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background: Adaptation of the maternal immune response to accommodate the semi-allogeneic fetus is necessary for pregnancy
success, and disturbances in maternal tolerance are implicated in infertility and reproductive pathologies. T regulatory (Treg) cells are a
recently discovered subset of T-lymphocytes with potent suppressive activity and pivotal roles in curtailing destructive immune responses
and preventing autoimmune disease.

methods: A systematic review was undertaken of the published literature on Treg cells in the ovary, testes, uterus and gestational tissues
in pregnancy, and their link with infertility, miscarriage and pathologies of pregnancy. An overview of current knowledge on the generation,
activation and modes of action of Treg cells in controlling immune responses is provided, and strategies for manipulating regulatory T-cells for
potential applications in reproductive medicine are discussed.

results: Studies in mouse models show that Treg cells are essential for maternal tolerance of the conceptus, and that expansion of the
Treg cell pool through antigen-specific and antigen non-specific pathways allows their suppressive actions to be exerted in the critical peri-
implantation phase of pregnancy. In women, Treg cells accumulate in the decidua and are elevated in maternal blood from early in the first
trimester. Inadequate numbers of Treg cells or their functional deficiency are linked with infertility, miscarriage and pre-eclampsia.

conclusions: The potency and wide-ranging involvement of Treg cells in immune homeostasis and disease pathology indicates the
considerable potential of these cells as therapeutic agents, raising the prospect of their utility in novel treatments for reproductive pathologies.
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Introduction
Pregnancy is a unique immunological challenge in which an antigenically
distinct fetus and placenta develop in the uterus of the mother. The
complex mechanisms by which the fetus avoids rejection, despite
expression of paternal major histocompatibility (MHC) antigens, still

remain incompletely understood (Billington, 2003). Over 50 years
ago, Medawar first proposed the existence of regulatory mechanisms
that suppress the maternal immune system (Medawar, 1953). After
discovery of heterogeneity in T helper (Th) cell populations in the
1980s, for several years maternal tolerance towards fetal alloantigens
was explored in the context of the Th1/Th2 paradigm, with Th2 cells
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and cytokines proposed to overrule the Th1 cellular immune response
which can lead to fetal abortion (Wegmann et al., 1993; Raghupathy,
1997). However, this explanation is now insufficient and it has become
clear that additional regulatory mechanisms involving both the innate
and the adaptive compartments of the immune response play import-
ant roles (Sargent et al., 2006b; Trowsdale and Betz, 2006; Chaouat,
2007; Saito et al., 2007). Understanding the mechanisms responsible
for tolerance of the male and female gametes poses a similar chal-
lenge, since these also express antigens perceived as foreign by the
immune system, but are not rejected.

One emerging focus is the role of specialized populations of T-
lymphocytes termed regulatory T-cells. These cells are potent sup-
pressors of inflammatory immune responses, and are essential in pre-
venting destructive immunity in all the tissues of the body. The
physiological role of regulatory T-cells is 2-fold. Primarily, they act to
control T-cells that react with ‘self’ antigens but have escaped negative
selection from the thymus, and in addition, they limit the extent and
duration of responses exerted by T-cells reactive with alloantigens
and other exogenous antigens. Thus, regulatory T-cells can be
viewed as guardians of tissue integrity, preventing harm that might
otherwise be caused by aberrant or uncontrolled immune responses.
This homeostatic regulation is pivotal in tissues containing endogenous
physiological antigens that escape detection as ‘self’ due to their
tissue-restricted expression, and in epithelial surfaces where tolerance
of non-dangerous foreign antigens is essential to normal function.
Their unique properties and behaviour, particularly their capacity to
suppress responses to tissue-specific antigens and alloantigens,
confer the capacity for regulatory T-cells to perform unique functions
in the events of reproduction and pregnancy.

This review aims to examine the emerging importance of regulat-
ory T-cells in suppressing immunological attack on the conceptus,
spermatozoa and oocytes, and the promise for reproductive
medicine of new drugs and technologies for manipulating these
cells. The key take-home points relevant to regulatory T-cells in
reproductive biology and medicine that emerge from this review
are listed in Table I.

Methods
Initially, we synthesized an overview of the current information on tissue
origins and modes of action of regulatory T-cells, drawing mainly on
seminal papers at the forefront of this specific field of immunology. We
then undertook a systematic review of the published literature on regulat-
ory T-cells in reproductive events spanning gametogenesis to embryo
implantation and pregnancy. The papers cited were selected on the
basis of relevance and quality from a list generated using combinations
of the following search terms in Pubmed: ‘regulatory T-cells, Treg cells,
Tr1 cells, Th3 cells, ovary, testes, uterus, decidua, placenta, pregnancy,
infertility, miscarriage and pre-eclampsia’. Finally, we compiled information
drawn from selected key papers on the manipulation and utility of regulat-
ory T-cells for clinical applications in transplantation and autoimmune
disease. On the basis of this information, we formulated a perspective
on the future prospects for targeting regulatory T-cells in novel therepautic
strategies for treatment of infertility and reproductive pathologies.

Regulatory T-cells and immune
suppression

The discovery and classification
of regulatory T-cells
The term ‘regulatory T-cells’ refers to a family of T-lymphocyte popu-
lations with suppressive/regulatory properties that are devoted to
maintaining antigen-specific T-cell tolerance. At least three subsets
of CD4þ regulatory T-cells with distinct suppressive mechanisms are
distinguished by their phenotype, cytokine secretion and tissue
origin (Jonuleit and Schmitt, 2003). These are type 1 regulatory
T-cells (Tr1) cells, T-helper 3 (Th3) cells and CD4þCD25þ regulatory
T-cells (Treg cells). Each of these populations has the characteristic
capacity to actively inhibit the proliferation and effector function of
other T-cells (Fukaura et al., 1996; Groux et al., 1997; Suri-Payer
et al., 1998). CD8þ T-cells with regulatory properties have also
been described, but less is known about their ontogeny, regulation
and function (Smith and Kumar, 2008).

The history of regulatory cells/suppressor cells in the immunology
literature dates back to the 1970s when T-lymphocytes that were
capable of suppressing immune responses were first described and
named ‘suppressor T-cells’ (Gershon et al., 1972). However with
the lack of a definitive marker, questions regarding their authenticity
were raised and attention shifted away from this cell population
(Green and Webb, 1993), until Treg cells in their existing form
were identified as a specialized T-cell subset in 1995 by Sakaguchi
et al. (1995). Tr1 cells were initially characterized in mouse models
of inflammatory bowel disease as potent suppressors of antigen-
specific immune responses mediated by interleukin-10 (IL-10) syn-
thesis (Groux et al., 1997). Th3 cells were discovered in mice as
mediators of oral tolerance acting to inhibit induction of immunity
through secretion of transforming growth factor-b (TGFb) (Weiner,
2001). Of the three cell populations, Treg cells have fast become
established as perhaps the most potent and widespread suppressive
cell lineage in the immune system. Unlike Th3 and Tr1 cells which
appear to represent altered differentiation states of conventional
CD4þCD252 T-cells, Treg cells are believed to comprise a distinct
and unique T-cell lineage (Weiner, 2001). They have now been impli-
cated in critical protective functions in auto-immune disease

Table I Key features of regulatory T cells in regulating
the immune response to pregnancy

Treg cells are potent suppressors of autoimmunity and allograft rejection

Treg cells are implicated in immune tolerance of the conceptus tissues,
oocytes and spermatozoa

Treg cells are increased in the blood, decidual tissue and lymph nodes
draining the uterus in pregnancy

Deletion of these cells is incompatible with maintenance of allogeneic
pregnancy

Unexplained infertility, miscarriage and pre-eclampsia are linked with
numerical and functional Treg deficiency

Treg cell populations can be expanded in vitro or in vivo for therapeutic
purposes

Dendritic cells controlling Treg cell populations can be targeted in vivo to
enhance Treg cell numbers and function

Development of Treg cell therapies for treating infertility and reproductive
pathologies will require knowledge of the antigens, cytokines and
hormones regulating these cells
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(Sakaguchi, 2005), transplantation tolerance (Waldmann et al., 2004),
gastro-intestinal homeostasis (Coombes et al., 2005) and inflamma-
tory disease (Wahl et al., 2004b), and conversely, are a pivotal com-
ponent of the pathophysiological immune tolerance induced by
tumours (Munn and Mellor, 2006). Of the three cell subsets, Treg
cells are distinguished by their apparently essential role in reproductive
events. Although cells with features reminiscent of Tr1 cells and Th3
cells are present in the uterus (Robertson, 2000), any role for Tr1 cells
appears to be redundant since allogenic pregnancy is not compro-
mised in IL-10 null mutant mice (White et al., 2004). The necessity
of Th3 cells remains to be tested, but this is more challenging since
immunocompetent TGFb null mutant mice do not survive to repro-
ductive age and suffer non-immune-related reproductive disturbances
(Ingman et al., 2006). The current review will therefore focus predo-
minantly on the Treg cell subset of regulatory T cells.

