
Signal Recognition Particle in Human
Diseases
Morgana K. Kellogg, Elena B. Tikhonova and Andrey L. Karamyshev*

Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States

The signal recognition particle (SRP) is a ribonucleoprotein complex with dual functions. It
co-translationally targets proteins with a signal sequence to the endoplasmic reticulum
(ER) and protects their mRNA from degradation. If SRP is depleted or cannot recognize the
signal sequence, then the Regulation of Aberrant Protein Production (RAPP) is activated,
which results in the loss of secretory protein mRNA. If SRP recognizes the substrates but is
unable to target them to ER, they may mislocalize or degrade. All these events lead to
dramatic consequence for protein biogenesis, activating protein quality control pathways,
and creating pressure on cell physiology, and might lead to the pathogenesis of disease.
Indeed, SRP dysfunction is involved in many different human diseases, including:
congenital neutropenia; idiopathic inflammatory myopathy; viral, protozoal, and prion
infections; and cancer. In this work, we analyze diseases caused by SRP failure and
discuss their possible molecular mechanisms.
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INTRODUCTION

Many secretory and membrane proteins undergo co-translational targeting to the endoplasmic
reticulum (ER) governed by the signal recognition particle (SRP). SRP is a ribonucleoprotein
consisting of six protein subunits arranged on a long noncoding RNA called 7SL RNA (Figure 1A).
SRP is divided into two major domains: the Alu (7SL RNA Alu region with SRP9 and SRP14
proteins) which functions in elongation arrest; and the S or signal recognition domain (7SL RNA S
region with SRP19, SRP54, SRP68, and SRP72 proteins). SRP targets proteins using a series of events
called the SRP cycle (Figure 1B Scenario 1). First, SRP recognizes signal sequences of secretory
proteins upon their exposure from the ribosome during translation, leading to elongation arrest.
SRP-ribosome complexes then move to the SRP receptor on the ER membrane. Finally, SRP hands
over the ribosome to the SEC61 translocon and hydrolyzes GTP. SRP leaves the complex, translation
elongation resumes, and the nascent polypeptide chain is translocated through the translocon into
the ER lumen. The SRP cycle is reviewed in detail in (Kellogg et al., 2021). It is estimated that more
than 30% of eukaryotic proteins are secretory or membrane proteins (Uhlen et al., 2015), and many
of themmay be targeted by SRP. Thus, defects in SRP biogenesis and mutations in SRP subunits may
have pathological effects on a large number of these substrates leading to human diseases.

