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Abstract

Measles is characterized by fever and a maculopapular skin rash, which is accompanied by

immune clearance of measles virus (MV)-infected cells. Histopathological analyses of skin

biopsies from humans and non-human primates (NHPs) with measles rash have identified

MV-infected keratinocytes and mononuclear cells in the epidermis, around hair follicles and

near sebaceous glands. Here, we address the pathogenesis of measles skin rash by com-

bining data from experimentally infected NHPs, ex vivo infection of human skin sheets and

in vitro infection of primary human keratinocytes. Analysis of NHP skin samples collected at

different time points following MV inoculation demonstrated that infection in the skin pre-

cedes onset of rash by several days. MV infection was detected in lymphoid and myeloid

cells in the dermis before dissemination to the epidermal leukocytes and keratinocytes.

These data were in good concordance with ex vivo MV infections of human skin sheets, in

which dermal cells were more targeted than the epidermal cells. To address viral dissemina-

tion to the epidermis and to determine whether the dissemination is receptor-dependent, we

performed experimental infections of primary keratinocytes collected from healthy donors.

These experiments demonstrated that MV infection of keratinocytes is mainly nectin-4-

dependent, and differentiated keratinocytes, which express higher levels of nectin-4, are

more susceptible to MV infection than proliferating keratinocytes. Based on these data, we

propose a model to explain measles skin rash: migrating MV-infected lymphocytes initiate

the infection of dermal skin-resident CD150+ immune cells. The infection is subsequently

disseminated from the dermal papillae to nectin-4+ keratinocytes in the basal epidermis. Lat-

eral spread of MV infection is observed in the superficial epidermis, most likely due to the

higher level of nectin-4 expression on differentiated keratinocytes. Finally, MV-infected cells

are cleared by infiltrating immune cells, causing hyperemia and edema, which give the

appearance of morbilliform skin rash.
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Author summary

Several viral infections are associated with skin rash, including parvovirus B19, human

herpesvirus type 6, dengue virus and rubella virus. However, the archetype virus infection

that leads to skin rash is measles. Although all of these viral exanthemata often appear sim-

ilar, their pathogenesis is different. In the case of measles, the appearance of skin rash is a

sign that the immune system is clearing MV-infected cells from the skin. How the virus

reaches the skin and is locally disseminated remains unknown. Here, we combine obser-

vations and expertise from pathologists, dermatologists, virologists and immunologists to

delineate the pathogenesis of measles skin rash. We show that MV infection of dermal

myeloid and lymphoid cells precedes viral dissemination to the epidermal leukocytes and

keratinocytes. We speculate that immune-mediated clearance of these infected cells results

in hyperemia and edema, explaining the redness of the skin and the slightly elevated spots

of the morbilliform rash.

Introduction

Measles virus (MV) is a highly contagious enveloped virus with a negative single-stranded

RNA genome that belongs to the family Paramyxoviridae, genus Morbillivirus [1]. Measles is

associated with fever, cough and a characteristic maculopapular skin rash [2]. MV utilizes two

cellular receptors to infect its target cells: CD150 and nectin-4 [3–5]. CD150 plays a crucial

role during viral entry and systemic dissemination. It is expressed on subsets of immune cells,

including macrophages, dendritic cells (DCs) and lymphocytes. Nectin-4 is crucial for viral

transmission to the next host. It is an adherens junction protein expressed at the basolateral

surface of differentiated respiratory epithelial cells and is involved in the maintenance of epi-

thelial integrity [6, 7].

Following entry of MV into the respiratory tract, the primary infection of myeloid cells

leads to a cell-associated viremia mediated by CD150+ lymphocytes, resulting in systemic dis-

ease [8–10]. During a clinically silent incubation phase of 7 to 10 days, circulating MV-infected

lymphocytes migrate into various tissues and transmit the virus to susceptible tissue-resident

CD150+ immune cells and nectin-4+ epithelial cells. Basolateral infection of respiratory epithe-

lial cells leads to the apical release of nascent virions into the lumen of the respiratory tract

[11–13]. Shedding is associated with the onset of prodromal clinical signs such as fever and

cough [2, 10]. Maculopapular skin rash and conjunctivitis follow a few days later [10] and are

associated with onset of MV-specific cellular immune responses [2]. Patients with a compro-

mised cellular immune system do not develop rash or conjunctivitis, but are at high risk of

developing severe disease [14].

In histopathological studies of human skin biopsies, measles skin rash is mostly character-

ized by infection and necrosis of keratinocytes and mononuclear cells in the epidermis, and

multinucleated giant cells located in proximity to hair follicles and sebaceous glands [15, 16].

It has been postulated that measles rash starts by infection of dermal endothelial cells [17].

However, these cells neither express CD150 nor nectin-4 [18, 19]. Moreover, we have previ-

ously identified MV-infected lymphocytes and DCs in the skin of experimentally infected

non-human primates preceding onset of skin rash [9]. Besides CD150+ and nectin-4+ cells,

other cells that express DC-SIGN or Langerin could play a role in the pathogenesis of measles

skin rash, since DC-SIGN and Langerin facilitate attachment, but not entry, of MV and thus

potentially help in spreading the infection in the skin [20, 21].
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In order to understand the pathogenesis of measles skin rash, it is important to understand

both the architecture of the skin and the spatial organization of cell subsets that express either

CD150 or nectin-4. The dermis is vascularized and contains several subsets of immune cells

that express CD150. These include a network of myeloid DCs and clusters of tissue-resident

CD4+ and CD8+ T cells [22–24]. In contrast to the dermis, the epidermis is not vascularized. It

mainly consists of keratinocytes, with an interdigitating network of Langerhans cells (LCs)

and melanocytes [25]. The epidermis comprises of proliferating keratinocytes at the basal lam-

ina that differentiate towards the skin surface. Keratinocytes express nectin-4 and expression

levels increase during differentiation. It is known that keratinocytes are susceptible to MV

infection [26]. The top layer of the epidermis, the stratum corneum, consists of a layer of dead

keratinocytes called corneocytes. Interestingly, immune cells and nutrients can only reach the

epidermis by migration and diffusion, respectively, from the superficial dermis through the

basal lamina. The pilosebaceous unit begins at the epidermis and extends into the dermis,

where the surrounding tissue is usually better vascularized. Therefore, tissue-resident lympho-

cytes are often seen in close association with these structures [23]. Hair follicles are mainly

constituted of keratinocytes that express high levels of nectin-4 explaining their propensity for

MV infection [27].

