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Abstract
The utility of biomechanical models and simulations to examine clinical problems is cur-

rently limited by the need for extensive amounts of experimental data describing how a

given procedure or disease affects the musculoskeletal system. Methods capable of pre-

dicting how individual biomechanical parameters are altered by surgery are necessary for

the efficient development of surgical simulations. In this study, we evaluate to what extent

models based on limited amounts of quantitative data can be used to predict how surgery

influences muscle moment arms, a critical parameter that defines how muscle force is trans-

formed into joint torque. We specifically examine proximal row carpectomy and scaphoid-

excision four-corner fusion, two common surgeries to treat wrist osteoarthritis. Using mod-

els of these surgeries, which are based on limited data and many assumptions, we perform

simulations to formulate a hypothesis regarding how these wrist surgeries influence muscle

moment arms. Importantly, the hypothesis is based on analysis of only the primary wrist

muscles. We then test the simulation-based hypothesis using a cadaveric experiment that

measures moment arms of both the primary wrist and extrinsic thumb muscles. The mea-

sured moment arms of the primary wrist muscles are used to verify the hypothesis, while

those of the extrinsic thumb muscles are used as cross-validation to test whether the

hypothesis is generalizable. The moment arms estimated by the models and measured in

the cadaveric experiment both indicate that a critical difference between the surgeries is

how they alter radial-ulnar deviation versus flexion-extension moment arms at the wrist.

Thus, our results demonstrate that models based on limited quantitative data can provide
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novel insights. This work also highlights that synergistically utilizing simulation and experi-

mental methods can aid the design of experiments and make it possible to test the predic-

tive limits of current computer simulation techniques.

Introduction
Orthopaedic surgery imposes substantial geometric changes on the musculoskeletal system.
Changing geometry directly affects joint congruence and muscle-tendon paths, which in turn
affect joint mechanics, muscle-tendon force-generating parameters, and even post-operative
functional outcomes. Ideally, the geometric changes imposed by surgery could be input into
biomechanical models, the models would appropriately calculate any changes to the joints and
muscles, and computer simulations could then be used to predict functional outcomes. Accu-
rate, predictive simulations would improve treatment decisions by allowing the comparison of
multiple surgical procedures and providing insights into the procedures with the best
outcomes.

To date, biomechanical models and simulations have been successfully used to investigate a
wide variety of orthopaedic problems, including tendon transfers [1–4], nerve transfers [5],
osteoarthritis [6–8], and ligament injuries [9–11]. The status quo research paradigm for these
investigations includes: first, gathering experimental data to quantitatively describe bio-
mechanical parameters specific to a given clinical condition (e.g., joint kinematics [12–14],
muscle moment arms [15, 16], muscle architecture parameters [17–20]); then, incorporating
these data into biomechanical models representing the given condition (e.g., [21, 22]); and
finally, performing simulations to examine how the biomechanical parameters influence out-
comes of broad clinical interest (e.g. strength [21, 23] or the ability to perform activities of daily
living [24, 25]). The current simulation-based research paradigm has made it possible to study
complex research questions that are nearly impossible to investigate in a laboratory setting. For
example, simulation studies can accurately estimate difficult to measure parameters, such as
joint loads (e.g., [7, 24, 26, 27]), or systematically evaluate whether outcomes are sensitive to
changes in individual (or combinations of) biomechanical parameters (e.g., [3, 23]). The utility
of biomechanical simulations to study clinical problems is well illustrated by the publication of
simulation studies in both scientific (e.g., [10, 11, 21, 23]) and surgical journals (e.g., [4, 5, 27,
28]).