When SRP cannot recognize the signal sequence due to mutations decreasing its hydrophobicity,
it induces a quality control mechanism called the Regulation of Aberrant Protein Production (RAPP)
(Karamyshev et al., 2014; Karamyshev and Karamysheva 2018) (Figure 1B, Scenario 2). We
established that RAPP is pathologically activated by signal sequence defects associated with a
number of human diseases: aspartylglucosaminuria (aspartylglucosaminidase), Norrie disease
(Norrie disease protein), hypoparathyroidism (parathyroid hormone), frontotemporal lobar
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FIGURE 1 | Signal Recognition Particle (SRP) and human diseases. (A) SRP molecular model. The picture was prepared using PyMol software (Schroedinger
2020). The SRP protein subunits are assembled on 7SL RNA (orange, from PDB 1RY1 (Halic et al., 2004)), and composed of Alu domain proteins SRP9 (magenta, from
PDB 1RY1 (Halic et al., 2004)) and SRP14 (teal, from PDB 1RY1 ( Halic et al., 2004)); and S-domain proteins: SRP72 (purple, from PDB 5WRW (Gao et al., 2017)), SRP68
(light blue, from PDB 5WRV and 4P3F (Grotwinkel et al., 2014; Gao et al., 2017)), SRP19 (green, from PDB 1RY1 (Halic et al., 2004)), and SRP54 (dark blue, from
PDB 1MFQ and 1RY1 (Kuglstatter et al., 2002; Halic et al., 2004)). (B) SRP cycle and possible dysregulation. Scenario 1–During normal biogenesis, secretory proteins
are recognized by SRP (orange crescent) during their synthesis on ribosome (violet ovals). SRP binds N-terminal signal sequence of the nascent polypeptide chain of
secretory protein (chain of colored circles), pauses the translation and targets ribosome-nascent chain complex to SRP receptor (dark grey) in ER membrane.
Interactions between SRP and SRP receptor lead to transfer of paused ribosomes to the translocon (brown cylinder) followed by release of SRP and continuation of
protein synthesis. The nascent chain is translocated through the ER membrane into the lumen for further transport and modifications. Scenarios 2–5 are schematic
presentations of events occurring when SRP pathway is defective. Scenario 2–A mutation in the hydrophobic part of the N-terminal signal sequence leads to loss of
interactions with SRP and induction of Regulation of Aberrant Protein Production (RAPP) and secretory protein mRNA degradation. Scenario 3–Lack of SRP subunit
induces RAPP. Pathology of antibodies against SRPmay also lead to interference with functional SRP complex assembly potentially resulting in RAPP. Mutations in SRP
subunits may lead to two possible scenarios–if they interfere with SRP binding to nascent chain, they may potentially induce RAPP (Scenario 4); if mutations in SRP
subunits do not affect SRP recognition but interfere with SRP binding to SRP receptor, they may impact protein targeting (Scenario 5). Possible dysregulation events,
described here, may cause the defects in expression or transport of secretory and membrane proteins in mammalian cells. (C) Clinical SRP54 mutations. Mutations in
SRP54NG domain (marked in red) shown in proximity to the SRP receptor SRα subunit. (D) Clinical SRP68 and SRP72 mutations. Mutations are marked in red, binding
domains of SRP68 and SRP72 are in light blue and purple, respectively. Illustrations in C and D were made by using PyMol software, PDB for SRα is 5L3Q (Wild et al.,
2016), coordinates for SRP proteins and references are presented in (A). References for the mutations are presented in the main text. (E) SRP proteins and 7SL RNA in
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degeneration (granulin), and many others (Pinarbasi et al., 2018;
Karamysheva et al., 2019; Tikhonova et al., 2019; Karamyshev
et al., 2020). RAPP results in mRNA degradation of secretory
proteins that have mutations reducing hydrophobicity of signal
sequences demonstrating a novel type of molecular basis for
multiple diseases (Karamyshev et al., 2020). Interestingly, we
discovered that the loss of the SRP54 subunit of SRP also induces
RAPP (Karamyshev et al., 2014; Pinarbasi et al., 2018; Tikhonova
et al., 2019) (Figure 1B, Scenario 3). These observations suggest
that mutations in SRP54 or other subunits that affect their
functions may also trigger RAPP (Figure 1B Scenario 4).
Dysfunction may also occur when SRP cannot bind to the
SRP receptor (Figure 1B Scenario 5), and therefore the
ribosome cannot reach the translocon. In this work, we
analyze and discuss SRP involvement in multiple types of
diseases, including hematological disorders (congenital
neutropenia, anemia, others), auto-immunity, neurological
diseases, cancer, and possible molecular mechanisms.

Signal Recognition Particle in
Hematological Diseases
SRP54 and SRP72 harbor autosomal-dominant mutations, which
cause different types of hematological diseases (Kirwan et al.,
2012; Bellanne-Chantelot et al., 2018). Patients with SRP54
heterozygous mutations exhibit neutropenia (low number of
neutrophils), transient moderate anemia, frequent infections,
and skeletal abnormalities. Eight different SRP54 G-domain
autosomal dominant mutations were identified, as shown in
Figure 1C (Burwick et al., 2012; Carapito et al., 2017;
Bellanne-Chantelot et al., 2018; Juaire et al., 2021; Schurch
et al., 2021). Some of these mutations (about 13% of patients)
mimic the pathology associated with Schwachman-Diamond
syndrome. Regardless of the mutation locations in G-domain
they dramatically reduce granulocyte differentiation (Bellanne-
Chantelot et al., 2018). Three mutations have been studied in
detail: T115A, T117del, and G226E; they affect SRP54 protein
stability and GTPase activity leading to ER stress, UPR activation
with insufficient XBP1 splicing and aberrant protein translation
(Carapito et al., 2017; Bellanne-Chantelot et al., 2018; Juaire et al.,
2021; Schurch et al., 2021). It was also shown that SRP54 mRNA
expression was reduced in patients’ bone marrow (Carapito et al.,
2017). Although the exact molecular mechanisms behind
congenital neutropenia caused by mutations in SRP54 is still
not completely understood, they may be connected with defects
in protein targeting caused by reduced GTPase activity; or in
some cases by inducing RAPP when SRP54 expression is affected,