During viremia, systemic dissemination of MV is mediated by circulating MV-infected

CD150+ lymphocytes. However, how these cells infiltrate the skin, ultimately resulting in skin

rash, remains largely unknown. In this study, we aimed to combine existing and novel infor-

mation on MV replication in different target cells in the skin to produce one coherent model

for the pathogenesis of measles skin rash. We demonstrate that MV infection of lymphoid and

myeloid cells in the superficial dermis precedes dissemination to epidermal leukocytes and

keratinocytes, which is followed by onset of the typical skin rash.

Results

MV skin infection precedes onset of rash in experimentally infected NHPs

We retrospectively analyzed data from cynomolgus macaques (Macaca fascicularis) inoculated

with recombinant MV (rMV) strains expressing enhanced green fluorescent protein (EGFP)

[28]. Fluorescent spots, indicating the presence of MV-infected cells, became detectable in the

skin around 8 days post-inoculation (dpi), although skin rash only became prominent between

11 and 13 dpi (Fig 1) [29]. We previously reported that by 9 dpi, i.e. before the onset of rash,

lymphocytes and DCs were the predominant infected cell types in the skin [9].

Phenotypic analysis of MV-infected cells in NHP skin tissues

EGFP+ skin tissues were collected from the experimentally infected NHPs sacrificed at 9, 11

and 13 dpi. We performed immunohistochemistry on these formalin-fixed and paraffin-

embedded skin samples and showed co-localization of EGFP and MV nucleoprotein (N) sig-

nals in sequential skin sections, which indicated the presence of MV-infected cells. Representa-

tive images of MV-N+ cells observed at 9, 11 and 13 dpi are shown in Fig 2A–2F. At 9 dpi, the

infected cells were predominantly located in the superficial dermis and in some areas the infec-

tion had spread to the epidermis (Fig 2A and 2D). The infection progressed over time and at

11 dpi more MV-N+ cells could be found in the dermis and epidermis, most especially around

the hair follicles and sebaceous glands (Fig 2B and 2E). By 13 dpi, MV-N+ cells were no longer

found in the dermis and could only be found in hair follicle or superficial epidermis (Fig 2C

and 2F). Edema in the dermis and epidermis could be observed at this time point. Initially,

infection in the epidermis was predominantly observed as single infected cells near dermal
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papillae and later progressed into multiple-cell infection and, rarely, syncytia (S1 Fig) between

9 and 11 dpi.

To assess the location and the phenotype of MV-infected cells in the skin, we performed

dual-labeling indirect immunofluorescence (IIF) on these sequential skin sections. CD45+

leukocytes were present in the superficial dermis, most especially in or around blood ves-

sels, hair follicles and sebaceous glands and, to a lesser degree, in the epidermis. Some of

these CD45+ leukocytes were CD3+ T cells that were located in the reticular dermis, while

some others were S100A8/A9-complex+ (MAC387) macrophages that were abundantly

Fig 1. The appearance of MV-infected cells in the skin precedes the appearance of rash. Macroscopic evaluation of MV infection in two cynomolgus

macaques: animal #38 (a–f) and animal #37 ((g–l), table S1 in [28]). (a–c; g–i) Normal light: Rash was prominent at 11 dpi. (d–f; j–l) Fluorescence: MV-infected

sites (fluorescence) in the skin preceded the rash at 8 dpi and diminished around 13 dpi. Dpi: days post-inoculation.

https://doi.org/10.1371/journal.ppat.1008253.g001
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present in the superficial dermis, especially in or around the blood vessels, hair follicles or

sebaceous glands. CD31+ endothelial cells of the blood vessels were exclusively detected in

the dermis. In contrast, cytokeratin+ cells were exclusively detected in the epidermis and

pilosebaceous units.

MV-EGFP+ cells could be found as early as 9 dpi in the dermal papillae. These were pre-

dominantly leukocytes (Fig 3A), mostly T cells or macrophages (Fig 3B and 3C). Some MV-

infected cells were present in or surrounding blood vessels (Fig 3D). In some areas in which

the infection was more progressed the infection had spread to the epidermis, even into the

most superficial layers (Fig 3E). The MV-infected leukocytes were still detectable in the der-

mis on day 11, sometimes in close proximity to uninfected leukocytes, mostly macrophages

(Fig 3F–3H). These cells clustered close to the dermal papillae, where many blood vessels

could be found (Fig 3I). Meanwhile, the infection in the epidermis had progressed laterally

and apically (Fig 3J). We also observed keratinocytes at the site of infection expressing

S100A8/A9 complex (Fig 3H). By 13 dpi, the dermis was almost clear of MV-infected cells

and was filled with white blood cell infiltrates, mostly macrophages (Fig 3K–3M). No MV-

infected endothelial cells were observed at this time point (Fig 3N). Infection in the epider-

mis had mostly resolved, although remaining infected follicular keratinocytes could still be

detected (Fig 3O). Split and merged multicolor fluorescent images of the insets in Fig 3A–

3E are available in S2 Fig.

Fig 2. Infection of NHP skin starts in the dermis and spreads to the epidermis. Representative images of immunohistochemical staining of MV-

infected macaque skin biopsies collected at 9 (a and d), 11 (b and e) and 13 (c and f) dpi. (a and d) At 9 dpi, most MV N+ cells could be found in the

dermal papillae, although a few single infected cells were detected in the basal layer of the epidermis. (b and e) At 11 dpi, prominent infection was

observed near hair follicles and sebaceous glands (arrow). The infection in the epidermis had progressed further in the suprabasal layers (arrows). (c

and f) The infection in the dermis was no longer detected at 13 dpi. The infection in the epidermis had reached the most superficial layers. Scale bars

of (a) and (c): 50 μm; Scale bar of (b): 100 μm; Scale bars of (d–f): 20 μm. Dpi: days post-inoculation.

https://doi.org/10.1371/journal.ppat.1008253.g002
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Fig 3. Phenotype of MV-infected cells in the dermis and epidermis throughout the course of infection. Serial

sections of skin (top to bottom) of three macaques (left to right) euthanized at three different time points (indicated at

the top). The sections were double-stained with antibodies to EGFP (green) and several cell-specific markers (red), as

indicated on the left of each row. Dashed lines indicate the basement membrane that separates the dermis (Dm) and
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Dynamics of MV infection in NHP skin tissues

To assess the dynamics of MV infection and the subsequent clearance in the skin, we counted

the number of EGFP+ cells in five focal infection sites in the NHP skin tissues (n = 2 animals

per time point) at different time points after infection (S3 Fig). The number of MV-infected

dermal cells decreased at 11 and 13 dpi. In contrast, the number of infected epidermal cells

peaked at 11 dpi before decreasing at 13 dpi. We also counted the number of CD45+ leukocytes

in the dermis and the epidermis of these five focal infection sites, and found that these

increased from 9 to 13 dpi. In the epidermis, the number of CD45+ cells increased at 11 and 13

dpi, indicating infiltration into this tissue to clear the infected cells during this period. How-

ever, we observed high variation in numbers of infected cells in and around foci of infection,

both within and between animals.