Treg cells are a distinct T-lymphocyte subset
Treg cells are defined as a separate cellular subset on the basis of their
surface phenotype as well as functional characteristics. Treg cells are
one of the four major classes of CD4þ T-cells, together with Th1
cells, Th2 cells and Th17 cells (Zhu and Paul, 2008), distinguished
from the other classes by their role in tolerance as opposed to immu-
nity (Fig. 1). They comprise 1–3% of CD4þ T-cells in humans and 5–
10% of CD4þ T-cells in rodents (Sakaguchi, 2000; Shevach, 2002).
Despite the unique suppressive properties of Treg cells compared
with other lymphocytes, their cellular features are less distinct. Treg
cells are generally identified on the basis of their constitutive
expression of surface markers including the interleukin-2 receptor

CD25 (Sakaguchi et al., 1995), glucocorticoid-induced tumour necro-
sis factor receptor (GITR) (McHugh et al., 2002; Shimizu et al., 2002)
cytotoxic T-lymphocyte associate protein 4 (CTLA-4) (Takahashi
et al., 2000), together with high expression of CD95 and in humans,
low expression of CD45RB and CD127 (Akbar et al., 2003; Liu
et al., 2006b) (Table II). However, each of these markers can also
be dynamically expressed on the surface of other cell populations
(Damoiseaux, 2006) and there has been difficulty in identifying a
definitive surface marker to distinguish Treg cells from related T-cells.

The search for a specific marker for Treg cells was aided by the
identification of a mutation in a gene that resulted in the fatal
human autoimmune disease ‘immune dysregulation polyendocrinopa-
thy, entropathy, X-linked’ (IPEX) and the analogous disease in a spon-
taneous mutant mouse known as the ‘scurfy’ mouse. The responsible
mutation was located in the gene that encodes a transcription factor of
the forkhead/winged-helix family, known as Forkhead Box P3 (FOXP3
or scurfin). Null mutation in this gene leads to a functional defect in the
resultant protein and consequently the early onset of a severe lympho-
proliferative/auto-immune disease (Brunkow et al., 2001). The link
between FOXP3 expression and the development and function of
the Treg cell was first made by Fontenot et al. who noted that
FOXP3 mRNA was elevated in the suppressive CD4þCD25þ lympho-
cyte population, and went on to demonstrate that Foxp3 null mutant
mice lacked Treg cells. Subsequently, it was shown that transfer of
CD4þCD25þ lymphocytes rescued Foxp3 null mutant mice from
autoimmune pathologies (Fontenot et al., 2003). The critical role of
Foxp3 protein in the development, function and origins of Treg cells
has been further explored in recent publications utilising a Foxp3gfp

knock-in allele, which validated this gene as the ‘master-switch’ for
Treg development (Fontenot et al., 2005a, b). Discovery of a definitive
marker for Treg cells has allowed investigation of the origin and regu-
lation of these cells, and has facilitated examination of their role in
many disease states and physiological conditions.

Ontogeny of Treg cells
The precise origins and pathways of generation of Treg cells are active
topics of research. It is becoming evident that there is heterogeneity in
the ontogeny of Treg cells, with the processes through which Treg
cells are generated, and the tissue in which they originate, being
important factors in their suppressive function and target antigen
repertoire as mature cells. At least two distinct pathways of Treg gen-
eration appear to exist. First, ‘natural’ Treg cells can originate via a
selective process in the thymus based on the structure of their individ-
ual T-cell receptors (TCRs) (Itoh et al., 1999; Fontenot et al., 2005a).
However, the thymus is not the sole source of Treg cells and there is
now compelling evidence that the majority are ‘inducible’ Treg cells
generated within peripheral tissues, particularly in later life when the
thymus undergoes extensive involution (reviewed in Akbar et al.,
2007). As a result, the gross pool of Treg cells at any one time is
the sum of the cells selected for survival in the thymus and those
cells generated in the periphery.

Treg cell generation in the thymus
The fate of T-cells differentiated in the thymus is ultimately deter-
mined by the varying avidities for self-antigens of the TCRs expressed
on their surface. T-cell survival in the thymus is the result of a

Figure 1 The microenvironmental context in which naive CD4þ

Th0 cells encounter their cognate antigen is a principal determinant
of their differentiation fate and development into Treg cells as
opposed to Th1, Th2 or Th17 cells.
Treg cells confer a tolerogenic immune response whereas Th1, Th2 and
Th17 cells mediate protective immunity. Signals originating from the DC
presenting antigen to the Th0 cell, as well as the relative concentrations
of key cytokines in the immediate vicinity, are instrumental. DC, dendri-
tic cell; IL, interleukin; Th1, Th2 and Th17, T-helper type 1, type 2 and
interleukin 17-producing Th cell; TGF, transforming growth factor.
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sequential selection process based on the interaction between naive
T-cells and the thymic stromal epithelium. Depending on the avidity
of the interaction between the TCR of an individual T-cell and the
MHC/self-antigen peptide complex expressed by stromal cells,
neglect, positive selection or negative selection can ensue (von
Boehmer et al., 1989). Failure to interact with MHC molecules pre-
senting self-antigen on the thymic epithelial cells leads to apoptosis
of the T-cell through the lack of TCR signalling (neglect). Positive
selection is the result of a TCR signal of sufficient avidity to signify a
T-cell’s ability to recognize self-MHC complexes, whereas a high
avidity TCR/antigen interaction is indicative of excessive reactivity to
self and hence a potentially pathological self-reactive T-cell, leading
again to apoptosis of the T-cell (negative selection). In summary,
‘the thymus selects the useful, neglects the useless and destroys the
harmful’ (von Boehmer et al., 1989).

The generation of natural Treg cells in the thymus is believed to
occur as the result of an altered negative selection process. Commit-
ment of naive T-cells to Treg cell differentiation is thought to result
when their TCR/antigen affinity is just weaker that that needed for
negative selection, but at the extremity of the spectrum for positive
selection (Jordan et al., 2001) (Fig. 2). In other words, Treg cells
derived from the thymus are selected largely on the basis of their
capacity to interact with self-antigens, and this interaction is implicit

in their role for protection against pathological self-reactive immune
responses. Thymic-generated Treg cells are thus thought to function
primarily in protection from a range of autoimmune diseases
(reviewed in Sakaguchi, 2005).

Treg cell generation in peripheral tissues
Maintenance of Treg cell numbers over the human life span, despite
the extensive and early involution of the thymus, indicates an alternate
source of Treg cell generation independent of the thymus. Peripher-
ally, there appears to be both de novo generation of inducible Treg
cells and maintenance and expansion of the existing Treg cell pool
(Seddon and Mason, 1999; Cozzo et al., 2005). The role of peripheral
tissues in sustaining Treg cell populations was elegantly demonstrated
by the observation that ablation of a tissue depletes the ability of
donor Treg cells to prevent organ-specific autoimmune disease after
adoptive transfer into intact recipients, compared with Treg cells
from unmodified donors (Seddon and Mason, 1999). This shows
that the presence of peripheral tissue antigens is essential for the de
novo generation of antigen-specific regulatory T-cells from naive
T-cell precursors (Seddon and Mason, 1999). The importance of
tissue-specifc antigens for generation of Treg cells to protect against
autoimmunity is also shown in other tissues, including the ovary
(Samy et al., 2006) (see later). A similar conclusion is drawn from
TCR transgenic mouse models, which show that with persistent low
levels of antigenic stimulation, naive cells can be induced to express
the hallmark Treg cell marker Foxp3 and take on a suppressive pheno-
type (Abbas et al., 2007).

A related explanation invokes a role for peripheral tissue antigens in
providing a maintenance signal for existing Treg cells through promot-
ing proliferation and survival after TCR engagement. Although it is
widely reported that Treg cells are characteristically anergic following
TCR stimulation in vitro, adoptive transfer experiments show that
these cells can proliferate in vivo (Gavin et al., 2002; Fisson et al.,
2003; Walker et al., 2003), suggesting their proliferation contributes
to maintaining and expanding the in vivo Treg pool. Critically, prolifer-
ation is dependent on the presence of cognate antigen for the Treg
TCR (Walker et al., 2003). The likely reality is that peripheral antigens
are critical for both the generation of new Treg cells and the mainten-
ance of pre-existing Treg cells.

.............................................................................................................................................................................................

Table II Markers for Treg cells

Marker Location Level of expression by Treg cells Specificity for Treg cells Expression by other cell lineages

CD25 Surface High þþ Effector/memory T cells

CD95 Surface High þþ Effector/memory T cells

GITR Surface High þþ Effector/memory T cells

CTLA-4 Surface High þþ Effector/memory T cells

CD45RB Surface Low þþ Effector/memory T cells

Foxp3 Intra cellular High þþþþþ Trophoblast giant cells

Nrp1 Surface High þþþ Neurons

LAG-3 Surface High þþþ B cells

CD127* Surface Low þþþþ Newly activated T cells

*Humans only.