Despite the widespread adoption and application of biomechanical simulations, the ability
to use the current simulation research paradigm to solve clinical problems is highly dependent
on the availability, cost, and ease of obtaining the experimental data necessary to build and val-
idate surgical simulations. Importantly, in the current paradigm, building and validating bio-
mechanical models of a given clinical condition is the rate-limiting step. The most widely used
rigid-body musculoskeletal models, which describe asymptomatic individuals, leverage decades
of experimental work (e.g., [29, 30]). The general impact of biomechanical simulation would be
greater if the parameters underlying those simulations could be accurately predicted based on
limited quantitative data, thereby eliminating the need for time-consuming experiments and
streamlining the development of surgical simulations. The need for experimental data is partic-
ularly problematic when studying orthopaedic procedures because the necessary data simply
do not exist. For example, a critical biomechanical parameter that is explicitly determined by
geometry is moment arm, which transforms the force an individual muscle develops into the
torque it generates about a joint. Yet, the influence of orthopaedic procedures on muscle
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moment arms is rarely investigated. There are over 500 ICD-9 codes classifying distinct dis-
eases and procedures in the upper limb [31]. Yet, moment arms have been measured following
less than 20 procedures in the shoulder [28, 32–38], elbow [39], forearm [40, 41], wrist [42–
47], and hand [48–50]. The lack of studies measuring moment arms following orthopaedic
procedures highlights that performing these experiments is difficult; they require a specific
type of research environment that includes scientists skilled at collecting moment arm data as
well as surgeons available to properly perform the surgical procedure under investigation.
Thus, predicting moment arms based on only the known geometric changes imposed by sur-
gery would represent a step toward transforming the field of biomechanical modeling from
one impeded by tedious experiments to one empowered by predictive capability. Predicting
muscle moment arms, however, is challenging because surgically imposed geometric changes
do not just influence moment arm, but also influence the underlying muscle mechanics and
joint kinematics that define moment arms. This means that to use a surgical model to estimate
moment arms requires also estimating the parameters on which moment arms depend, namely
muscle lines of action and joint axes of rotation. To what extent moment arms can be estimated
without data describing these parameters is unknown.

This study aims to challenge the status quo research paradigm by evaluating whether mod-
els based on the limited quantitative data describing joint kinematics, that are available in the
published literature, can predict changes in moment arms. We specifically examine two com-
mon wrist surgeries, proximal row carpectomy (PRC) and scaphoid-excision four-corner
fusion (SE4CF). These surgeries were studied because they are used to treat the same degenera-
tive conditions (e.g., osteoarthritis), but each imposes substantial changes to the wrist’s geome-
try. Importantly, the imposed geometric changes are very different between the two procedures
(Fig 1A). Thus, it seems intuitive that a critical difference between these procedures is how the
imposed geometric changes influence muscle moment arms. However, the data necessary to
estimate moment arms (i.e., axes of rotation and muscle lines of action) following these proce-
dures is not fully known. Wrist axes of rotation have not been reported following SE4CF, and
have been reported in only one study following PRC [12]. In general, how the changes in skele-
tal geometry imposed by orthopaedic surgery influence muscle-tendon paths is not fully under-
stood. As a result, we developed multiple models of PRC and SE4CF, based on a range of
reasonable assumptions regarding joint axes of rotation and muscle-tendon paths. We utilized
these models to develop a general hypothesis regarding how the two surgeries influence muscle
moment arms. We then performed PRC and SE4CF in cadaveric specimens to measure
moment arms and evaluated the veracity of our simulation-based hypothesis.

Methods
To understand to what extent models based on limited quantitative data could predict moment
arms following surgical salvage procedures, predictive simulations were performed using mod-
els of PRC and SE4CF wrists that were based on extremely limited data. From these predictive
simulations, a hypothesis was formulated regarding how these surgeries influence moment
arms (Fig 2A), and this hypothesis was consequently tested through a cadaveric experiment
(Fig 2B). Importantly, the simulation-based hypothesis was based on analysis of only the pri-
mary wrist muscles, while the cadaveric experiment measured the moment arms of the primary
wrist muscles as well as the extrinsic thumb muscles. The experimental data describing the
moment arms of the primary wrist muscles was used to assess the validity of our simulation-
based hypothesis, while the experimental data describing the moment arms of the extrinsic
thumb muscles was used to evaluate whether our simulation-based hypothesis was generaliz-
able to all muscles crossing the wrist.
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Musculoskeletal Modeling to Predict Moment Arms
The musculoskeletal models were developed in SIMM (Musculographics Inc.; [51]) by adapt-
ing a validated model of the nonimpaired wrist [52]. All models included bone geometry, joint
kinematics, and muscle-tendon paths for the five primary wrist muscles (Fig 1B). The surgical
models were based on the limited quantitative data available in the literature. The modeled geo-
metric changes and axes of rotation have been described in detail previously [53], while the
muscle-tendon path models have not been previously reported. For clarity, all modeling
changes are described below.