Variation in the progression of infection at different sites suggested that time was not the

only factor in the pathogenesis of MV skin rash. The location in which MV-infected cells were

found and the density and mobility of susceptible neighboring cells at that site also seemed to

play an important role. We observed MV-infected leukocytes in dermal papillae or close to the

basal epidermis (Fig 4A). MV-infected T cells could often be found near the dermal papillae

around 9 and 11 dpi, but became scarce at 13 dpi and could only be observed in the reticular

dermis. At this late time point, the MV-infected T cells were found surrounded by uninfected

T cells (Fig 4B). Close interaction could also be observed among MV-infected cells with

HLA-DR+ antigen-presenting cells (APCs), for example through a long, EGFP+ dendrite (Fig

4C). We observed MV-infected cells surrounded by or in close proximity to endothelial cells

(Fig 4D) at 9 dpi at the site where the infection had progressed further. Very rarely, in the

same site, we found MV-infected CD31+ endothelial cells near other infected cells (Fig 4E).

We also observed MV-infected cells in the dermis that were negative for markers of leukocytes,

APCs, endothelial or epithelial cells and appeared to be spindle- or dendritic-like cells (Fig 4F).

Multicolor fluorescent images of dermis of experimentally infected NHPs are available as split

and merged images in S4 Fig.

In the epidermis, a number of MV-infected leukocytes were observed at 11 dpi, accompa-

nied by infiltration of uninfected leukocytes to the site of infection (Fig 4G–4I). Many of these

were macrophages (S4). Infrequently, some of these MV-infected leukocytes were negative for

keratinocyte, macrophage and T cell markers (Fig 4J and 4K). These cells were found in close

proximity to keratinocytes, which were also positive for MV infection (Fig 4K), although kera-

tinocyte infection could still be detected despite the absence of MV-infected leukocytes in the

the epidermis (Ep). MV-infected cells (green) could be observed in the dermis at 9 dpi. The progression of the

infection in the same skin tissue at this time point differed between different sites: either MV-infected cells were found

strictly in the dermis or the infection had spread to the epidermis. (a–e) Representative sequential images of MV

infection that had progressed to the epidermis at 9 dpi. (a) MV-infected CD45+ leukocytes (inset, arrow) could be

detected in the superficial dermis. (b) Some of these MV-infected leukocytes were CD3+ T cells, which were present in

the dermis, mostly in reticular dermis, with speckled GFP signal in their cytoplasm (inset, arrow). (c) MV-infected

S100A8/A9 complex+ (MAC387) macrophages (inset, arrow) were also found abundantly in the superficial dermis. (d)

MV-infected cells in the dermis were often found in or around CD31+ blood vessels (inset). (e) In the epidermis, MV-

infected cells were mostly keratinocytes (inset, arrow), although MV-infected non-keratinocyte cells (inset, asterisk)

were observed in the basal epidermis. (f–j) Representative sequential images of MV infection at 11 dpi. (f) MV-infected

leukocytes (inset, arrow), which were (g) T cells in the dermal papillae (inset, arrow), were in close proximity to (h)

uninfected macrophages (inset) and (i) blood vessels. (j) The infection in keratinocytes had progressed apically and

laterally. MV-infected keratinocytes and the surrounding uninfected keratinocytes expressed S100A8/A9 complex at

this time point. (k–o) Representative sequential images of MV infection at 13 dpi. MV-infected cells had mostly

disappeared from the dermis at 13 dpi. (k) The dermis and epidermis were filled with leukocytes. (l) No T cells could

be observed in the dermal papillae. (m) Macrophages were present abundantly in this area. (n) At this time point, no

MV-infected endothelial cells could be observed in the dermis despite their close proximity to (o) some MV-infected

keratinocytes in the hair follicle (HF) area. Scale bar: 50 μm. Dpi: days post-inoculation.

https://doi.org/10.1371/journal.ppat.1008253.g003
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Fig 4. Location of MV-infected cells and interaction with proximal cells. (a–f) MV-infected cells in the dermis and (g–l) in the

epidermis. Dashed line indicates the basement membrane that separates the dermis (Dm) and the epidermis (Ep). (a) MV-infected

CD45+ leukocytes (arrow) in the dermis, especially near the basal layer of the epidermis. (b) MV-infected CD3+ T cells (speckled green),

although mostly found in the dermal papillae at 9 and 11 dpi, were found in reticular dermis at 13 dpi, surrounded by uninfected T cells.
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observed two-dimensional plane (Fig 4L). Multicolor fluorescent images of epidermis of

experimentally infected NHPs are available as split and merged images in S5 Fig.

Ex vivo MV infection of human skin sheets results in higher infection levels

in the dermis than in the epidermis

Based on the observations in NHPs, we hypothesized that the dermis is the primary target site

for MV skin infection. To test this hypothesis, we ex vivo inoculated human full skin or enzy-

matically-separated epidermal and dermal sheets with rMV based on a wild-type MV strain

Khartoum-Sudan (KS) expressing the fluorescent reporter protein Venus from an additional

transcription unit in position 3 of the viral genome (rMVKSVenus(3)) [30]. We observed that

Venus+ cells could be detected by inverted laser scanning microscopy as early as 2 dpi, with

higher infection levels in the dermis than the epidermis (Fig 5A). The percentages of emigrant

MV-infected cells in the supernatants of the skin sheet cultures were determined by flow cytom-

etry. In accordance with the observation of Venus+ cells by microscopy, the percentages of MV-

infected emigrant cells were higher in the dermis and full skin than in the epidermis (Fig 5B).