Figure 2 Treg cells are selected in the thymus when the avidity of
their TCR for self-MHC is lower than the threshold for negative selec-
tion by apoptosis, but higher than the threshold for positive selection
of effector T cells.
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Although the role of peripheral tissues in Treg cell generation is
established in rodent models, a new understanding of human periph-
eral Treg cell generation is evolving. Recently, it has emerged that
FOXP3 expression is a constitutive product of human (but not
mouse) T-cell activation, although typically expression is transient
and rapidly down-regulated (Wang et al., 2007). This has led to specu-
lation that FOXP3 induction and subsequent suppression might be a
default pathway in the activation of all human T-cells (Pillai and Karan-
dikar, 2007); however, debate continues over the suppressive qualities
of transiently FOXP3þ T-cells (Allan et al., 2007). Constitutive
expression of FOXP3 during T-cell activation supports the plausibility
of peripheral Treg cell generation being the predominant pathway in
humans, but raises the question of how and why FOXP3 expression
is extinguished in some cells but not others.

Importantly, the pathway of peripheral Treg cell generation provides
a mechanism by which these cells might be generated with affinities for
antigens not expressed in the thymus. Instead, peripherally generated
Treg cells can express TCRs restricted to specific peripheral tissue
antigens. This enables the immune system to regulate responses to
exogenous antigens that are foreign to self, but against which aggres-
sive responses are not appropriate, and equips the immune system
with plasticity in the Treg cell repertoire facilitating dynamic change
and adaptation to the environment. Importantly for reproductive
events, this property allows the generation and expansion of Treg
cell populations with affinities for reproductive antigens associated
with the developing conceptus or expressed by sperm or oocytes,
which are absent from the thymus.

Treg cell control by dendritic cells,
co-stimulatory signals and indoleamine
2,3-dioxygenase
The microenvironmental context in which naive CD4þ Th0 cells
encounter their cognate antigen is the principal determinant of their
differentiation fate and development into Treg cells as opposed to
Th1, Th2 or Th17 cells (Fig. 1) (Steinman et al., 2003; Rutella and
Lemoli, 2004; Zhu and Paul, 2008). Dendritic cells (DCs) are pro-
fessional antigen-presenting cells which exhibit considerable hetero-
geneity in their ontogeny, maturation status and accompanying
functional phenotype, reflected in the combination of surface signalling
molecules and cytokines they express (Morelli and Thomson, 2003).
The dialogue between Treg cells and a specific class of DCs termed
‘tolerogenic DCs’ is pivotal in the activation and expansion of Treg
cells (Steinman et al., 2003). Initially tolerogenic DCs were defined
on the basis of their immature or semi-mature phenotype, altered
expression of co-stimulatory molecules CD80 and CD86, and lack
of expression of the Th1-inducing cytokine IL-12 (Steinman et al.,
2003), but even mature DCs can drive Treg cell proliferation when dif-
ferentiated appropriately (Yamazaki et al., 2003).

Certain co-stimulatory signals on DCs can down-regulate Treg-
mediated suppression. Members of the tumour necrosis factor
(TNF) receptor superfamily, including GITR, OX40, 4-1BB and
RANK are expressed by Treg cells and their ligation can block sup-
pression, increase proliferation, or both (Choi et al., 2004; Kanamaru
et al., 2004; Valzasina et al., 2005).

The cytokine environment is critical in controlling DC phenotype
and hence the signals sent to Treg cells. DCs differentiated in the

presence of TGFb, IL-10, granulocyte-macrophage colony-stimulating
factor (GM-CSF) and IL-4 possess the immunotypic and functional fea-
tures of immature DCs and reliably induce CD4þCD25þ Treg cells
with immunosuppressive function (Sato et al., 2003).

Another important characteristic of tolerogenic DCs is expression
of indoleamine 2,3-dioxygenase (IDO). In plasmacytoid DCs, IDO
expression confers the ability to directly activate resting Tregs for
potent suppressor activity, and is implicated in converting CD4þ

CD25þFoxp3þ Tregs from CD4þCD252 T-cells and maintaining
Treg suppressive activity both in mice (Sharma et al., 2007) and in
humans (Chen et al., 2008). This is additional to the ability of
IDO-expressing DCs to dominantly inhibit T-cell activation by other
non-suppressive DCs (Munn et al., 2004). Bi-directional signalling
between Treg cells and tolerogenic DCs may be one means of infec-
tious tolerance, since Treg cells can condition DCs to express IDO
and thereby exert a suppressive influence over neighbouring T-cells
(Grohmann et al., 2002; Munn et al., 2002). Induction of IDO may
occur via ligation of the costimulatory molecule B7 (CD80/CD86)
by CTLA-4, a molecule constitutively expressed on Treg cells, with
this pathway ultimately also interfering with DC capacity to activate
effector T-cell function (Grohmann et al., 2002).

Cytokines, prostaglandins and toll-like
receptors in Treg cell generation
Like all T-cells, Treg cells require ligation of their TCR with cognate
antigen and IL-2 in order to differentiate from naive CD4þ T-cell pre-
cursors. Studies in IL-2-deficient mice show that IL-2 is essential for
Treg cell generation, and whereas high concentrations of IL-2 can
block suppression, low levels of IL-2 modulate their development
and maintenance (Scheffold et al., 2005). IL-15 can substitute for
IL-2 in Treg generation, and potentiates Treg cells for further
rounds of IL-15-induced proliferation (Koenen et al., 2003).

A crucial question is the nature of the cytokines and environmental
signals that cause fate commitment to Treg cells, rather than Th1, Th2
or Th17 phenotypes. One key factor is TGFb, a cytokine long recog-
nized to have immune suppressive and anti-inflammatory properties
(Gorelik and Flavell, 2002). There is evidence that TGFb acts to over-
ride the default pathway that generates T-cells with no suppressive
capabilities (Sakaguchi, 2000; Shevach, 2002). Naive CD4þCD252

T-cells differentiate into a suppressor T-cell phenotype and express
Foxp3 when TGFb is present at the time of TCR challenge (Chen
et al., 2003). TGFb is also implicated in proliferation of mature Treg
cells through modifying the function and signalling capabilities of DCs
(Ghiringhelli et al., 2005b). Prostaglandin E2 (PGE2) may synergize
with TGFb in this role, since in vitro experiments indicate that PGE2

can enhance the inhibitory capacity of human CD4þCD25þ Treg
cells and induce a regulator phenotype in CD4þCD252 T-cells
(Baratelli et al., 2005).

Additional cytokines, including several prominently expressed in the
implantation site and gestational tissues, can modulate Treg cell pro-
liferation and suppressive function (reviewed in Sutmuller et al.,
2006b; Miyara and Sakaguchi, 2007). IL-4 and IL-7 are considered
growth and survival factors, respectively (Thornton et al., 2004;
Harnaha et al., 2006). IL-1 and IL-6 can release resting Treg cells
from their anergic state and potentiate responsiveness to proliferative
signals (Kubo et al., 2004), whereas IL-12 and IL-6 can reverse the
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suppressive function of Treg cells and rescue Th1 cells from Treg
control (Pasare and Medzhitov, 2003; King and Segal, 2005).

An emerging area of central interest is the relationship between Treg
cells and pro-inflammatory IL-17-producing T (Th17) cells which, like
Th1 cells, are implicated in many autoimmune and inflammatory dis-
eases (Zhu and Paul, 2008). Treg cells and Th17 cells appear to share
a common lineage with their relative abundance influenced dramatically
by the cytokine environment in which T-cell priming occurs, particularly
the ratio of IL-6 to TGFb (Bettelli et al., 2006). In the absence of IL-6,
TGFb1 simultaneously induces synthesis of both Foxp3 and the Th17
cell master switch, retinoic acid-related orphan receptor gt (RORgt).
Foxp3 then directly interacts with RORgt to suppress the conversion
of naive T-cells to Th17 cells (Ichiyama et al., 2008). However, in the
presence of IL-6, Foxp3 expression is down-regulated, allowing
RORgt to induce IL-17 synthesis and the conversion of naive T-cells
to Th17 cells. IL-1 can also drive commitment to Th17 as opposed
to Treg cells (Yang et al., 2008b). Existing Treg cells, in the absence
of sufficient TGFb1, can function as inducers of Th17 cells and them-
selves convert to Th17 cells (Xu et al., 2007). This mutual antagonism
and plasticity between Treg and IL-17 cells illustrates the fine line
between a suppressive or pro-inflammatory immune outcome, and
the major importance of the cytokine environment not only at the
outset but for the duration of the response.