PRC was modeled using geometric changes described in the surgical literature, reported
axes of rotation, and assumed muscle-tendon paths. The geometric changes involved removing
the proximal row of carpal bones and translating the distal row and hand to establish an inter-
face between the radius and capitate (Fig 1A). Axes of rotation were implemented based on the
only study reporting wrist kinematics following PRC [12]. Muscle-tendon paths were re-
defined because in the nonimpaired model the muscle-tendon wrapping surfaces were defined
explicitly as a function of the proximal row (Fig 3A). After removing the proximal row in the
PRC model, two methods were implemented to re-define muscle wrapping at the wrist. The
first translated the wrapping surfaces with the proximal row, thereby maintaining the nonim-
paired distance between the wrapping surface and the capitate (Fig 3B, left). The second did

Fig 1. Wrist Models. (A) Bone geometry and (B) muscle paths implemented in the nonimpaired, SE4CF, and
PRCmodels. Only the five primary wrist muscles were included: extensor carpi radialis longus (ECRL),
extensor carpi radiali brevis (ECRB), extensor carpi ulnaris (ECU), flexor carpi radialis (FCR), and flexor carpi
ulnaris (FCU). Muscle paths were constrained to anatomically realistic lines of action using via points and
wrapping surfaces.

doi:10.1371/journal.pone.0157346.g001
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Fig 2. Study Design. Flowchart describing (A) predictive simulations to formulate a hypothesis regarding howmuscle moment arms change following
surgical salvage procedures and (B) the cadaveric experiment used to validate the simulation-based hypothesis.

doi:10.1371/journal.pone.0157346.g002

Fig 3. Muscle-Tendon Path Assumptions for the PRCModel. Illustration of a wrapping surface in (A) the
nonimpaired and (B) the PRCmodels. In the nonimpaired model, the location of the wrapping surfaces is
defined relative to the proximal row. In the PRCmodels, the location of the wrapping surfaces was redefined
relative to the capitate by either maintaining the distance between the wrapping surface and capitate or
maintaining the distance between the wrapping surface and radius. Shading of the capitate (black) and radius
(gray) provides a visual reference to compare the location of the wrapping surface between the nonimpaired
and PRCmodels. The torus shaped wrapping surface (shown for the ECRL) is representative of the wrapping
surfaces implemented for each wrist muscle.

doi:10.1371/journal.pone.0157346.g003
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not translate the wrapping surfaces with the proximal row, thereby maintaining the nonim-
paired distance between the wrapping surface and the radius (Fig 3B, right).

SE4CF was modeled using geometric changes described in the surgical literature, assumed
axes of rotation, and muscle-tendon paths equivalent to those of the nonimpaired wrist. The
geometric changes involved removing the scaphoid and fusing the lunate, capitate, hamate,
and triquetrum using a weld joint (Fig 1A). Axes of rotation following SE4CF have not been
reported; therefore, we simulated two different sets of axes of rotation, using assumptions
based on the nonimpaired axes of rotation (Fig 4A) that have been previously described [53].
Briefly, the first set of axes of rotation assumed that SE4CF does not disturb the motion of the
lunate relative to radius, thereby preserving the axes of rotation of the nonimpaired proximal
row (Fig 4B, right). The second set of axes assumed that SE4CF does not disturb the motion of
the capitate relative to the radius, thereby preserving the axes of the nonimpaired distal row
(Fig 4B, left). Muscle-tendon paths were defined equivalent to those in the nonimpaired model
because all of the bone geometry used to define the muscle-tendon paths remained in an equiv-
alent position relative to the radius after simulating SE4CF.

For the two PRC models (each with different muscle-tendon path definitions) and the two
SE4CF models (each with different joint axes of rotation), moment arms were calculated for
each wrist degree of freedom (flexion-extension and radial-ulnar deviation) for the primary
wrist muscles at a neutral position using two methods: (i) the partial velocity method [51] and
(ii) the perpendicular distance between the muscle line of action and the joint axis of rotation
[54]. This resulted in four moment arm estimates for each muscle, procedure, and degree of
freedom. Similarly, moment arms were calculated for the nonimpaired model using both
moment arm calculation methods. Average moment arms across all modeling methods were
then calculated for the nonimpaired, PRC, and SE4CF conditions. To predict how moment
arms change following salvage procedures, the percent change in moment arm between the
surgically salvaged and nonimpaired models were examined.

Cadaveric Experiment to Measure Moment Arms
The moment arm experiment was designed to measure the muscle moment arms of the pri-
mary wrist and extrinsic thumb muscles. The data describing the primary wrist muscle
moment arms has been previously described [47]. Briefly, muscle moment arms for the nonim-
paired and surgically salvaged wrists were measured in eight unmatched, fresh-frozen cadaver

Fig 4. Axes of Rotation Assumption for the SE4CFModel. Illustration of the axes of rotation in the (A)
nonimpaired and (B) SE4CFmodels. In the nonimpaired model, flexion-extension and radial-ulnar deviation
axes of rotation separately define the motion of the proximal row relative to the radius (green axes) and the
distal row relative to the proximal row (blue axes). In the SE4CFmodels, the motion of the fused carpal bones
was defined using either the proximal row or distal row axes of rotation.