To confirm this observation, we enzymatically-separated the MV-inoculated full skin into

epidermis and dermis at 4 dpi. The separated sheets were subsequently cultured individually

up to 7 dpi. The percentage of emigrant MV-infected cells in the supernatants of these sepa-

rated skin sheet cultures were determined by flow cytometry. We observed a trend towards

higher percentages of MV-infected emigrant cells in supernatants of the separated dermis

sheets as compared to their epidermal counterparts (Fig 5C).

Previous studies showed that mature LCs are susceptible to MV infection and Langerin can

act as an attachment receptor, but not entry receptor, for the virus [21]. To determine whether

LCs play a role in MV epidermal infection as initial target cells, we performed dual-labeling

IIF on human epidermal sheets from healthy donors infected with rMVKSVenus(3). We found

that despite the abundant presence of LCs in the epidermal sheets, none of these were Venus-

positive (S6 Fig).

Human primary keratinocytes are susceptible to in vitro MV infection in a

nectin-4-dependent manner

We investigated the susceptibility and the permissiveness of human primary keratinocytes

from two healthy donors to in vitro MV infection. In agreement with previously published

data, nectin-4 expression on the cell surface was highest in differentiated keratinocytes, as

demonstrated by flow cytometry (S7 Fig) [27]. To determine whether the proliferating and dif-

ferentiated keratinocytes were susceptible to MV infection, we inoculated them with

rMVKSVenus(3) or a strain engineered to be unable to recognize nectin-4 (the ‘nectin-4-blind

(N4b)’ strain rMVKS-N4bEGFP(3)) [11] at a multiplicity of infection (MOI) of 1. After 48

hours, we observed higher frequencies of fluorescent cells in differentiated than in the prolifer-

ating cells (Fig 6A). Infection of keratinocytes with the nectin-4-blind MV resulted in low

numbers of single infected cells.

(c) MV-infected cell in the dermis interacted with HLA-DR+ APC, forming a long EGFP+ dendrite (arrow). (d) More often, MV-

infected cells (arrow) located around or in blood vessels and, (e) rarely, MV-infected endothelial cells (arrow) could be found together

with those cells. (f) Spindle- or dendritic-like MV-infected cells were negative for all tested cell markers. (g–i) In the epidermis, MV-

infected leukocytes could be found since 11 dpi, either interacting with (g) other leukocytes or (h) other MV-infected epidermal cells. (i)

Leukocytes appeared to infiltrate the MV-infected cells in the epidermis. (j–k) Serial slides of MV-infected epidermis at 13 dpi. (j) MV-

infected leukocytes that were (k) negative for cytokeratin marker could be found in the basal layer of the epidermis. These cells were in

close proximity to infected keratinocytes (k). (l) MV-infected keratinocytes in the absence of other infected cells. Scale bars of (a–d), (f),

(g) and (j–l): 10 μm; Scale bars of (e) and (h–i): 20 μm. Dpi: days post-inoculation.

https://doi.org/10.1371/journal.ppat.1008253.g004
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To assess whether the infected keratinocytes also produced cell-free virus and were thus

capable of spreading the infection, the supernatant of the MV-infected keratinocytes was col-

lected and the titer of cell-free virus in the supernatant was assessed [31]. Cell-free MV was

detectable in the culture supernatant of the infected proliferating and differentiated keratino-

cytes. Virus titers in supernatants of differentiated keratinocytes were higher than those in

supernatant of proliferating keratinocytes (Fig 6B).

Discussion

The pathogenesis of MV skin rash is not well understood. Here, we aimed to identify the cell

types involved in MV infection of skin, and the kinetics of viral dissemination in relation to

onset of rash. Based on our findings, combined with previously published observations, we

Fig 5. Ex vivo MV infection of epidermis, dermis or full skin sheets. (a) Representative images of MV-infected cells in the dermis and the epidermis. MV+ cells

(green) were detectable as early as 2 dpi in the epidermis and were present in higher numbers in the dermis than in the epidermis. (b) Percentages of emigrant MV-

infected cells in supernatants of ex vivo cultured epidermis (Ep), dermis (Dm) or full skin (FS) (n = 3 donors) at 2, 4 and 7 dpi, as determined by flow cytometry. (c) Ex
vivo MV-inoculated full skin sheets were kept in culture up to 4 dpi before enzymatically separated into epidermal and dermal sheets. These sheets were further kept in

individual culture up to 7 dpi. The percentages of emigrant MV-infected cells from the supernatants of the separated epidermal and dermal sheets were determined by

flow cytometry at 7 dpi. All experiments were performed in triplicate. Dpi: days post-inoculation. �, P< 0.05.

https://doi.org/10.1371/journal.ppat.1008253.g005
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Fig 6. Susceptibility and permissiveness of proliferating and differentiated human primary keratinocytes to in
vitro MV infection. (a) Higher numbers of infected keratinocytes (green) were detected in differentiated than in

proliferating keratinocyte cultures, regardless of MV strain. NCI-H358: human broncho-alveolar carcinoma cell line;

BLCL: EBV-transformed B-lymphoblastoid cell line. Scale bars: 200 μm. (b) Differentiated keratinocytes produced

higher number of infectious cell-free virus than proliferating keratinocytes. All experiments were done in duplicate.

HD1 or HD2: primary keratinocyte culture from healthy donor 1 or 2; KS: rMVKSVenus(3); KS-N4b: rMVKS-N4bEGFP

(3).

https://doi.org/10.1371/journal.ppat.1008253.g006
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postulate a model that describes the progression of MV skin infection and the development of

measles rash (Fig 7). The model takes viral tropism, location, interaction and motility of the

susceptible cells, as well as the virus-specific immune responses into account. MV-infected

cells enter the superficial dermis through the blood vessels and spread the infection to the tis-

sue-resident dermal T cells, APCs and spindle- or dendritic-like cells around 7 days after infec-

tion. The infection progresses several days later to the adjacent epidermal areas, where the

virus is transmitted to the basal keratinocytes. As basal keratinocytes differentiate apically to

the suprabasal layers and their nectin-4 expression increases, the virus spreads apically and lat-

erally and the infected keratinocytes subsequently form syncytia. Infection of dermal endothe-

lial cells was very rare, but not completely absent. We speculate that the infection is

subsequently cleared around 13 days after infection by infiltrating immune cells, which first

migrate into the dermis and later into the epidermis.

