

red line is for the TD approach, showing preparation of a pure squeezed state

(characterized by no b-mode excitations) in a time � 0:1=Eb. In contrast, a

sudden (step-function) turn on of the parametric drive results in b mode

being far from its ground state (red dashed line). The TD protocol plays a

crucial role in our scheme, as it allows a rapid turn on of the mechanically

mediated photon–photon interaction, without any spurious effects resulting

from a large initial b-mode population. Neither a purely adiabatic protocol nor

a sudden diabatic approach would be sufficient. Here the mechanical

dissipation is g¼ 10�4Eb and g¼0, but the results are unchanged for ga0

and a sufficiently small g.
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picture (cf. equation (6)), the state with two symmetric photons
(|2, 0, 0i) and the corresponding first phonon sideband
ð 2; 0; 1j i¼b̂y 2; 0; 0j iÞ are equally detuned from the one-photon
state (|1, 0, 0i). The intensity correlations are described to a good
approximation by gð2Þas 0ð Þ � 1

�
1þ 0:8 ~g=kð Þ2
	 


. Increasing the
parametric drive is thus, in principle, always beneficial since, for
any coupling gok, there is always an amplification strength r that
leads to a desired gð2Þas 0ð Þo1. For instance, gð2Þas 0ð Þ¼0:5 is obtained
for erE2.2k/g.

Negative Wigner functions. The possibility for time-dependent
control of the photon–photon interaction in our system opens the

door to a wealth of interesting functionalities. Perhaps the most
demanding challenge is the production of photon states exhibit-
ing strongly negative Wigner functions. We show here how this
can be accomplished in our set-up, in a manner that produces
negativity both in the states of intracavity and propagating
photons. Crucially, this can be done using a bare coupling g that
is still smaller than the cavity-damping rate g=k� 0:3ð Þ. We
stress that this kind of negative Wigner function generation
would be essentially impossible without mechanical parametric
driving: not only would one require a g that is at least an order of
magnitude larger, one would need some alternate means for
controlling it in time. Our scheme thus significantly lowers the
level of experimental improvement needed for generating nega-
tive photonic Wigner functions.

One first prepares cavity 1 in a low-amplitude coherent
state using a classical laser drive while cavity 2 remains in
vacuum (Fig. 4a). The mechanical parametric drive is off
during this step, so that there is essentially no photonic
nonlinearity. Once this initial cavity state is prepared, the cavity
drive is turned off, and the photonic interaction is amplified by
ramping up the mechanical parametric drive. The TD
scheme described earlier allows this turn-on step to be
completed in a time ton � 1=k; 1=~g, that is, fast enough to be
effectively instantaneous to the photons. At the same time,
this scheme ensures that the b mode is prepared in its ground
state.

We pick a frequency detuning of the parametric drive d¼ 0
to realize the two-photon tunnelling interaction ĤSRP
(c.f. equation (2)). The effective Hamiltonian Ĥpol

SRP leads (in the
absence of dissipation) to a periodic evolution with the
characteristic time tint¼ 2p/L, with L¼ ~g2=Eb. If L� k
(possible with large enough parametric driving), one finds that
the cavity-1 state is strongly nonclassical at t� tint=4, character-
ized by a Wigner function exhibiting large amounts of negativity,
while the MR practically stays in the a pure squeezed state
(Fig. 4c). This can be easily understood by considering the effects
of the two-photon tunnelling interaction that is mediated by the
mechanics, ây2ây2â1â1þH:c: As cavity 2 starts in vacuum and
cavity 1 has negligible probability for having more than two
photons, this term initially transfers two photons from the first to
the second cavity in a time tint=8. The two-photon Fock state of
cavity 2 then gets weakly populated and its Wigner function is
reminiscent of a low-amplitude squeezed state (Fig. 4e). After an
additional evolution for a time tint=8, these two photons return to
cavity 1, with an overall p-phase shift. This phase shift of the two-
photon component of the cavity-1 state (with respect to the one
photon component) leads to negativity in the Wigner function
(Fig. 4c).