Toll-like receptors (TLRs) are expressed by Treg cells and are
emerging as key modulators of Treg cell proliferation and behaviour
through conferring the ability to sense pathogens and either
strengthen or reverse suppressive activity (reviewed by Sutmuller
et al., 2006b). Ligation of these by pathogen-associated molecular pat-
terns or other TLR ligands such as heat shock proteins leads to a range
of different outcomes. Notably, TLR2 ligands increase Treg cell
numbers through potentiating their release to antigen-stimulated
activation (Sutmuller et al., 2006a). Proliferation of Treg cells
exposed to TLR2 ligands is accompanied by loss of suppressive func-
tion, but withdrawal of the TLR2 stimulus results in immediate recov-
ery of suppressive ability (Sutmuller et al., 2006a). Similarly, ligation of
TLR8 abrogates Treg suppression (Peng et al., 2005), but in contrast,
TLR5 ligation enhances suppressive capacity (Crellin et al., 2005).
TLR9 ligands such as CpG oligodeoxynucleotides can promote Treg
cell generation through stimulating plasmacytoid DCs to increase
expression of costimulatory molecule B7, MHC class II and IDO
(Chen et al., 2008).

Mechanisms of immune suppression
by Treg cells
The mechanisms by which Treg cells exert their suppressive action are
still being defined. Treg cells have an extensive and diverse target cell
repertoire, and heterogeneous pathways operate depending on the
tissue and the identity of the target cell against which suppression is
directed. Initially, suppression of activation and proliferation of
CD4þ T-cells was thought to comprise the principal function of
Treg cells (Thornton and Shevach, 1998). However, Treg cells are
now known to inhibit proliferation and cytokine production in both
CD4þ and CD8þ T-cells (Piccirillo and Shevach, 2001), to suppress
B-cell proliferation and immunoglobulin production (Lim et al.,
2005), to inhibit cytotoxic function of natural killer (NK) cells
(Ghiringhelli et al., 2005a) and inhibit maturation and function of

antigen presenting cells including DCs and macrophages (Cederbom
et al., 2000; Misra et al., 2004; Taams et al., 2005). Thus, Treg cells
can target several stages of the adaptive immune response, spanning
the events of lymphocyte activation and proliferation, through to effec-
tor function.

Like all T-cells, Treg cells require engagement of their TCR with
cognate antigen to activate their full effector function (Thornton and
Shevach, 1998). In this regard, Treg cell suppression is antigen-specific,
with both pre-existing and newly generated Treg cells needing to
encounter antigen in order to exert their suppressive effects. The pre-
sence of IL-2 or IL-4 is also critical for Treg cell activation and facilitates
further rounds of antigen-driven Treg cell proliferation (Thornton et al.,
2004). However, once activated, Treg cells are capable of targeting
other cells in the vicinity and exerting suppression in an antigen non-
specific manner (Thornton and Shevach, 2000; Karim et al., 2005).

A major obstacle hindering the definition of Treg cell suppressive
action is their apparent multiple and redundant effector mechanisms
(Miyara and Sakaguchi, 2007). The general consensus is that unlike
other types of regulatory T-cells, Treg cells suppress largely in a contact-
dependent manner (Annunziato et al., 2002). Their in vivo and in vitro
activities may differ, with in vivo experiments implicating TGFb and
IL-10 in paracrine actions that augment their contact-dependent
mechanism of suppression (reviewed in Wahl et al., 2004a).

Different suppressive mechanisms most likely operate synergisti-
cally. It has recently been shown that Treg cells can act as an IL-2
‘sponge’, competitively depriving adjacent T-cells of autocrine IL-2,
and thus preventing the IL-2-dependent processes of T-cell activation
and proliferation (de la Rosa et al., 2004; Scheffold et al., 2005).
Additional suppression is mediated by paracrine cytokine production
or by cell-to-cell contact either directly between Treg cells and
target/effector cells or via third-party cells such as antigen-presenting
cells (Thornton and Shevach, 1998; Taams et al., 2005). Contact-
mediated suppression results from ligation of a range of Treg
surface molecules, namely CTLA-4, membrane-bound TGFb and
lymphocyte-activation gene 3 (Tivol et al., 1995; Gorelik and Flavell,
2000; Takahashi et al., 2000; Huang et al., 2004).

A unique property of Treg cells is their ability to transfer suppres-
sive capabilities to other cellular subsets in a phenomenon known as
bystander suppression (Jonuleit et al., 2002). This can be achieved
through Treg cells conferring upon target cells the ability to inhibit
downstream steps in the immune cascade. For example, Treg cells
can modify the phenotype of DCs to become tolerogenic DCs, or
induce T cell production of suppressive cytokines such as IL-10
(Hubert et al., 2002). This likely explains the notion of infectious tol-
erance, a process by which suppression to a third-party antigen can be
induced via physical association of that antigen with a previously toler-
ated antigen (reviewed in Waldmann et al., 2006). This is illustrated
when animals of strain A that are rendered tolerant to grafts from
strain B demonstrate prolonged tolerance of subsequent grafts from
(B�C) F1 animals, and eventually tolerate grafts from strain C
animals (Davies et al., 1996; Waldmann et al., 2006). Such a
process allows for a limited repertoire of antigens to induce a domi-
nant tolerant state to a much larger range of antigens that may sub-
sequently be encountered in the same tissue site. This characteristic
feature might be of special relevance in reproductive tissues where a
variety of antigens would be encountered in association with
gametes and the developing gestational tissues. Mast cells, which are

522 Guerin et al.



abundant in the uterus, have also been implicated as crucial interme-
diaries of Treg cell tolerance in allograft tissue, operating through
secretion of IL-9 (Lu et al., 2006).

Regulatory T-cells in
reproductive processes
The unique immunological challenges of reproduction are comparable
with situations where mature peripheral tissues express physiological
self-antigens that require tolerance, despite their absence of
expression in the thymus. Both sperm and oocytes express a range
of antigens such as late ontogeny lactate dehydrogenase c4 and the
zona pellucida proteins, respectively, that can induce activity auto-
immune orchitis and oophoritis when administered to naive recipients
(Garza et al., 2000). Similarly, despite modulated expression of MHC
antigens by placental cells (Trowsdale and Betz, 2006), the maternal
system shows evidence of activation against paternal MHC and
minor antigens during pregnancy in mice (Tafuri et al., 1995; Zhou
and Mellor, 1998) and women (Bertrams et al., 1971). Peripheral tol-
erance mechanisms are clearly involved in preventing maternal
immune rejection of the fetus in pregnancy (Trowsdale and Betz,
2006). The qualities and functions of regulatory T-cells make these
cells perfectly suited to controlling the immune response to reproduc-
tive antigens, and there is now substantial evidence confirming their
important roles in regulating tolerance to male and female gametes
and to the conceptus.

Treg cells in the testes and ovary
The ovary has been informative in understanding the roles of Treg cells
in protecting tissues expressing reproductive antigens from auto-
immune destruction. In mice, removal of the thymus shortly after
birth causes spontaneous ovarian autoimmune disease, but this can
be prevented by passive transfer of T-lymphocytes from spleens of
normal adult mice (Samy et al., 2006). The protection-conferring
population is now known to be CD4þCD25þFoxp3þ Treg cells,
and importantly, cells from females are intrinsically more potent sup-
pressors than cells from males, particularly when retrieved from the
lymph nodes draining the ovary (Samy et al., 2005). The gender-
specific effect can be reversed if males are grafted with ovaries prior
to recovery and transfer of Treg cells (Samy et al., 2006), showing
the antigen-specific nature of the Treg suppressive activity and the
necessity for persistent presence of the cognate tissue antigen in gen-
erating the ovary antigen-specific Treg cells. Autoimmune ovarian
disease is believed to result from operational failure of the normal
immune regulatory mechanisms required for normal tissue homeosta-
sis (Alard et al., 2001).

The converse situation occurs with male reproductive antigens,
where spleen cells from normal male donors are more effective in sup-
pressing epididymitis and orchitis than the Treg cells from female or
neonatally orchidectomized donors (Taguchi and Nishizuka, 1981),
indicating that native testicular tissue is required to generate suppres-
sive cells specifically targeted to antigens in that tissue. The testes
appear to have particular physical properties that confer a bias
towards generation of Treg cells rather than memory T-cells com-
pared with other sites such as the kidney capsule (Nasr et al.,
2005), an observation that at least partly explains the long-recognized

concept of testicular immune privilege. Interestingly, Sertoli cells may
be instrumental in activating testicular Treg cell responses due to
their expression of the immune-regulatory co-stimulatory molecule
programmed death ligand 1 (PDL1, also known as CD274 or
B7-H1) which binds programmed death 1 (PD1) expressed by Treg
cells and inhibits proliferation of CD8þ T-cells (Dal Secco et al., 2008).