The dermis contains several potential target cells for MV infection. Due to vascularization,

the dermis is filled with CD150+ lymphoid and myeloid cells that traffic through or reside in

the tissue. CD4+ and CD8+ T cells localize and move differently in the skin [32]. Slow-moving

CD8+ resident memory T cells (TRM) reside in the epidermis and hair follicles, while highly

motile CD4+ effector memory T cells (TEM) migrate into the dermis and recirculate systemi-

cally [33]. We detected MV-infected T cells in the dermis from 9 dpi onward, but never in the

epidermis at that time point. Previous studies have shown that CD4+ TEM cells are highly sus-

ceptible to MV infection [28, 34]. Interaction of MV-infected T cells with skin-resident APCs

Fig 7. Model for the pathogenesis of measles skin rash. During viremia, MV-infected T cells and macrophages migrate to the dermis via the capillaries and interact with

(a) tissue-resident lymphoid and myeloid cells and epidermal LCs residing near the basal lamina. This interaction leads to the infection of surrounding CD150+ tissue-

resident immune cells and nectin-4+ epithelial cells. Alternatively, MV-infected T cells and macrophages migrate in close proximity to: (b) the hair follicle or (c) the

sebaceous gland via the capillary, where they infect an aggregate of tissue-resident T cells and macrophages, and further spread the infection to nearby keratinocytes and

LCs. Infection of basal keratinocytes leads to lateral and apical spread of the virus to the superficial layers of the epidermis. Several days later, (d) hyperemic responses

allow the recruitment of MV-specific CD8+ cytotoxic T cells and macrophages, resulting in (e) recognition and (f) clearance of the infected cells. Hyperemia and

subsequent edema are the histological correlates of maculopapular erythematous measles rash. The time range given at the top of the figure is based on observations from

experimentally infected NHPs. Dpi: Days post-infection.

https://doi.org/10.1371/journal.ppat.1008253.g007
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may result in further cutaneous spread. T cells have been described in human skin to cluster

with APCs around appendages, such as hair follicles [35–37]. We did not observe such T cell

clusters in NHPs, most likely due to T cell depletion that occurs systemically and peaks around

9 dpi [28]. Whether this depletion leads to the loss of pre-existing skin-resident memory T

cells remains to be studied. Additionally, we and others have observed MV-infected T cells

and APCs around hair follicles and sebaceous glands [15, 38], which are surrounded by nec-

tin-4+ epithelial cells [27]. The close proximity of these infected cells to the basal keratinocytes

may lead to the spread of MV infection from the dermis to the epidermis.

The epidermis consists predominantly of keratinocytes, which express nectin-4 and are sus-

ceptible to MV infection [26]. We were not able to demonstrate the expression of nectin-4 in

the NHP epidermis due to the lack of cross-reactive antibodies. However, in accordance with a

previous study, we show primary human keratinocytes express nectin-4 and its expression is

upregulated upon differentiation [27]. We show here that nectin-4 expression plays a role in

the susceptibility of keratinocytes to in vitro MV infection: higher expression of nectin-4

resulted in higher susceptibility. We also inoculated primary keratinocytes from a patient

affected by ectodermal dysplasia-syndactyly syndrome (EDSS1, OMIM 613573), an autosomal

recessive disorder caused by mutations in the nectin-4 encoding gene PVRL4 [27]. We

observed that despite the strongly reduced expression of nectin-4 in this patient, the keratino-

cytes were still susceptible and permissive to in vitro MV infection, albeit at lower levels com-

pared to the healthy donors (S8 Fig).

Due to the focal nature of MV skin infection, the progression of MV infection in the epider-

mis varied in different sites in experimentally infected NHPs. At 9 dpi, epidermal infection

was predominantly observed as single infected cells in the basal epidermis. However, in some

sites where the progression of the infection had developed further in the suprabasal epidermis

into multiple-cell infection and syncytia. Interestingly, we also observed expression of S100A8/

A9 complex (MAC387) from 11 dpi and 13 dpi in the epidermis of experimentally infected

NHPs. Although the expression of S100A8/A9 complex is often restricted to myeloid cells, its

induction has also been described in hyperproliferative and differentiated keratinocytes, such

as during wound healing or in psoriasis lesions [39, 40]. Although MV infection in the epider-

mis could be observed as early as 9 dpi, the expression of S100A8/A9 complex by keratinocytes

was only observable at 11 and 13 dpi. Moreover, this complex was expressed not only by MV-

infected cells, but also the surrounding keratinocytes. In uninfected areas at 11 and 13 dpi, the

keratinocytes were negative for S100A8/A9 complex. Altogether, these observations suggest

that the expression of S100A8/A9 complex was induced by focal MV infection in the epider-

mis. Focal hyperkeratosis and parakeratosis have been reported in measles skin biopsies [15].

Whether the expression of this complex leads to hyperproliferation and differentiation of kera-

tinocytes in an MV-infected site, and subsequently leads to measles-associated hyperkeratosis

and parakeratosis remains to be determined.

Beside the keratinocytes, another cell type of interest in the epidermis is the LC, a subset of

DCs. Although we could not observe MV-infected LCs in our human skin ex vivo model, LCs

are known to be susceptible to MV infection [21, 41, 42]. The activation status of the cells also

determines their susceptibility, since immature LCs are not susceptible to MV infection, while

mature ones are [21]. This offers an explanation to why the LCs were not susceptible to MV

infection in our ex vivo model: the cells might still have been in their immature state. We were

not able to identify LCs in cynomolgus macaque skin tissues due to the unavailability of cross-

reactive antibodies. The susceptibility of LCs to MV infection in vivo and their role in the path-

ogenesis of measles skin rash remain to be determined. Additionally, LCs express Langerin

that can act as an attachment, but not entry, receptor to MV [21] and thus can indirectly intro-

duce MV infection to the epidermal keratinocytes by acting as an attachment hub for the virus
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from the dermis. Although we were able to clearly identify APCs and T cells in the dermis, we

were not able to detect HLA-DR+ or CD3+ cells in the epidermis.

DCs and macrophages occupy the dermis as professional APCs and phagocytes, respec-

tively. Macrophages are present in high numbers and are associated with blood or lymphatic

vessels, while dermal DCs have been found to form clusters with T cells, suggesting the pres-

ence of an inducible structure of macrophages, DCs and T cells that may function as a skin-

associated lymphoid tissue [43, 44]. In the respiratory tract, DCs and macrophages act as Tro-

jan horses during MV infection by spreading the virus to the lymphocytes in draining lymph

nodes [8, 20, 45–47]. Migrating or patrolling MV-infected DCs and macrophages may play the

same role in the skin as they do in the respiratory tract. However, these cells may also play a

crucial role as innate immune cells that inhibit infection. Close communication of MV-

infected DCs and macrophages with T cells can lead to activation of MV-specific immune

responses and subsequently to the development of rash. The role of these immune responses

in the development of rash has been highlighted in immunocompromised patients with MV

infection that do not develop skin rash [14].