Next, at the special time tint=4 where the cavity-1 state is
maximally nonclassical, the parametric drive is rapidly turned
off. By using the reverse of our TD protocol (cf. Fig. 4g), this can
be done in such a way that the MR returns to its ground state. At
this stage, the nonlinear optomechanical interaction is almost
completely suppressed: not only is its magnitude greatly
diminished, but it is now no longer resonant, such that any
residual effects will scale as g2=oM � k (Supplementary Fig. 3).
Finally, in the ideal case where internal cavity losses are weak,
the nonclassical cavity-1 state is converted perfectly to a
propagating mode in the cavity-1 input–output waveguide
with an exponential profile. We thus have generated a
nonclassical, propagating photonic state, using an under-
lying weak single-photon optomechanical coupling and the
additional linear resource of a parametric drive. We stress that
the ability to rapidly turn the mechanically mediated nonlinear
interaction on and off is crucial to being able to do this
experiment.
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Figure 3 | Nonclassical photon intensity correlations. Intensity correlation

function g
ð2Þ
as

0ð Þ¼hâysâysâsâsi=hâysâsi2, for a mechanical parametric drive

yielding the optomechanical interaction ĤSRP (cf. equation (2)), and for a

weak coherent probe tone applied to the cavities. In a, g
ð2Þ
as ð0Þ is plotted as a

function of g for different values of the amplification factor e2r; in b it is

plotted as a function of e2r for a fixed value of g. For each value of g and r,

the probe frequency and the parametric-drive detuning D are optimized to

minimize g
ð2Þ
as
ð0Þ (D is plotted in insets). The amplitude of the weak probe is

kept fixed. (a) The violation of the classical bound g
ð2Þ
as ð0Þ � 1 is enhanced

in our scheme: the presence of the mechanical parametric drive leads to

significant suppression of g
ð2Þ
as ð0Þ for experimentally accessible couplings

g�0:01k. (b) Mechanical parametric driving brings the optical field deep

into the nonclassical region even for g¼0.05k, leading to non-Gaussian

optical fields (Supplementary Fig. 2). For these results, dissipative

squeezing is used, with a damping rate gb¼0.001k.
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Engineered MR response function. While our treatment
so far is rigorous, the origin of the enhanced OM interaction
may still seem somewhat mysterious. An alternate approach
that provides a more intuitive picture, and that is more easily
generalized to more complex systems, is based on deriving an
effective Keldysh action for the cavity photons. In this
approach, one clearly sees that the mechanical resonator med-
iates a time-non-local effective photon–photon interaction that
depends crucially on the retarded Green’s functions of the
mechanics.

Indeed, by integrating out the mechanical degree of freedom in
the Keldysh action obtained for the interaction ĤSRP, one gets an
exact effective action describing two distinct time-non-local
photon–photon interactions. These interactions can equivalently
be captured by writing the equations of motion for the
cavity fields; for cavity 1, the interaction term in the

equation of motion is

_̂a1 tð Þ ¼
Z þ1

�1
dt02i L t� t0ð Þây2 t0ð Þâ1 t0ð Þâ2 tð Þ

n
þ ~L t� t0ð Þây1 t0ð Þâ2 t0ð Þâ2 tð Þ

o
þ . . .

ð7Þ

with L tð Þ¼ 1
2 g2GR

b tð Þ and ~L tð Þ¼ 1
2 g2 ~GR

b tð Þ. Here GR
b ðtÞ¼� iy tð Þ

h½b̂ tð Þ; b̂y 0ð Þ	i and ~GR
b tð Þ¼� iy tð Þh½b̂ tð Þ; b̂ 0ð Þ	i are, respectively,

the non-interacting diagonal and off-diagonal retarded mechan-
ical Green’s functions. The role of the parametric drive is to
render the off-diagonal element non-zero and amplify GR

b tð Þ and
~GR

b tð Þ. For large amplification, GR
b tð Þ¼~GR

b tð Þ with, in the Fourier
domain

~GR
b o½ 	 ¼ e2r

4
1

o�Ebþ ig=2
� 1

oþEbþ ig=2

� �
ð8Þ

In the limit where Eb � k; ~g, the frequency dependence of the
interaction is not important on the relevant energy scales of the
system and can be neglected. In this case, the situation is similar to
an instantaneous interaction and one recovers the polaron picture
of equation (6). This description clearly shows the general idea: to
amplify the effective photon–photon interaction, one has to
engineer the dynamics, that is, the response function, of the MR.