Treg cells in rodent models of pregnancy
The first report implicating Treg cells in pregnancy appeared in 2004,
when it was shown that CD4þCD25þ cells increase in number in the
blood and lymph nodes of pregnant mice (Aluvihare et al., 2004). An
expanded Treg cell pool is detectable in lymph nodes draining the
uterus from as early as 2 days after mating, whereas elevated blood
levels do not become evident until after implantation (Aluvihare
et al., 2004). The increase in Treg cells is associated with accumulation
of Foxp3þ cells and Foxp3 mRNA expression in the uterus, as well as
elevated lymphocyte suppressive function in the spleen and lymph
nodes. The systemic expansion in Treg cell populations occurs inde-
pendently of fetal alloantigens, since Treg cell numbers are elevated
over non-pregnant levels in both syngeneic and allogeneic pregnancies,
suggesting involvement of factors such as pregnancy hormones (Aluvi-
hare et al., 2004). However, conceptus alloantigen leads to a greater
increase in Treg cell numbers, and is associated with specific suppres-
sion of anti-paternal alloantigen reactivity (Zhao et al., 2007). The
early increase in Treg cell numbers even prior to embryo implantation
was confirmed in another study (Thuere et al., 2007). Interestingly, the
increase in Treg cells is not sustained throughout pregnancy but pro-
gressively declines from mid-gestation to return to non-pregnant levels
by fetal delivery at term (Zhao et al., 2007). CD8þ regulatory cells
have also been implicated in suppression of fetal immune rejection
from early pregnancy in mice (Clark et al., 1994; Blois et al., 2004a).

The physiological necessity of Treg cells for pregnancy was elegantly
demonstrated using an adoptive transfer model, wherein complete
T-cell populations or populations depleted of CD4þCD25þ Treg cells
were transferred into pregnant T-cell-deficient mice (Aluvihare et al.,
2004). In the absence of Treg cells, allogeneic fetuses were uniformly
rejected, whereas syngeneic fetuses were unaffected (Aluvihare et al.,
2004). These findings were confirmed in another approach using
passive transfer of CD25-reactive PC61 monoclonal antibody to
deplete CD25þ cells in vivo (Darrasse-Jeze et al., 2006). When mice
mated with allogeneic or syngeneic males were administered PC61 on
the day of mating, activated CD8þ and CD4þ cell populations were
expanded in the lymph nodes draining the uterus and fewer allogeneic
fetuses survived to term, whereas no effect on syngeneic pregnancies
was observed (Darrasse-Jeze et al., 2006). Collectively, these studies
support the notion that Treg cells are required to suppress maternal
immune responses targeted against fetal alloantigens, rather than male-
specific or trophoblast-specific minor histocompatibility antigens.

In a further demonstration of the importance of Treg cells for
maternal– fetal tolerance, fewer CD4þCD25þ cells associated with
elevated Th1 cell activity were found in the decidual tissues of
abortion-prone CBA/J mice mated with DBA/2J males. Adoptive
transfer of Treg cells, purified from normal pregnant mice, elevated
decidual Foxp3 mRNA levels and prevented fetal loss (Zenclussen
et al., 2005). Interestingly, transfer of Treg cells from non-pregnant
normal mice to the abortion prone mice was ineffective, and transfer
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of Treg cells on or after day 4 of pregnancy did not prevent abortion
(Zenclussen et al., 2005). Consistent with this, depletion of Treg cells
using PC61 during the first 2 days of pregnancy led to implantation
failure (Zenclussen et al., 2005). Together, these findings show that
Treg cells are essential during the first days of pregnancy, even prior
to the time of embryo implantation.

Transfer of exogenous Treg to abortion-prone mice was associated
with elevated expression of leukaemia inhibitory factor, TGFb and
heme oxygenase-1 at the maternal– fetal interface, whereas IDO as
well as Th1 cytokines interferon-g (IFNg) and TNFa were unchanged
(Zenclussen et al., 2006). These data suggest molecular mechanisms of
Treg cell operation are not necessarily restricted to limiting Th1 cells
or pro-inflammatory cytokine expression. An interaction between
PDL1-expressing decidual cells and PD1 on Treg cells is also essential
for Treg-mediated protection of alloantigenic fetuses, since adoptive
transfer of Treg cells from wild-type mice reversed the high incidence
of alloantigen-expressing fetal death in PDL1 null mutant mice
(Habicht et al., 2007).

Treg cells in human pregnancy
Several studies have examined the dynamics of lymphocyte subpopu-
lations during pregnancy in women. An increased expression of CD25
on decidual lymphocytes compared with peripheral blood lympho-
cytes was described in 1992 (Saito et al., 1992). Later, decreased
CD25 expression in decidual tissue of normal pregnancies compared
with luteal phase tissue was reported (Chao et al., 2002). However,
these studies examined CD25þ cells, without regard to markers defi-
nitively identifying Treg cells.

The first observations on CD4þCD25þ cells in human pregnancy
described an increase in this subset in early pregnancy decidual
tissue (Sasaki et al., 2003). Other reports demonstrated an increase
in circulating CD4þCD25þ cells during early pregnancy with a peak
phase at the second trimester and a decline post-partum to levels
slightly higher than pre-pregnancy levels (Heikkinen et al., 2004; Som-
erset et al., 2004). The elevation during the first and second trimesters

has been confirmed in studies more precisely identifying Treg cells as
CD25high cells (Sasaki et al., 2004; Saito et al., 2005; Tilburgs et al.,
2006; Zhao et al., 2007), and a clear decline in CD4þCD25high Treg
cells occurs during the weeks just prior to delivery (Zhao et al.,
2007). The CD4þCD25þ T-cells comprising the expanded pool in
pregnancy are highly enriched for FOXP3 and exert suppressive func-
tion in vitro (Somerset et al., 2004). Furthermore, cells expressing the
Treg cell activation marker CTLA-4 are more prevalent in peripheral
blood and term deciduas of normal healthy pregnant women com-
pared with non-pregnant women (Heikkinen et al., 2004). Several
studies report that Treg cells accumulate in decidual tissue at densities
greater than in peripheral blood (Sasaki et al., 2004; Tilburgs et al.,
2006). Treg cells from peripheral blood of pregnant and non-pregnant
women suppress anti-alloantigen responses in vitro, with differential
capacity to suppress anti-paternal as opposed to irrelevant alloantigen
responses (Mjosberg et al., 2007).

As in mice, Treg cell numbers in women decline as term
approaches. The percentage of CD3þ lymphocytes that express
CD4 and CD25 are significantly decreased in deciduas in spontaneous
vaginal delivery compared with elective Caesarean section (Sindram-
Trujillo et al., 2004). These findings were recently confirmed by a
study showing a sharp decrease in CD4þCD25high Treg cells
towards the end of pregnancy and an increase in CD4þCD25low

T-cells (Zhao et al., 2007). This implies a potential role for Treg
cells in the immunological changes preceding labour, and prompts
speculation that their decline might be a causal factor in fetal expulsion
from the maternal tissues. However, studies using more specific
markers and animal models are needed to address the possibility of
any active role of Treg cells in parturition.

Treg cells in infertility, miscarriage
and pregnancy complications
Several studies report an association between Treg cell paucity and
complications of pregnancy (Fig. 3), particularly pre-eclampsia. There
is abundant evidence that immunological factors are crucial for the

Figure 3 Deficiency in Treg cell numbers and/or suppressive function are associated with infertility, recurrent spontaneous abortion and pre-
eclampsia in women.
Studies in mouse models show that in normal pregnancy, adequate Treg cell function acts to suppress Th1-mediated maternal attack of the semi-
allogeneic conceptus, but Treg cell depletion leads to insufficient suppression and Th1-mediated fetal loss.
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development of this common disease, which in developed countries is
responsible for �15–20% of maternal mortality (Sargent et al.,
2006a). In pre-eclampsia, Th1 dominance develops together with an
increased inflammatory response towards the fetus (Saito and Sakai,
2003; Sargent et al., 2006a), raising the question of whether this
might be secondary to impaired function or decreased numbers of
Treg cells.

Initially, it was reported that the number of CD3þCD25þ lympho-
cytes is decreased in peripheral blood of women with
gestational-induced hypertension and especially in the event of pre-
eclampsia (Mahmoud et al., 2003); however, no Treg cell specific
markers were used to confirm this. Although another study found
no association between pre-eclampsia and changes in peripheral
blood Treg cell levels (Paeschke et al., 2005), several subsequent
studies have reported that CD4þCD25high T-cells are significantly
reduced in both the peripheral blood and decidual tissue of pre-eclamptic
patients compared with normal pregnant women (Darmochwal-Kolarz
et al., 2007; Sasaki et al., 2007). Observations that the tryptophan
catabolizing enzyme IDO is decreased in pregnancies complicated by
pre-eclampsia is consistent with diminished Treg cell activity in preg-
nancy (Santoso et al., 2002; Nishizawa et al., 2007), with decreased
IDO potentially caused by, and contributing to, insufficient Treg cell
activity (Grohmann et al., 2002). A preliminary report suggests a poss-
ible bias towards Th17 cells over Treg cells in women suffering third
trimester pre-eclampsia (Santner-Nanan et al., 2008).