doi:10.1371/journal.pone.0157346.g004
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upper extremities (four male, four female; avg. age 62.3 ± 8.9 years, range 44 to 73 years), using
the tendon excursion method [54]. In accordance with the policies of the institutions at which
this research was conducted, the cadaveric experiment was exempt from IRB approval. Cadav-
eric specimens were obtained from Medcure, Inc. (Portland, OR) a tissue bank that is fully
accredited through the American Association of Tissue Banks (AATB) and ensures that all
specimens are obtained (i) with the appropriate informed consent of donor or donor's next-of-
kin and (ii) in compliance with the Uniform Anatomical Gift Act and all other local, state, and
federal laws and regulations governing the recovery and distribution of anatomical specimens.

In each specimen, data were collected sequentially for three conditions: nonimpaired,
SE4CF, and PRC. To simulate SE4CF, the scaphoid was excised and Kirschner wires were used
to fuse the lunate, capitate, hamate, and triquetrum. To simulate PRC, the Kirschner wires
were removed and the remaining proximal carpal bones (lunate and triquetrum) were excised.
Soft tissue and the finger extensor tendons were imbricated to establish an interface between
the radius and capitate. Board-certified hand surgeons performed the surgical procedures.

Moment arms, defined as the derivative of tendon excursion with respect to joint angle,
were determined for each specimen, condition, muscle, and degree of freedom. Tendon excur-
sions were simultaneously recorded from the five primary wrist muscles and the four extrinsic
thumb muscles using potentiometers (Model 3543s, Bourns Inc.). Joint angles were calculated
as the angle between the long axes of the third metacarpal and radius, which was measured by
a motion capture system (Optotrak Certus, Northern Digital Inc.). All data was collected dur-
ing passive, planar wrist motion for both flexion-extension and radial-ulnar deviation. Data
were smoothed by fitting fourth order polynomials to the moment arm versus joint angle
curves for each combination of specimen, muscle, surgical condition, and degree of freedom.

Statistically significant differences between the nonimpaired, PRC, and SE4CF moment arm
versus joint angle curves measured in the experiment were determined using mixed effects
models, including condition and joint angle as fixed factors and specimen as a random factor.
A significance level of p<0.05 was used for all tests. Multiple comparisons with a Tukey correc-
tion were used when the F-test of the ANOVA was significant.

Evaluation of Simulation-Based Hypothesis
The simulation-based hypothesis was evaluated in two stages that utilized the experimental
data from the primary wrist and extrinsic thumb muscles, respectively. In the first stage, the
muscle moment arms for the primary wrist muscles were examined to determine if the trends
predicted by the models were identified in the experiment. Also in this stage, the moment arms
predicted by the model were directly compared to those measured in the experiment. For this
direct comparison, moment arms at a neutral position were calculated from the experimental
data because the simulation-based hypothesis was based on estimation of moment arms in a
neutral position. Moment arms at a neutral position were defined as the average muscle
moment arm for each muscle, surgical condition, and degree of freedom at zero degrees flex-
ion-extension and zero degrees radial-ulnar deviation. In the second stage, the muscle moment
arms for the extrinsic thumb muscles were examined to determine if the trends predicted by
the simulation-based hypothesis were generalizable to other muscles crossing the wrist that
were not explicitly modeled. This use of the extrinsic thumb muscle data was a form of cross-
validation.

Results
The musculoskeletal models suggest that PRC primarily alters flexion-extension moment
arms, while SE4CF primarily alters radial-ulnar deviation moment arms. Specifically, when
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compared to the moment arms estimated by the nonimpaired model, the flexion-extension
moment arms estimated by the PRC models demonstrated larger changes in magnitude than
those estimated by the SE4CF models for all five primary wrist muscles (cf., Fig 5A, red bars
greater than blue bars for all muscles). In contrast, the radial-ulnar deviation moment arms
estimated by the PRC models demonstrated smaller changes in magnitude than those esti-
mated by the SE4CF models for four out of five muscles (cf., Fig 5B, red bars less than blue bars
for all muscles, except FCR). The specific moment arm values predicted by the models are sum-
marized in Table 1.

The experimental results for the primary wrist muscles support the hypothesis that PRC pri-
marily alters flexion-extension moment arms, while SE4CF primarily alters radial-ulnar devia-
tion moment arms. When comparing the nonimpaired and surgically altered flexion-extension
moment arms, more muscles demonstrated statistically significant changes following PRC
than SE4CF (c.f., Fig 6A, left, three muscle significantly altered following PRC versus zero mus-
cles following SE4CF). Alternatively, when comparing radial-ulnar deviation moment arms,
fewer muscles demonstrated statistically significant changes following PRC than SE4CF (c.f.,
Fig 6A, right, one muscle significantly altered following PRC versus four muscles following
SE4CF). The specific wrist muscle moment arm values measured experimentally are summa-
rized in Table 2.