though there is no experimental data so far. Each studied
mutation causes a similar pathology–yet the mechanism may
be different in each of the eight mutations. The mutation G226E
may interfere with packing necessary for interaction between
SRP54 and SRα.

Abnormalities in SRP72 also cause a bone marrow pathology.
SRP72 heterozygous mutant patients exhibit deafness and
aplastic anemia, where immature bone marrow cells become
deformed and non-functional (Kirwan et al., 2012). The
SRP72 mutation T355Kfsp19 causes synthesis of a truncated
protein, inhibiting the binding of SRP72 to 7SL RNA and
SRP68. This truncation likely affects export from the nucleus,
ribosome binding, and the ability to target proteins to the ER. The
R207H mutation may disrupt the protein binding interface
between SRP72 and SRP68 or SRP54 impacting the targeting
of proteins to the ER. Also, it is still unknown why R207H and
T355Kfsp19 mutations cause milder forms of aplasia and
myelodysplasia in mice than in humans (D’Altri et al., 2019).
Recently, SRP68 with A50Ffsp52 has also been shown to cause
congenital neutropenia, and likely causes a loss in binding 7SL
RNA and subsequent protein targeting problems (Schmaltz-
Panneau et al., 2021). The SRP72 mutations V53I and Y86C,
and the SRP68 mutation F590L (as shown in Figure 1D) also
inhibit targeting of proteins to the ER and have been observed in
cancer (Gao et al., 2017).

Signal Recognition Particle in Autoimmunity
Autoimmunity also has a link to SRP and protein targeting.
Anti-SRP antibodies are prevalent in immune-mediated
necrotizing myositis (IMNM), an autoimmune
rheumatological disease with a incidence of 17–45% of all
patients with idiopathic inflammatory myopathies (IIM)
(Watanabe et al., 2016). IIM itself has an incidence of 2 in
100,000 (Smoyer-Tomic et al., 2012). IMNM (or anti-SRP
IIM) clinically presents with myopathy, endomysial fibrosis,
and necrosis (Nakashima 2018; Christopher-Stine et al.,
2022). Anti-SRP antibodies are associated with chronic
disease and aggressive and severe myopathy with little
control with immunosuppressants and glucocorticoids
(Targoff 2021; Christopher-Stine et al., 2022). Only four
antibodies against SRP have been associated with
necrotizing myopathy–anti-SRP19, anti-SRP54, anti-SRP72,
and anti-7SL RNA (Satoh et al., 2005; Romisch et al., 2006;
Apiwattanakul et al., 2016; Wang et al., 2016). Anti-SRP19
auto-antibodies are the most common cause of necrotizing
myopathy and are suspected to be a factor in the pathogenesis
of anti-SRP IIM (Wang et al., 2016).

FIGURE 1 | cancer regulation. The tumor suppressor protein p53 controls cellular growth by inducing apoptosis if DNA damage is detected. However, p53 function or
activity is reduced in cancer cells which allows them to propagate. FOXP3, a master regulator of T-cells, and PRC subunits SUZ12 and EZH2 inhibit the transcription of
7SL RNA, preventing its abnormal expression to downregulate p53. In some cancers, the Notch/Myc transcriptional signal cascade positively regulates RNA pol III
(green), which upregulates transcription of 7SL RNA. 7SL RNA binds the 3′-UTR of p53, preventing the interaction with HuR, a positive regulator of p53, and, thus,
inhibiting p53 activity. 7SL RNA also activates RIG-1, which stimulates a type-1 interferon pathway. In cervical cancer, SRP proteins SRP19, SRP54, SRP68 abnormally
attenuate p53. All these events induce cancer progression.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 8980833