Recurrent spontaneous miscarriage has also been associated with a
mal-adaptation in the maternal immune system (Laird et al., 2003).
Several studies report increased numbers of CD3þCD25þ cells in
the decidua at the time of spontaneous abortion compared with
decidua recovered at therapeutic abortion (Vassiliadou et al., 1999;
Quack et al., 2001). However, the proportion of Treg cells among
these cells is evidently reduced, since both decidual and peripheral
blood CD4þCD25high T-cells are lower in tissues recovered after
spontaneous abortion compared with induced abortions and non-
pregnant women (Sasaki et al., 2004; Yang et al., 2008a). Reduced
responsiveness to pregnancy-associated expansion of Treg cell popu-
lations, due to numerically fewer Treg cells as well as Treg functional
deficiency, may underpin a reduced immunosuppressive capability and
cause predisposition to miscarriage. In a comprehensive study, women
experiencing repeated miscarriage were shown to have a reduced fre-
quency of Treg cells within the peripheral blood CD4þ pool, and
reduced suppressive capacity, compared with normal fertile women
(Arruvito et al., 2007).

Primary unexplained infertility has also been associated with reduced
expression of FOXP3 mRNA in endometrial tissue (Jasper et al., 2006),
suggesting that impaired recruitment of Treg cells, or insufficient differ-
entiation of uterine T-cells into Treg cells even prior to conception may
affect the capacity to establish pregnancy in women.

Origin and antigen specificity of Treg
cells in pregnancy
Defining the pathways of Treg generation and the consequences for
specific functional roles is critical for understanding how Treg cells
operate in reproductive processes, and for designing possible interven-
tions to exploit these cells to improve fertility and pregnancy out-
comes. We have only incomplete knowledge of the tissue origins of

decidual Treg cells and the roles of conceptus antigens and other
factors including cytokines and hormones in driving their expansion
in early pregnancy, but there is sufficient emerging information to
build a working model (Fig. 4).

In both mice and women, there is evidence of ovarian
hormone-regulated fluctuations in uterine Treg cell populations. In
mice, administration of 17-b-estradiol (E2) to ovariectomized mice
causes elevation in Treg cell numbers and Foxp3 mRNA expression,
and in vitro experiments using CD4þCD252 cells show direct induc-
tion of Foxp3 by E2 (Polanczyk et al., 2004). Treg cells accumulate
in the uterus during the estrus phase of the reproductive cycle as evi-
denced by elevated Foxp3 mRNA expression, potentially in response
to estrogen-induced expression of several chemokines that target the
CCR5 chemokine receptor expressed by Treg cells (Kallikourdis and
Betz, 2007). In women, a comparable expansion in CD4þCD25þ-

FOXP3þ Treg cells occurs in the peripheral blood during the late fol-
licular phase of the menstrual cycle, when cell abundance tightly
correlates with serum E2 levels, and then is followed by a dramatic
decline at the luteal phase (Arruvito et al., 2007). Direct actions of
E2 on Treg proliferation and suppressive function may contribute to
these cycle-related fluctuations (Prieto and Rosenstein, 2006). Thus,
each reproductive cycle elicits a relative expansion of Treg cell popu-
lations. However, it is important to note that since Treg cells require
exposure to antigen to exert their full suppressive function, estrogen
alone would be insufficient to activate Treg cells for pregnancy, and
instead can be viewed as potentiating Treg cells in preparation for
stimulation by pregnancy-associated antigens.

The Treg cell pool is further expanded during early pregnancy in
mice and humans and several observations suggest that they have a
key protective role when the maternal tissues first come into
contact with conceptus antigens associated with invading placental tro-
phoblast cells. Both antigen-associated and antigen-independent
mechanisms are likely to contribute to the further expansion in Treg
cell populations observed in early pregnancy. The thymus appears
not to be the origin of the elevated numbers of Treg cells in pregnancy
(Zhao et al., 2007), so by default a peripheral tissue pathway of
generation must occur, in line with studies implicating the uterus
draining lymph nodes as the predominant site of Treg pool expansion
(Zhao et al., 2007). The relatively elevated numbers of Treg cells in
tissues of mice bearing allogeneic pregnancies (Kallikourdis et al.,
2007; Zhao et al., 2007) suggest fetal alloantigens act to drive Treg
cell proliferation. Non-MHC antigens and non-classical MHC mol-
ecules expressed by placental trophoblast cells are implicated, and
indeed a population of CD8þ T cells with regulatory properties that
is activated in response to co-stimulation by the carcinoembryonic
antigen family present on trophoblast cells has been described in
women (Shao et al., 2005). Heat shock protein-60 (HSP-60) is
another candidate trophoblast protein for T-cell recognition (Hey-
borne et al., 1994) and is identified as a target antigen for Treg cells
in atherosclerosis (Yang et al., 2006). Since antigen presenting cells
expressing human leukocyte antigen-G (HLA-G) preferentially
induce suppressive activity in CD4þ T-cells (LeMaoult et al., 2004),
it is possible that trophoblast cell HLA-G also acts to influence the
number of Treg cells in the implantation site. Furthermore, PDL1 is
strongly expressed by human placental trophoblast cells and a role
in influencing cytokine expression by decidual regulatory T-cells is
indicated (Taglauer et al., 2008).
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Antigen-driven proliferation of Treg cells is evident in lymph nodes
draining the uterus, and might also occur within the decidual tissue,
where abundant populations of mature myeloid DCs capable of pre-
senting trophoblast cell antigens are present (Blois et al., 2004c).
These DCs express markers indicative of a tolerogenic phenotype
(Blois et al., 2007b) which is likely to be maintained by the GM-CSF,
IL-10 and IL-4-dominated cytokine environment of the decidual
tissue (Robertson, 2000). A notable role for an immunoregulatory
glycan binding protein, galectin-1 in inducing tolerogenic DCs and sup-
porting their capacity to generate decidual Tr1 cells is shown by loss of
allogeneic pregnancies in mice deficient in galectin-1 (Blois et al.,
2007a).

The mechanisms for recruitment of Treg cells in the decidual tissue
after embryo implantation are likely to be modified compared with the
non-pregnant state. Expression of chemokine (C–C motif) receptor 5
(CCR5) may facilitate accumulation and retention of antigen-activated
effector Treg cells in the implantation site since Treg cells in the gravid
uterus are predominantly CCR5þ. This marker is associated with a
highly suppressive phenotype and may be a marker for those cells
that have been activated by paternal alloantigen (Kallikourdis et al.,
2007). One CCR5 ligand in particular, chemokine (C–C motif)
ligand 4 (CCL4), is intensely expressed in the gravid uterus and may
mediate the further selective accumulation of these cells in pregnancy

(Kallikourdis and Betz, 2007). The Treg cells that accumulate in the
decidual tissue in pregnancy show specificity in their suppressive func-
tion for fetus alloantigens, indicating there is preferential recruitment
from maternal peripheral blood, or possibly local expansion of Treg
cells reactive with conceptus tissue (Tilburgs et al., 2008).

Consistent with a possible role for normal embryonic development
in regulating Treg numbers, CD25þCD3þ cells are decreased in the
decidual tissues of women with ectopic pregnancies, compared to
tissues from women with normal pregnancies, while numbers in the
peripheral blood were unchanged (Ho et al., 1996). However,
interpretation of this study is limited by lack of utilization of a specific
marker for Treg cells. Conversely, Treg cells were more abundant in
implantation sites in partial and complete molar pregnancies, where
Treg cell numbers positively correlated with CD8þ cytotoxic T-cells
(Nagymanyoki et al., 2007). An intact conceptus may therefore not
be required for recruitment of Treg cells, but a role for trophoblast
antigens or immunoregulatory agents seems likely.

Role of seminal fluid in activating
Treg cells for pregnancy
Exposure to paternal alloantigen occurs in two waves in the reproduc-
tive process—initially during transmission of seminal fluid at coitus

Figure 4 A working model of the key steps in the induction and effector pathways of Treg cell activation, expansion and suppressive function to
mediate maternal– fetal tolerance.
The sequence of events includes (1) antigen uptake and processing within tolerogenic DCs; (2) trafficking of DCs to draining lymph nodes and pres-
entation of antigen fragments on the surface of the DC in association with MHC molecules; (3) interaction between the DC and Treg cells expressing
cognate TCRs in the presence of IL-2 and/or IL-15 to elicit their activation and proliferation; (4) recruitment of Treg cell populations from the maternal
circulation into the decidual tissue mediated by CCL4 and (5) exertion of specific effector functions, including secretion of IL-10 and TGFb, and indu-
cing IDO expression in target DCs to further activate and maintain suppressive function in Treg cells, inhibit Th1 cell proliferation and induce Th1 cell
apoptosis. Specific cytokines including TGFb, GM-CSF, IL-4, IL-10, G-CSF and prostaglandin E known to predominate the uterine cytokine milieu are
identified as regulators of tolerogenic DCs. Ag, antigen; CCL4, chemokine (C–C motif) ligand 4; DC, dendritic cell; G-CSF, granulocyte
colony-stimulating factor; GM-CSF, granulocyte-macrophage colony-stimulating factor; IDO, indoleamine 2,3-dioxygenase; IL, interleukin; MHC,
major histocompatibility complex; TGF, transforming growth factor.
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(Robertson and Sharkey, 2001), and secondly when placental tropho-
blast cells invade maternal tissues after embryo implantation (Redline
and Lu, 1989; Jaffe et al., 1991). This raises the possibility that male
alloantigens present in seminal fluid may contribute to activating and
expanding the antigen-specific Treg cell pool prior to conceptus
antigen encounter. CD4þCD25þ Treg cell abundance increases
within days after mating in mice (Aluvihare et al., 2004) and there is
evidence of antigen specificity in the Treg cell response even before
embryo implantation (Kallikourdis et al., 2007; Zhao et al., 2007). In
both mice and women, seminal fluid elicits an inflammation-like
response in the female reproductive tract associated with recruitment
of DCs into the endometrial and cervical tissues (Robertson et al.,
1996; Robertson, 2005, 2007; Sharkey et al., 2007). These DCs are
capable of processing male antigens in seminal fluid and activating
T-cells in draining lymph nodes (Johansson et al., 2004). Recent obser-
vations in mice exposed to seminal fluid in the absence of conception
support a role for seminal fluid in driving Treg cell activation and pro-
liferation, resulting in which promotes tolerance of paternal alloanti-
gens at the time of embryo implantation (Robertson et al., 2009).
The high levels of TGFb and prostaglandin E in seminal fluid (Robert-
son et al., 2002) are likely to be important in skewing the T-cell
response towards the Treg cell phenotype.