Discussion
We have studied a two-cavity OM system, showing that
parametrically driving the MR exponentially enhances the
nonlinear OM interaction. One can thus reach the much-coveted
single-photon strong coupling regime starting from an extremely
weak bare interaction g. This allows photon blockade and
non-Gaussian state generation even when g � k. This new
scheme further benefits from its controllability: one can choose
the nature of the nonlinear interaction to amplify as well as
modulate in time its strength. Our work suggests more general
approaches for enhancing bosonic-mediated interactions and
nonlinearities through simple parametric driving.

Methods
Transitionless driving. We give here more details about the ‘counterdiabatic’ or
‘transitionless’ driving protocols51–53. These imply controlling the amplitude and
the phase of the parametric drive, such that l(t)¼ l0(t)þ il1(t), with l(0)¼ 0 and
l tonð Þ¼l. Defining the instantaneous unitary transformation Û tð Þ¼ exp½12 rðtÞ
ðb̂2 � b̂y2Þ	 with tanh 2r(t)¼ l0(t)/D and considering only the parametrically driven
MR, that is, Ĥ given by equation (1) with g¼ 0, the transformed Hamiltonian is

~̂H tð Þ ¼ Û tð ÞĤÛy tð Þþ i _̂U tð ÞÛy tð Þ ð9Þ

¼ D
cosh 2r tð Þ b̂yb̂þ i1

2 l1 tð Þþ _r tð Þ½ 	 b̂y2 � b̂2
� �

ð10Þ

Consequently, starting from the mechanical ground state, a parametric drive
modulated with l1 tð Þ¼� _r tð Þ ensures that (without dissipation) the instantaneous
Bogoliubov mode b̂ tð Þ¼ cosh r tð Þb̂� sinh r tð Þb̂y stays in its ground state. At the
end of the protocol, the desired b mode is thus in a vacuum state. Considering
dissipation, we show in the main text that it is still possible to prepare the final
Bogoliubov mode b̂ in the same state as the initial MR state in a time ton much
faster than any other timescales of the system (Fig. 2).

Quantum master equation. To obtain the gð2Þa correlation function and the
Wigner function of the cavities state, we use a standard quantum master equation
approach55. The coherent dynamics is governed by ĤSRP (cf. equation (2)) and the
coupling of the cavities to zero-temperature baths is described with the
Lindbladians L̂¼kD â1½ 	 þkD â2½ 	, where D â½ 	 � ¼â � ây � 1

2 fâyâ; �g. Concerning the
mechanical Lindbladian, we consider two configurations: either the Bogoliubov
mode is cooled down to its ground state with dissipative squeezing or a TD scheme
is used with a MR initially in a thermal state (population �nth

M). The dissipative
squeezing protocol is modelled with the Lindbladian gbD½b̂	, where gb is the
coupling rate to the engineered reservoir that squeezes the mechanics, and is used
to obtain the results presented in Fig. 3. For these results, we consider a drive on
the cavities, Ĥdrive¼E â1eiod1 t þ â2eiod2 tð ÞþH:c:; the drive is used to probe the
intensity correlations. Meanwhile, the transitionless driving scheme is used in the
protocol that leads to negative Wigner functions of the optical mode (cf. Fig. 4) and
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Figure 4 | Emergence of negative photonic Wigner functions from