Kellogg et al. SRP in Human Diseases

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


The mechanism behind the pathogenesis of anti-SRP
antibody linked IMNM is largely unknown. It has been
demonstrated that anti-SRP54 antibodies significantly
impair protein targeting to ER in vitro (Romisch et al.,
2006). It is still enigmatic how SRP subunits are subject to
immune system destruction. Anti-SRP antibodies are
involved with the complement cascade C3 convertase and
paraneoplastic syndrome, hinting that presentation of SRP
subunits (or fragments thereof) to CD5+ B-cells or CD4+

T-cells may be a factor in pathogenesis (Utz et al., 1998;
Acciavatti et al., 2013; Bergua et al., 2019). However, it is still
unclear whether phosphorylation, caspase cleavage, or some
other mechanism mediates autoimmunity to SRP.

Lastly, SRP19 is involved in another rheumatological disease
called Kashin-Beck. SRP19 is upregulated in Kashin-Beck disease,
an osteochondropathy that causes the death of cartilage cells
(Zhang et al., 2018). Dysfunction could be due to the
dysregulation of SRP19; either too much (in Kashin-Beck) or
too few (in anti-SRP IIM) causes diseases.

Signal Recognition Particle in Neurological,
Neurodegenerative, and Infectious
Diseases
Defects in signal sequence recognition and protein targeting
are also connected with neurodegenerative diseases. Thus,
mutations in granulin signal sequence associated with
frontotemporal lobar degeneration inhibit interaction with
SRP54 leading to granulin mRNA degradation implicating
pathological RAPP activation in the disease (Pinarbasi et al.,
2018; Karamysheva et al., 2019). SRP also plays a role in alpha-
synuclein biogenesis and in Parkinson’s disease, although the
mechanism is still unknown (Hernandez et al., 2021). There
are indications that upregulated SRP9 causes mesial temporal
lobe epilepsy (Hessel et al., 2014). SRP9 and SRP14 are also
major components of stress granules, and interact with
neuronal BC200 (Xiao et al., 2012; Berger et al., 2014).
BC200 is involved in translational regulation in dendrites
(Khanam et al., 2007; Mus et al., 2007; Xiao et al., 2012;
Booy et al., 2021), and dysregulation of BC200 has been
shown in Alzheimer’s patients (Mus et al., 2007). SRP9 has
also been shown to be associated with plaque formation in
Alzheimer’s disease (Li and De Muynck 2021), suggesting
there could be a causal link between BC200, SRP9, and the
pathogenesis of Alzheimer’s disease.

Additionally, 7SL RNA, the scaffold of SRP, is connected to
viral, protozoal, and prion infections. HIV recruits and processes
7SL RNA in cells and packages it in virions as a remnant without
the SRP54 protein component (Keene et al., 2010). The 7SL RNA
interacts with Gag, a viral membrane protein family that mediates
assembly, maturation, and release of virions and nucleocapsid
proteins (Itano et al., 2018). 7SL RNA is also an indicator of an
active trypanosomiasis infection and an attractive target for
inhibition (Chiweshe et al., 2019). Lastly, the prion PrP
interacts and depletes 7SL through RNA-binding domains in
scrapie, a sheep neurodegenerative disease (Gomes et al., 2008;
Lathe and Harris 2009).

Signal Recognition Particle in Cancer
SRP is a factor implicated in cancer progression. Cancer is
marked by ten hallmarks: sustained proliferation, evading
growth suppression, avoidance of the immune system, cell
immortality, inflammation, invasion and metastasis,
angiogenesis, mutability, anti-apoptotic measures, and
deregulation of cell energetics (Hanahan and Weinberg 2011).
Cancer-related mutations and dysregulation of SRP in various
types of cancer have caused a number of these hallmarks.