Such a process would explain epidemiological observations that
exposure of the mother to the conceiving partners semen reduces
the rate of pre-eclampsia (Marti and Herrmann, 1977; Robillard
et al., 1994). Seminal fluid shares many of the same paternal antigens
later expressed by the conceptus; however, the nature of Treg cells
would not necessitate that the full repertoire of conceptus antigens
should be present at the site of initial Treg cell priming. When
applied in the context of pregnancy, the notion of bystander tolerance
conferred by Treg cells might explain why repeated exposure of the
female reproductive tract to a limited panel of paternal antigens in
seminal fluid, or alternatively prolonged exposure to a small number
of trophoblast antigens early in pregnancy, may be sufficient to
prime the maternal immune system to tolerate a wider repertoire
of additional antigens expressed later in gestational tissues.

Therapeutic potential of
regulatory T-cells in
reproductive medicine
The pivotal role of Treg cells in pregnancy and the clear association
between their deficiency and pregnancy pathologies raise the enticing
prospect of exploiting Treg cells in new therapeutic options for preg-
nancy complications where insufficient immune tolerance is implicated.
Although to date there are no reports of efforts to manipulate Treg
cell numbers to assist pregnancy, therapeutic interventions for allograft
tolerance and auto-immune disease treatment are under development
(Cobbold et al., 2003; Allan et al., 2008) and these might reasonably
be extrapolated as candidate treatments for pregnancy disorders. In
particular, the potential exploitation of Treg cells to promote toler-
ance for alloantigens in tissue transplantation is driving extensive
efforts to increase Treg cell numbers and/or their suppressive capacity
by a variety of strategies (Fig. 5). Emerging insights on the mechanistic
basis of tumour-induced tolerance via Treg cell induction (Munn and
Mellor, 2006) and studies in animals showing that in vivo depletion

of Treg cells can drive regression of syngeneic tumours (Shimizu
et al., 1999) have prompted development of therapies to deplete
Treg cells for treatment of cancers where tumour-mediated elevation
of Treg cells is evident (Gallimore and Godkin, 2008). The current
state of investigation targeting Treg cells in human diseases is summar-
ized below, highlighting features that might be relevant to applications
in the reproductive domain.

Harvesting and expanding Treg cell
populations in vitro
A range of strategies is under investigation to expand Treg cell numbers, in
both an antigen-specific and a non-specific manner. Current approaches
typically involve cell-based therapies using either adoptive transfer of ex
vivo manipulated Treg cells or induction of FOXP3 expression in naive lym-
phocytes (Verbsky, 2007). However, several hurdles need to be over-
come before either of these strategies can be implemented. The
attractive approach of increasing Treg cell numbers by recovery and
expansion of an individual patient’s Treg cells ex vivo (Masteller et al.,
2006) is currently limited by the ability to isolate Treg cells from human
samples with high purity. The intracellular nature of FOXP3 means it
cannot be utilized for cell purification.

Typical isolation protocols use magnetic beads that purify cells
based on the expression of surface markers such as CD4, using posi-
tive selection for these cell types or elimination of non-CD4þ cells, fol-
lowed by multiple rounds of selection for CD25þ cells (Hoffmann
et al., 2006; Bresatz et al., 2007). However, this approach fails to
yield sufficient purity as CD25 also isolates activated T-cells and fails
to discriminate between the CD25high cell population, which includes
the majority of human Treg cells, and CD25intermediate cells that largely
comprise non-regulatory T-cells. Consequently, when the isolated
cells are expanded in vitro, the anergic nature of Treg cells means
that any contaminating T-cell subsets expand faster and result in a
low percentage of the desired suppressive populations (Baecher-Allan
et al., 2005). Adoptive transfer of preparations that contain activated/

Figure 5 Several strategies for increasing Treg cell activity are in
development as novel tissue transplantation therapies or treatments
for autoimmune disease, and analogous approaches might have appli-
cations in reproductive medicine.
These include (1) administration of IDO-inducing agents or cytokines
(such as G-CSF) to expand the pool of tolerogenic DCs; (2) delivery
of tolerogenic DCs after pulsing with specific antigen; (3) delivery of
antigen in a form such as apoptotic cellular material known to stimu-
late Treg proliferation and (4) delivery of antigen-specific Treg cells
after recovery and ex vivo expansion. DC, dendritic cell.
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reactive T-cells could, in opposition to the desired effect, adversely
affect tolerance.

Another protocol for isolating Treg cells uses multiple surface
markers in combination including CD4, CD25, CTLA4 and CD127,
followed by fluorescent-activated cell sorting (Hoffmann et al., 2004;
Hartigan-O’Connor et al., 2007). Although this technique can
produce a highly purified population, the quantity of cells generated
is substantially lower than with magnetic bead protocols, and as a
result, significant levels of in vitro expansion are required. This
problem has largely been overcome in the past few years. Although
traditional protocols expand cell numbers �40-fold (Bresatz et al.,
2007; Chai et al., 2008), some current protocols can routinely yield
�13 000-fold increase in Treg cell numbers in a period of 3–4
weeks (Hoffmann et al., 2004). Importantly, these expanded Treg
cells maintain their suppressive capacity and in some cases show
increased suppressive ability (Chai et al., 2008). A better understand-
ing of the requirement of signalling and co-stimulatory factors in Treg
cell proliferation and homeostasis will allow more efficient expansion
protocols. For example, blockade of phospholipase D signalling using
primary alcohols in ex vivo cultures selectively expands Treg cells
over effector T-cells (Singh et al., 2006). The major limiting factor in
implementing in vitro cell-based therapies is now the lengthy time
and cost of such labour intensive procedures. Additionally, standar-
dized procedures and good manufacturing practice in cell-based thera-
pies are yet to be implemented.

Promoting development of Treg cells
in vivo and in vitro
Alternative strategies for augmenting Treg cell activity involve the
manipulation of naive CD4þ T-cells to induce FOXP3 expression.
There is a growing body of evidence that FOXP3þ cells can be gener-
ated from naive T-cells in the periphery through stimulation with low
levels of antigen (Apostolou and von Boehmer, 2004) or by delivering
antigens in association with DCs (Cobbold et al., 2003; Kretschmer
et al., 2005). The efficacy of this approach both in vitro and in vivo is
improved when DCs are conditioned into a tolerogenic phenotype
by addition of exogenous cytokines or by transfection with immuno-
suppressive cytokine genes (Rutella and Lemoli, 2004). The challenge
of this approach is the necessity for pulsing DCs with the appropriate
antigen, to ensure that sufficient T-cells expressing cognate TCRs
respond.

Ectopic lenti-viral-induced expression of FOXP3 is another proposed
technique for conversion of naive T-cells into suppressive cells.
However, whether FOXP3 transformed cells represent a true regulatory
phenotype is still in question (Gavin et al., 2006). Furthermore, the
amount of in vitro manipulation involved in this approach outweighs
that required for purification and expansion of pre-existing Treg cells.

The ability to generate new Treg cells in vivo without the need for
prior isolation and in vitro manipulation would circumvent many of
the problems and cost involved in the aforementioned approaches.
With the incomplete knowledge of the factors driving the generation
and maintenance of Treg cells in vivo, the ability to expand these cells
within an individual is yet to be exploited to its full potential. Currently,
few strategies exist to artificially augment Treg cell numbers without
the need for in vitro manipulation. One current approach involves
the concurrent injection of IL-2 and the anti-IL-2 antibody JES6-1.

When administered, these form a complex that has high affinity for
IL-2Ra (CD25), which is constitutively expressed at high levels on
Treg cells, leading to an �4-fold selective expansion of
CD4þCD25þ cells (Boyman et al., 2006).