enhanced optomechanical coupling. Results illustrating the pulsed protocol

described in the main text, for a mechanical parametric drive yielding the

optomechanical interaction ĤSRP (c.f. equation (2)). The effective photon–

photon interaction strength L ¼~g2=Eb sets the characteristic time

tint¼2p=L. The Wigner function of cavity 1 (2) is plotted in a–c (d–f) at

three characteristic times. Negative (positive) values of the Wigner

functions are plotted in blue (red). (a,d) Initial state, where cavity 1 is

initially displaced by a1¼ 1, cavity 2 is in vacuum. The parametric drive is

then switched on using the transitionless driving scheme with a short turn-

on time ton¼tint=400 and a Gaussian profile for r(t). The corresponding

mechanical amplification strength is plotted in g, where a, b and c refer

respectively to t ¼ 0; t ¼ tint=8 and t ¼ tint=4. (c) Negativity in the cavity-1

Wigner function is maximal at t¼ tint/4. As discussed in the main text (and

shown in g), the parametric drive can then be turned off with the TD

scheme, and the cavity-1 state will be emitted into the cavity-1 input–output

waveguide, resulting in a propagating photonic state with a negative

Wigner function. (g) The MR stays in a squeezed state when the

parametric drive is on tonototint=4ð Þ. Parameters here are g¼0.3k,

mechanical damping g¼ 10�4k and mechanical bath occupancy �nth
M¼0:5;

the parametric-drive strength and detuning are chosen to yield an

amplification factor e2r¼ 30 dB and Eb¼2~g. The resulting Kerr-interaction

strength is then LE2.4k and the rate at which the mechanical noise

heats the cavities is G �k=40. If one reduces the amplification factor

to 25 dB, the negativity is lost; this highlights the crucial role of the

parametric driving.
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corresponds to a Lindbladian g 1þ �nth
M

� �
D½b̂	 þ g�nth

MD½b̂y	. The parametric-drive
strength is turned on continuously, with l(t) derived above, and we consider an
initial coherent state in cavity 1. The density matrix r̂ in these two situations is then
obtained from the quantum master equation

_̂r ¼ � i Ĥ; r̂
	 


þ L̂r̂ ð11Þ
The intensity correlations gð2Þa ð0Þ are calculated from the steady-state value of r̂.
For given values of the coupling g and amplification strength e2r, the detuning D
and the drive frequency are optimized to minimize the intensity correlations. The
results are plotted in Fig. 3.

Effective Keldysh action. As explained in the main text, the non-zero response
time of the MR results in a time-non-local photon–photon interaction. To describe
this physics, we calculate the action of the system in the same interaction picture
used for equations (2)–(4), that is, in a frame where the Hamiltonian is not
explicitly time-dependent. Since the OM system is driven and subject to dissipa-
tion, the Keldysh formalism is well adapted to study this out-of-equilibrium sys-
tem56; a detailed example of the Keldysh formalism in OM systems is presented in
ref. 14. In this approach, each annihilation operator used in the Hamiltonian-based
description is mapped onto two time-dependent fields: a classical (cl) and a
quantum (q) field.

For the cavities (s¼ 1, 2) and MR fields

ays � a�s;cl tð Þ; as;cl tð Þ; a�s;q tð Þ; as;q tð Þ
� �

ð12Þ

by � b�cl tð Þ; bcl tð Þ; b�q tð Þ; bq tð Þ
� �

ð13Þ

the Keldysh action that describes the full OM system studied in the main text
(cf. equation (1)) has the general following form

Stot ¼
X
s¼1;2

Z 1
�1

Z 1
�1

dtdt0 ays tð ÞǦ
� 1

as
t� t0ð Þas t0ð Þ þ by tð ÞǦ� 1

b t� t0ð Þb t0ð Þ
� �

þ gffiffiffi
2
p

X
ijk¼cl;q

zijk

Z 1
�1

dt a�2;i tð Þa1;j tð Þbk tð Þþ c:c:
h i

ð14Þ
Here zijk¼ 1 if there is an odd number of quantum fields and 0 otherwise.