One of the most common mechanisms of cancer is to
deactivate the tumor suppressor p53; this occurs through
mutations, deletions, or attenuating the protein. p53
suppression protects cancer cells from destruction by apoptosis
and evades the growth checkpoint between G1 and S phases.
SRP19, SRP54, and SRP68 attenuate the p53 protein. It was
shown in cervical cancer that the SRP subunits SRP19, SRP54,
and SRP68 interact with p53 and decrease the number of copies of
p53 available (Abdelmohsen et al., 2014). Additionally, 7SL RNA,
the RNA pol III transcribed structural backbone of SRP, directly
interacts with the 3’ UTR of p53 through putative binding sites
that out-competes binding by HuR, a positive regulator of p53
(Abdelmohsen et al., 2014). However, tumor FOXP3 indirectly
activates p53 by suppressing 7SL activity (Yang et al., 2016),
suggesting a mechanism of interplay between the three proteins.
Further studies have shown breast cancer Polycomb repressive
complex (PRC), with subunits EZH2 and SUZ12, suppresses 7SL
transcription by H3K27 triple methylation at the 7SL promoter
(Liu et al., 2015). Figure 1E illustrates the intricate relationship
between SRP proteins and 7SL RNA and cancer.

SRP dysfunction in cancer can also cause invasion and
metastasis, promotes inflammation, avoids immune system
destruction, and has anti-apoptotic measures. When SRP9 and
SRP14 are absent from the 7SL RNA Alu-domain in triple-
negative breast cancer, it increases metastasis and activates
RIG-1, a pattern recognition receptor usually reserved for viral
infections (Nabet et al., 2017). RIG-1 causes an interferon
response, which increases inflammation and metastasis in
breast cancer, and drives therapy resistance (Boelens et al.,
2014). 7SL RNA’s role in other types of cancer is unknown,
and, likely, the suppression of p53 by 7SL is also driving
tumorigenesis in triple-negative breast cancer.

SRP subunits could be predictive markers of cancer, though
only SRP9 and SRP14 have been investigated as prognostic tools.
Colorectal cancer upregulates adenosine-to-inosine RNA editing
enzymes which edit the mRNA of SRP9 causing upregulation and
indicating SRP9 can be used as a prognostic marker in these
cancers (Rho et al., 2008; Lee et al., 2017). SRP9 has been
discovered as an aberrant fusion gene with epoxide hydrolase
1 in Non-Hodgkin’s lymphoma (Matsumoto et al., 2021). SRP14
is a diagnostic marker in hepatocellular cancer (Li et al., 2021).

DISCUSSION

Multiple human diseases are associated with SRP defects.
Different disorders involve deficiencies/mutations in distinct
SRP protein subunits or in its non-coding RNA. Defects or
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association with diseases are demonstrated for all SRP
subunits suggesting multiple molecular mechanisms for
different disorders. Some of them may be associated with
inefficiency of protein targeting and transport as a
consequence of defects in GTPase activity, decrease in
association with the SRP receptor and translocon, or other
disruptions. Other diseases may be associated with reduced
recognition of signal sequences by SRP, thus triggering the
pathological activation of the RAPP pathway and its
following mRNA degradation of secretory proteins. While
all SRP subunits are important for the complex functioning,
the SRP54 subunit interacts with signal sequences directly,
thus, aberrant SRP54 is the most likely candidate for
activation of RAPP. Since congenital neutropenia involves
mutations in SRP54, it is possible that one of the mechanisms
of disease is the activation of RAPP at least in part (Figure 1B
Scenario 4). However, we would like to acknowledge that
RAPP activation is still speculative since the mutations are
not directly localized in the signal recognition domain of
SRP54. In IMNM, antibodies are attacking the SRP proteins
themself. Thus, if SRP54 is depleted because of degradation
by the immune system, then RAPP could be activated
(Figure 1B Scenario 3). Depletion of SRP19 may affect the
binding interface on 7SL RNA for SRP54, which could induce

RAPP and cause the depletion of secreted proteins in the
extracellular matrix. 7SL involvement in disease is more
esoteric; it may be activating RAPP with its dysregulation
in SRP complex, but 7SL RNA also has SRP-independent
functions and could be causing completely different
mechanisms of disease (Talhouarne and Gall 2018).
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