Blood vessels and capillaries run through the dermis. The capillaries penetrate into the der-

mal papillae, from where the distance to the epidermis is minimal, and the distribution of the

capillary loops differs according to the type of the skin. The capillary bed consists of an arteri-

ole, which gives rise to metarterioles and subsequently hundreds of capillaries. The capillaries

provide the dermis and epidermis with nutrition and oxygen, and connect to venous capillar-

ioles and further to a venule. Inflammation due to infection may cause prolonged vasodilata-

tion and increased capillary permeability. This hyperemic reaction allows the release of

chemokines by skin-resident cells, such as memory immune cells and keratinocytes, that leads

to the infiltration of various immune cells, such as macrophages and lymphocytes. Alterna-

tively, skin-resident cells can induce the release of chemokines that leads to hyperemia. The

vasodilatation results in swelling, but not leakage, of tissue capillaries with oxygenated blood

and gives the appearance of superficial reddening of the skin (erythema) and edema [48].

Given that measles rash is described as maculopapular (i.e. small with raised bumps) and ery-

thematous (i.e. red), and edema can be observed in MV-infected skin [15], we speculate that

hyperemia is responsible for the appearance of the erythematous maculopapular rash.

Although theoretically it is possible to investigate the presence of hyperemia in our in vivo
model by showing an increased number of erythrocytes in the cutaneous blood vessels, we

could not perform the calculation fairly, since the animals were sacrificed by exsanguination.

MV infection in the skin gives a unique appearance of rash compared to other viral exan-

themata. Rubella rash, for example, has been described as macroscopically similar to measles

rash, since it gives a pink-reddish “rubelliform” maculopapular rash. However, in rubella, viral

infection takes place deeper in the dermis, in contrast to measles skin infection that occurs

more superficially in the dermis and the epidermis. Infection of the keratinocytes, which is typ-

ical for measles rash, does not occur during rubella virus infection [49]. In contrast, varicella

zoster virus (VZV), as a representative of the Herpesviridae family member, has similar target

cells in the dermis and epidermis as MV, but displays a different type of rash. VZV infects peri-

vascular macrophages and DCs as well as keratinocytes, but the infection leads to the appear-

ance of spots that turn into itchy blisters [50]. Arboviral exanthemata, on the other hand, have

a different route of infection, but often present overlapping outcomes in the skin. Dengue

virus is introduced into the body through a mosquito bite and injected into the bloodstream,

with spillover to the epidermis and the dermis. This spillover causes infection of LCs and kera-

tinocytes. Dengue virus spreads systemically through the infection of monocytes and macro-

phages. The virus also causes vascular leakage through infection of endothelial cells, leading to

the appearance of minor hemorrhagic lesions [51]. Although petechial rash is one of the
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clinical manifestations of dengue virus infection, morbilliform rash is also often described dur-

ing classical dengue fever [52]. Altogether, these findings, including ours, strongly suggest that

the appearance of skin rash is closely linked to the viral tropism, the availability and location of

susceptible target cells and the subsequent immune responses to clear the infection.

In conclusion, our study offers a comprehensive model for the pathogenesis of measles skin

rash: MV-infected lymphocytes and myeloid cells enter the dermis, where the infection

spreads to the susceptible cells in the vicinity of dermal papillae, hair follicles, sebaceous glands

and blood vessels in the superficial dermis. The infection spreads laterally and apically to the

epidermis in a nectin-4-dependent manner. The infection is cleared several days later by infil-

trating immune cells, accompanied by the appearance of edema and hyperemia that give the

appearance of an erythematous morbilliform rash.

Materials and methods

Ethics statement

All NHP samples were derived from previously published studies, and no new experimental

infections were performed [28]. Studies involving the use of primary keratinocytes were

approved by the local ethics committee, and written informed consent was obtained from the

EDSS1 patient and the healthy volunteers [27]. Studies using human skin tissue were per-

formed in accordance with the Amsterdam University Medical Centres (AUMC) institutional

guidelines with approval of the Medical Ethics Review Committee of the AUMC, location Aca-

demic Medical Centre, Amsterdam, the Netherlands, reference number: W15_089 # 15.0103.

All samples were handled anonymously.

Cells

Culture of normal and EDSS1 primary human keratinocytes was carried out as previously

described [27]. Proliferating keratinocytes were cultured till sub-confluence in serum-free ker-

atinocyte growth medium (KGM, Invitrogen) containing 0.15 mM Ca2+, and then induced to

differentiate by culturing for further 3 days in complete keratinocyte culture medium com-

posed of a 3:1 mixture of Dulbecco’s modified Eagle medium (DMEM) and Ham’s F12 media

(Invitrogen) containing 10% of foetal bovine serum (FBS), insulin (5 μg/ml), transferrin (5 μg/

ml), adenine (0.18 mM), hydrocortisone (0.4 μg/ml), cholera toxin (0.1 nM), triiodothyronine

(2 nM), epidermal growth factor (EGF; 10 ng/ml), glutamine (4 mM), and penicillin-strepto-

mycin (50 IU/ml). Epstein-Barr virus- (EBV-) transformed B-lymphoblastoid cell line (BLCL)

and human broncho-alveolar carcinoma (NCI-H358) cell lines were grown in RPMI-1640

medium supplemented with 10% of FBS, 100 IU of penicillin/ml, 100 μg of streptomycin/ml

and 2 mM glutamine (R10F medium). Vero cells expressing human CD150 (Vero-CD150)

were grown in DMEM supplemented with 10% of FBS, 100 IU of penicillin/ml, 100 μg of

streptomycin/ml and 2 mM glutamine (D10F medium) [53]. All cells were cultured in a

humidified incubator at 37˚C with 5% of CO2.