In equation (14), the two first terms represent the Gaussian action that governs
the non-interacting dynamics (that is, g¼ 0). It involves the non-interacting
cavities (MR) Green’s functions Ǧas t� t0ð Þ ½Ǧb t� t0ð Þ	. Here the most general
Green’s functions are 4 4 matrices of the form

Ǧb tð Þ ¼
GK

b tð Þ GR
b tð Þ

GA
b tð Þ 0

 !
ð15Þ

GR
b tð Þ ¼ GA

b � tð Þ
	 
T¼

GR
b tð Þ ~GR

b tð Þ
~GR

b tð Þ
	 
�

GR
b tð Þ

	 
�
 !

ð16Þ

GK
b tð Þ ¼

GK
b tð Þ ~GK

b tð Þ

� ~GK
b � tð Þ

	 
�
GK

b � tð Þ

 !
ð17Þ

The retarded Green’s functions encode information on the single-particle density
of states, and also describe linear response of the system to external perturbations:

GR
b tð Þ ¼ � iy tð Þ b̂ tð Þ; b̂y 0ð Þ

h iD E
ð18Þ

~GR
b tð Þ ¼ � iy tð Þ b̂ tð Þ; b̂ 0ð Þ

h iD E
ð19Þ

The Keldysh Green functions encode information on the distribution functions:

GK
b tð Þ ¼ � i b̂ tð Þ; b̂y 0ð Þ

n oD E
ð20Þ

~GK
b tð Þ ¼ � i b̂ tð Þ; b̂ 0ð Þ

n oD E
ð21Þ

As the action of equation (14) only has linear and quadratic terms in the
mechanical fields, the MR can exactly be integrated out56. The resulting action that
describes only photonic degrees of freedom is

Seff ¼ S0
a1
þ S0

a2
þ g2

8

Z Z
R2

dtdt0 sR t; t0ð Þ þ sK t; t0ð Þ
	 


ð22Þ

sR;K t; t0ð Þ ¼
X

ijkl¼cl;q

zR;K
ijkl sR;K

ijkl t; t0ð Þþ c:c:
h i

; ð23Þ

sR;K
ijkl t; t0ð Þ ¼ a�2;i tð Þa1;j tð ÞGR;K

b t� t0ð Þa2;k t0ð Þa�1;l t0ð Þ

þ a�2;i tð Þa1;j tð Þ~GR;K
b t� t0ð Þa�2;k t0ð Þa1;k t0ð Þ

ð24Þ

Here zR
ijkl¼1 if the interaction term has an odd number of quantum fields and

zR
ijkl¼0 otherwise, while zK

ijkl¼1 if there is both one quantum field between the i, j
components and one quantum field between the k, l component, that is, a total of
two quantum fields, and zK

ijkl¼0 otherwise. The first two terms of equation (22)
represent the non-interacting cavities, the third term describes the coherent time-
non-local photon–photon interaction while the fourth term describes the extra
noise that perturbs the cavities due to their interaction with the MR. As one can
see, the diagonal (off-diagonal) MR Green function GR

b tð Þ ~GR
b tð Þ

	 

mediates a cross

Kerr type interaction (two-photon tunnelling) between the cavities. From this
effective action, it is clear that modifying the MR Green’s functions leads to a
modification of the effective photon–photon interaction.

Finally, following ref. 56, one can show that the interaction term sR in the action
of equation (22) is equivalent, in the cavity effective equation of motion, to the
contribution highlighted in equation (7). A less-elegant alternative approach to
obtain this effective equation of motion is to first solve the Heisenberg–Langevin
equation for b̂. This solution is used to eliminate the b̂ from the cavities’
Heisenberg–Langevin equations. The effective photon–photon interaction, as well
as the additional nonlinear noise term then explicitly appear. Another method is to
derive an effective Markovian quantum master equation for the optical modes by
adiabatically eliminating the MR degrees of freedom55. The validity of the adiabatic
elimination relies on having a strongly damped MR or a weak ratio ~g=Eb . In
contrast, the effective Keldysh action derived here is exact and can thus capture
non-Markovian effects.
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