Another alternative for driving endogenous regulatory T-cell pro-
duction might be administration of granulocyte colony-stimulating
factor (G-CSF). This cytokine, which is conventionally utilized in treat-
ment of severe chronic neutropenia or in bone marrow transplant
patients, has been shown to be efficacious in Treg cell generation
(Rutella et al., 2002; Rutella and Lemoli, 2004). G-CSF treatment is
reported to induce development of tolerogenic DCs, which in turn
elicit potently suppressive regulatory T-cells reminiscent of Tr1 cells
(Rutella et al., 2002). However, an important pitfall of this approach
is the possibility of phenotype reversion in G-CSF-induced DCs,
leading to the opposite effect of inducing immunity.

Exploiting the IDO pathway provides additional novel opportunities
for manipulating Treg cells in vivo. IDO can now be considered a
physiological Treg cell activator, and therapeutic treatments to
induce IDO expression or augment IDO enzymatic activity in DCs
seem feasible options for inducing Treg cells, analogous to mechan-
isms utilized by tumour cells (Curti et al., 2007). Over-expressing
IDO utilizing adenovirus or transposon-mediated gene therapy in
lung tissue has been shown to have potent effects on persistence of
allogeneic lung transplants, associated with suppression of allo-reactive
T-cells (Swanson et al., 2004; Liu et al., 2006a). An FDA-approved
treatment for the rheumatoid arthritis utilizes CTLA-4-Ig to
promote tolerance by targeting the IDO pathway. In several animal
models, CTLA-4-Ig treatment has been shown to increase allogeneic
graft survival and reduce clonal T-cell expansion linked with elevated
IDO expression in DCs (Grohmann et al., 2002; Mellor et al.,
2003). Importantly, suppression was abrogated by the IDO inhibiting
agent 1-methyl tryptophan, implicating IDO as a critical factor in the
treatment effect.

Prospects for utilizing Treg cells in
treatments for infertility and subfertility
The efforts to devise Treg therapies for tissue transplantation show
exciting promise and the lessons learnt will be valuable for developing
analogous therapies for reproductive disorders. It seems reasonable
that boosting the number and/or activity of Treg cells reactive with
appropriate conceptus antigens should confer stronger immune toler-
ance in women prone to unexplained infertility, miscarriage or pre-
eclampsia due to intrinsic tolerance deficiency. Animal studies that
support this concept are beginning to appear in the literature, with
recent reports of elevated Treg cells protecting against fetal loss in
the abortion-prone CBA/J x DBA/2J mouse model (Zenclussen
et al., 2005), and exogenous TGFb delivered at conception boosting
vaginal Treg cell numbers and also reducing fetal loss in the CBA/J
x DBA/2J model (Clark et al., 2008). Interestingly, the peri-conceptual
timing of these successful interventions suggests that in women, Treg
cell boosting might be efficacious if achieved even prior to the index
pregnancy.

The first reported clinical study targeting the regulatory T-cell nexus
has utilized G-CSF treatments in women experiencing recurrent mis-
carriage. Administration of Filgrastim (G-CSF) for the first 30 days of
pregnancy showed promise in a small pilot study in reducing the
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incidence of subsequent miscarriage (Scarparelli and Sbracia, 2004). As
expected, G-CSF treatment appears to be associated with an increase
in circulating CD4þCD25þ Treg cells and DCs (Scarparelli and
Sbracia, 2007). Despite these encouraging initial results and the estab-
lished safety of this drug (Dale et al., 2003), it is somewhat concerning
that pre-clinical animal studies to investigate the effects of G-CSF
therapy on fetal and post-natal parameters have not been reported,
particularly in view of mounting evidence for cytokine effects on
fetal programming (Sjoblom et al., 2005).

Another strategy worthy of clinical evaluation would involve recov-
ery and in vitro priming of DCs with male partner MHC antigen, in an
approach analogous to treatments under development for allogeneic
graft rejection (Rutella and Lemoli, 2004), utilizing cytokines to con-
dition DCs into a tolerogenic phenotype prior to transfer (Sato
et al., 2003). A simpler possibility might involve transferring male
partner-derived MHCþ apoptotic cells, which would then be pro-
cessed by recipient DCs in vivo (Morelli and Thomson, 2003). The
validity of these strategies is supported by an experiment in CBA/J
x DBA/2J mice where paternal alloantigen-pulsed DCs elicited a
short-lived reduction in abortion rates, although whether the effect
was mediated through increased Treg cells was not examined (Blois
et al., 2004b).

Investigation of IDO-inducing reagents such as CTLA4-Ig that are
currently in use as immunosuppressants for other clinical applicants
also seems worthwhile in the reproductive setting. The benefit of
these agents is their generic, antigen-independent nature; however,
there may be pitfalls associated with the lack of specific targeting of
tissue-specific Treg cell populations.

However, it is important to caution that any attempts in women to
alter Treg cell number or function during or prior to pregnancy must
be based in a sound biological rationale, informed by knowledge of the
antigens against which pregnancy-associated Tregs are normally tar-
geted, and taking into account the natural ontogeny, timing of acti-
vation and regulators governing these cells. Compelling pre-clinical
animal data will be essential to provide proof-of-concept and to
justify any clinical attempt to boost Treg cells in women. Although
there are differences in the detail of the precise mechanisms mediating
maternal immune tolerance in rodents and humans, the data available
to date support the reasonable likelihood of a comparable role for
Treg cells in both species. As well as the abortion-prone mouse
model, genetic mouse models that allow fine manipulation of Treg
cell numbers, such as the DEREG mouse where low-dose diphtheria
toxin can be utilized to selectively and acutely deplete Treg cells
(Lahl et al., 2007), will be valuable tools for more fully defining Treg
cell functions in pregnancy.

The long controversy surrounding the use of paternal
allo-immunization as a treatment for miscarriage patients resulted
from incomplete understanding of the relevant biological mechanisms
and failure to engage the correct path to clinical translation (Porter
et al., 2006). It is essential that new and promising reproductive immu-
nology therapies do not suffer the same fate. In view of our emerging
knowledge on the mechanisms controlling induction of tolerance
versus immunity, it seems likely that administration of paternal
antigen without appropriate tolerance-inducing agents might in some
women aggravate Th1 or Th17-mediated immunity, rather than
induce Treg cells.

Comprehensive clinical trials will be essential to ensure that no
adverse effects result from manipulating Treg cells. The risk–benefit
analysis of experimental treatments in otherwise healthy, reproductive
aged women is ethically challenging compared with patients suffering
terminal illness or a debilitating autoimmune condition. Relevant con-
cerns might include inadvertently exacerbating an inappropriate
immune response, whereas an overly robust maternal Treg response
could cause diminished ability to reject chromosomally abnormal
embryos, and/or predispose to aggressive placental invasion of
maternal tissues (placenta accreta). Increasing susceptibility to chorio-
carcinoma, gynaecological or unrelated tumours through artificially
expanding Treg cell populations is a further serious risk, needing
careful and thorough evaluation. Finally, since reproductive pathologies
result from multiple aetiologies, robust and practical diagnostics for
defining individual women or couples at risk of Treg cell-deficient preg-
nancy will need to be developed.

Conclusions and future
perspectives
Collectively, the emerging literature provides a compelling case that
Treg cells have an important role in successful pregnancy. That
several studies show a peak of Treg cells in the first trimester of preg-
nancy implies a particularly important role for Treg cells in implan-
tation and the initial wave of placental invasion of the maternal
tissues during early pregnancy. Insufficient Treg cell numbers and/or
function appear to be associated with several complications of preg-
nancy; however, the underlying mechanisms governing Treg cell
numbers and function in the implantation site, and the reasons for
their deficiency in some reproductive pathologies, are not clear.

To understand the function and dynamics of Treg cells during preg-
nancy, more basic research is needed. In particular, the origin and
nature of the eliciting antigens and the roles of cytokines, IDO, TLR
ligands and other regulatory factors driving activation and expansion
of conceptus antigen-reactive Treg cell populations in early pregnancy,
as well as the chemokine signals regulating their recruitment and
retention in the uterus, have to be defined. The utility of many existing
studies is limited by their use of CD25 as a Treg cell marker, under-
scoring the need for consistent use of Foxp3 and other specific
surface markers to definitively identify Treg cells. Defining the nature
and significance of Treg cell interactions with other uterine leukocyte
populations, notably DCs, NK cells and mast cells, should also be a
research priority.

There is no doubt that Treg cells offer an attractive target for treat-
ment of disease and hold great promise for reproductive applications;
however, ultimately the science of manipulation of Treg cell numbers
is still in its infancy. As our understanding of the origins and factors
controlling Treg cells expands, their utility as therapeutic agents will
begin to be actualized through clinical trial evaluation. Any treatment
will need to meet the requirements of safety, efficacy and ease of
administration that govern the development of all pharmaceutical
agents. Once this is achieved, and with their distinct importance in
reproduction, it is highly likely that they will become a powerful new
tool for the treatment of fertility pathologies stemming from disturb-
ances in immune tolerance.
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