Ex vivo culture of human skin tissues

Residual skin materials were obtained from three adult human donors undergoing correc-

tional surgery and stored at 4˚C overnight. The skin was shaved using a dermatome (0.3 mm,

Zimmer Biomet). For the preparation of full skin sheets, which consist of dermis and epider-

mis, the shaved skin was cut into circular sheets (diameter approximately 1 cm) using a skin

biopsy punch and cultured in IMDM supplemented with 10% of FBS, 100 IU of penicillin/ml,

100 μg of streptomycin/ml (Invitrogen), 2 mM glutamine and 20 μg/ml gentamicine
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(Centrafarm) (I10F medium), with the epidermis facing upward. The full skin pieces were

stored in a 24-well plate in I10F medium. For the preparation of epidermal sheets, shaved skin

was incubated in I10F medium in the presence of 1 U/ml of dispase (Roche Diagnostics) for 1

h at 37˚C. The epidermis was separated from dermis using a pair of forceps and cut into circu-

lar sheets using a skin biopsy punch. The epidermal, dermal or full skin sheets were cultured in

a 24-well plate in I10F medium, with the keratin layer of the epidermis facing upward. Experi-

ments were performed in triplicate.

Viruses

All recombinant MV strains used in this study were described previously: recombinant MV

strain Khartoum-Sudan (KS) expressing the fluorescent protein Venus from an additional

transcription unit in position 1 or 3 (rMVKSVenus(1) or (3)) [30] was based on wild type

viruses. An rMVKS expressing EGFP in position 3 of the viral genome engineered to be unable

to recognize nectin-4 (referred to as the ‘nectin-4-blind (N4b)’ rMVKS-N4bEGFP(3)) was also

included in this study [11]. Virus titers were determined by endpoint titration on Vero-CD150

cells, and were expressed as 50% tissue culture infectious dose (TCID50) per ml calculated as

described by Reed and Muench [31].

In vitro MV infection

Adherent primary keratinocytes were either inoculated directly or were treated with trypsin-

EDTA (0.05%) and inoculated in suspension with the two different rMV strains at an MOI of

1. After 2 h, the suspension cells were washed to remove unbound virus and seeded onto

24-well plates in complete keratinocyte culture medium. After 48 h of infection, the cells were

observed under an inverted-laser scanning LSM-700 microscope (Zeiss) and the infection per-

centages were assessed by flow cytometry.

Ex vivo MV infection

Full skin pieces, dermal or epidermal sheets were inoculated with cell-free rMVKSVenus(3).

Briefly, 200 μl of pure virus stock (3.7 × 106 TCID50/ml) was added to each well of a 24-well

plate, and the skin sheets were added on top of the liquid with the epidermis facing upwards.

While full skin and epidermal sheets remained afloat, dermal sheets tended to sink and both

apical and basolateral surfaces were exposed to virus. After 2 h at 37˚C, I10F medium was

added to the wells. The progression of infection was observed at 2, 4 and 7 dpi under the

inverted laser scanning microscope. At 4 dpi, mock- and MV-inoculated full skin sheets were

incubated in I10F medium in the presence of 1 U/ml of dispase (Roche Diagnostics) for 1 h at

37˚C and separated into epidermal and dermal sheets. The separated sheets were cultured

individually in a 24-well plate in I10F medium up to 7 dpi.

Measurement of MV production by infected keratinocytes

Supernatant of MV-infected keratinocytes was titrated into 96-well plates containing Vero-

CD150 cells (1 × 104 cells/well). The titer of the virus was expressed as TCID50/ml and calcu-

lated as described above.

Flow cytometry

Flow cytometry was performed using a BD FACSCanto II, unless mentioned otherwise. Pri-

mary keratinocytes were labelled with nectin-4PE antibody (clone 337516; R&D Systems) to

assess the expression of nectin-4. Isotype control (IsotypePE, clone 27–35, BD Biosciences)
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antibody was included to assess the level of background staining. NCI-H358 cells and BLCL

were included as positive and negative controls for nectin-4 expression, respectively. All cells

were fixed with 2% of PFA prior to measurement of the percentage of cells expressing the

virus-encoded fluorescent protein. Mock-infected cells were included as infection control.

Supernatants from full skin pieces, dermal or epidermal sheets (n = 3 donors) were isolated at

2, 4 and 7 dpi and emigrant cells were isolated after undergoing centrifugation. Mock-infected

tissues were included as infection control. Percentages of MV-infected emigrant cells were

measured by flow cytometry using a BD FACSLyric. Gating strategy used in the flow cytome-

try analyses is shown in S9. Data was acquired with BD FACSDiva or FACSSuite software and

analyzed with FlowJo software.

In situ analyses

Immunohistochemistry was performed on one to three formalin-fixed, paraffin-embedded

skin tissues originating from different EGFP+ regions (abdomen, eyelid or lip) from experi-

mentally infected NHPs (n = 2 animals per time point) euthanized at 9, 11 and 13 dpi using

monoclonal antibodies directed to MV N protein (clone 83KKII, Chemicon [54]) or rabbit

polyclonal antibody directed to GFP (Invitrogen). Goat anti-mouse IgG1 or goat anti-rabbit

antibody conjugated with biotin was included as secondary antibody. Streptavidin-horseradish

peroxidase was added for signal detection. Dual-labeling IIF assays on sequential skin slides of

experimentally infected NHPs were performed using mouse monoclonal antibodies directed

to CD45 (clone 2B11+PD7/26; DAKO), CD3 (clone F7.2.38; DAKO), CD31 (clone JC70A;

DAKO), cytokeratin (clone AE1/AE3; DAKO), S100A8/A9 complex (clone MAC387; Abcam),

or HLA-DR (clone L243; BioLegend) in combination with rabbit polyclonal antibody directed

to GFP. Goat anti-rabbit-IgG-Alexa Fluor (AF)488 (Invitrogen) and goat anti-mouse

IgG-AF594 (Invitrogen) were included as secondary antibodies. Formalin-fixed, paraffin-

embedded tissues were sectioned at 3 μm, deparaffinized and rehydrated prior to antigen

retrieval. Antigen retrieval for MV N protein staining was performed in the presence of 0.1%

protease in pre-warmed PBS for 10 minutes at 37˚C. Antigen retrieval for other stainings was

performed in citrate buffer (10 mM, pH = 6.0) with heat induction. Sections were incubated

with primary antibody overnight at 4˚C before incubation with secondary and tertiary anti-

bodies. For dual-labeling IIF assays, the slides were mounted with ProLong Diamond Antifade

Mountant with DAPI (Thermo Fisher Scientific) prior to fluorescence detection with the

inverted laser scanning microscope. Images were obtained using 1–2 times frame averaging

and the pinhole adjusted to 1 airy unit. To quantify EGFP+ and CD45+ cells in NHP skin tis-

sues, five high-power Z-stack fields (400 × magnification) containing MV focal infection sites

were arbitrarily selected per animal per time point (n = 2 animals per time point; in total 3

time points). Cell counting to determine the number of EGFP+ and CD45+ cells in the NHP

skin tissues was performed in Fiji software.

Statistical analysis

Differences between the percentages of infected cells in the human ex vivo epidermal, dermal

or full skin sheets were analyzed by paired t-test.

Supporting information

S1 Fig. The focal nature of measles skin infection resulted in different progression of infec-

tion in the dermis and epidermis. At 9 dpi, MV infection were mostly found in the dermis of

experimentally infected NHPs. However, due to the focal nature of MV skin infection, MV-

infected cells could sometimes also be detected in the epidermis. The progression of epidermal
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infection varied in different sites, ranging from only single-cell to multiple-cell infection. A

syncytium (ellipse) was observable, albeit rarely, in the epidermis collected at 9 dpi stained

with hematoxylin and eosin (HE), or with green fluorescent protein (GFP) and MV N antibod-

ies, respectively. Scale bar: 50 μm. Dpi: days post-inoculation.

(TIF)

S2 Fig. Phenotype of MV-infected cells in experimentally infected NHP skin tissues col-

lected at 9 dpi. (a–e) Split and merged multicolor fluorescent images of the insets shown in

Fig 3A–3E. The phenotypes of MV-infected (green) cells in the dermis were (a) CD45+ leuko-

cytes, (b) CD3+ T cells, (c) S100A8/A9 complex+ (MAC387) macrophages and (d) the cells sur-

rounding CD31+ endothelial cells. In the epidermis, two types of MV-infected cells could be

detected: (e) cytokeratin+ keratinocytes and cytokeratin- cells (asterisk). Arrow indicates co-

localization of GFP and specific cell marker. Dashed line indicates the basement membrane

that separates the dermis (Dm) and the epidermis (Ep). Scale bar: 10 μm. Dpi: days post-inocu-

lation.

(TIF)

S3 Fig. Dynamics of MV infection and subsequent clearance in NHP skin tissues. Five

high-power Z-stack focal infection sites in NHP skin tissues were chosen arbitrarily at high

magnification. MV-infected cells were observed in different numbers in the (a) dermis and (b)

epidermis at different time points. The cells in the dermis were hardly detectable at 13 dpi. In

contrast, more MV-infected cells could still be detected in the epidermis at the same time

point. The number of CD45+ leukocytes increased throughout the different time points in the

(c) dermis and (d) epidermis. The number of CD45+ leukocytes increased in the dermis from

9 to 13 dpi, and in the epidermis between 11 and 13 dpi. Each symbol represents the number

of cells counted in one infectious focus in one animal. Dpi: days post-inoculation.

(TIF)

S4 Fig. Interaction between MV-infected cells and dermal cells in experimentally infected

NHP skin tissues. (a–c) Representative split and merged multicolor fluorescent images shown

in Fig 4. (a) An MV-infected CD3+ T cell (speckled green; arrow) was present in reticular der-

mis at 13 dpi, in close proximity to uninfected T cells (red). Merged image is shown in Fig 4B.

(b) Close interaction between an MV-infected cell (green) with an HLA-DR+ APC (red), form-

ing a long EGFP+ dendrite (arrow). Merged image is shown in Fig 4C. (c) MV-infected CD31+

endothelial cells (red; arrows) in close proximity to other MV-infected cells (green). Merged

image is shown in Fig 4E. (d) Close interaction between an S100A8/A9 complex+ (MAC387)

macrophage (red) and an MV-infected cell (green) in the dermis. Scale bar: 10 μm. Dpi: days

post-inoculation.

(TIF)

S5 Fig. Interaction between MV-infected cells and epidermal cells in experimentally

infected NHP skin tissues. (a–c) Representative split and merged multicolor fluorescent

images shown in Fig 4. (a–b) Sequential slides of MV-infected NHP skin at 13 dpi. (a) An MV-

infected CD45+ white blood cell (arrow) in the basal epidermis. (b) This cell was negative for

cytokeratin marker (arrow) and in close proximity to infected keratinocytes (green). (c) MV-

infected keratinocytes in the absence of other infected cells in the observed two-dimensional

plane. (d–e) Sequential slides of MV-infected NHP skin at 11 dpi. (d) Infiltrating CD45+ leu-

kocytes (red) could be observed in the epidermis. (e) Many of these cells were S100A8/A9

complex+ (MAC387) macrophages (red). Arrows in (d) and (e) indicated one of the CD45+

S100A8/A9 complex+ macrophages in the epidermis at 11 dpi. Dashed line indicates the base-

ment membrane that separates the dermis (Dm) and the epidermis (Ep). Scale bars of (a–c):
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10 μm. Scale bars of (d–e): 50 μm. Dpi: days post-inoculation.

(TIF)

S6 Fig. MV-infected LCs were not observed after ex vivo infection of human epidermal

sheets. LCs (magenta) were present in abundance in human epidermal sheets. MV-infected

cells (green) appeared at 2 dpi and their number increased by 4 dpi. However, none of these

infected cells were LCs. Magenta: CD1a; Green: GFP; Blue: DAPI. Scale bar: 200 μm. Dpi: days

post-inoculation.

(TIF)

S7 Fig. Differentiated human primary keratinocytes expressed higher levels of nectin-4

than proliferating keratinocytes. The expression level of nectin-4 increased during differenti-

ation. NCI-H358 and BLCL were included as positive and negative controls of nectin-4 expres-

sion, respectively.

(TIF)

S8 Fig. Nectin-4 expression and cell-free virus production of human primary proliferating

and differentiated keratinocytes from an EDSS1 patient. Despite the low nectin-4 expres-

sion in both proliferating and differentiated EDSS1 keratinocytes, the cells were susceptible to

MV infection. Infection also resulted in production of infectious cell-free virus progenies. KS:

rMVKSVenus(3); KS-N4b: rMVKS-N4bEGFP(3). EDSS1: ectodermal dysplasia-syndactyly syn-

drome.

(TIF)

S9 Fig. Flow cytometry analyses of MV-infected emigrant cells from supernatants of ex
vivo human skin cultures. Gating strategy to determine the percentages of MV-infected emi-

grant cells in supernatants of ex vivo human epidermis sheets, dermis sheets or full skin tissues.

Autofluorescent cells were not included in the MV gate. The same gating strategy was applied

throughout the experiments to all samples collected at 2, 4 and 7 dpi.

(TIF)
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