The experimental results for the extrinsic thumb muscles demonstrate that the simulation-
based hypothesis is generalizable. Similar trends for both flexion-extension moment arms (c.f.,

Fig 5. Percent Change in Model Predicted Muscle Moment Arms. Average percent change in (A) flexion-
extension and (B) radial-ulnar deviation moment arms for the SE4CF (blue) versus the PRC (red) models
relative to the nonimpaired model. Note that the y-axis scales are different between the two panels.

doi:10.1371/journal.pone.0157346.g005

Table 1. Wrist Muscle Moment Arms Predicted by the Models#.

Muscle Flexion-Extension Radial-Ulnar Deviation

Nonimpaired SE4CF PRC Nonimpaired SE4CF PRC

FCR -1.37 (0.17) -1.49 (0.35) -1.76 (0.19) -0.57 (0.25) -0.56 (1.47) 0.00 (0.19)

FCU -1.46 (0.04) -1.58 (0.26) -1.73 (0.03) 1.96 (0.31) 0.73 (1.71) 1.68 (0.21)

ECRB 1.26 (0.10) 1.18 (0.18) 1.14 (0.31) -1.16 (0.24) -0.50 (0.90) -0.93 (0.14)

ECRL 0.93 (0.05) 0.88 (0.17) 0.78 (0.15) -2.13 (0.01) -0.93 (0.50) -2.16 (0.40)

ECU 0.70 (0.09) 0.60 (0.70) 0.57 (0.05) 2.46 (0.06) 1.68 (0.94) 3.03 (0.46)

#Moment arms reported in centimeters at a neutral wrist posture. Positive values indicate extension and ulnar deviation. Values in parentheses represent

one standard deviation, thereby denoting variability due to modeling technique.

doi:10.1371/journal.pone.0157346.t001
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Fig 6. Significant Differences in Experimentally Measured Muscle Moment Arms. Depicted muscles
indicate statistically significant differences (p<0.05) between the nonimpaired and surgically salvaged
moment arm versus joint angle curves, as measured experimentally. (A) Wrist and (B) thumbmuscles are
displayed separately to illustrate similar trends in how PRC (red) and SE4CF (blue) influence flexion-
extension moment arms (left) and radial-ulnar deviation moment arms (right) across the two distinct muscle
groups.

doi:10.1371/journal.pone.0157346.g006

Table 2. PrimaryWrist Muscles: Experimentally MeasuredWrist Muscle Moment Arms#.

Muscle Flexion-Extension Radial-Ulnar Deviation

Nonimpaired SE4CF PRC Nonimpaired SE4CF PRC

FCR -1.55 (0.47) -1.32 (0.44) -1.04 (0.34)* -0.85 (0.35) -1.20 (0.59)* -0.69 (0.35)

FCU -1.47 (0.27) -1.51 (0.22) -1.40 (0.31) 1.81 (0.61) 1.56 (0.71) 1.67 (0.83)

ECRB 1.25 (0.33) 1.41 (0.39) 1.36 (0.36)* -1.75 (0.85) -2.14 (0.49)* -1.31 (0.56)

ECRL 0.93 (0.35) 0.99 (0.37) 1.11 (0.23) -2.20 (0.34) -2.63 (0.32)* -1.81 (0.15)

ECU 0.63 (0.10) 0.57 (0.30) 0.04 (0.17)* 1.94 (0.40) 1.56 (0.53)* 0.90 (0.86)*

Total: — 0 3 — 4 1

#Moment arms reported in centimeters at a neutral wrist posture. Positive values indicate extension and ulnar deviation. Values in parentheses represent

one standard deviation, thereby denoting variability due to specimen. Total indicates number of muscles with significantly altered moment arms following

the given surgery.

*Denotes significant difference (p<0.05) between nonimpaired and surgically salvaged moment arm versus joint angle curves.

doi:10.1371/journal.pone.0157346.t002
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Fig 6B, left, two muscle significantly altered following PRC versus one muscles following
SE4CF) and radial-ulnar deviation moment arms (c.f., Fig 6B, right, one muscle significantly
altered following PRC versus three muscles following SE4CF) were observed for the extrinsic
thumb muscles. The specific thumb muscle moment arm values measured experimentally are
summarized in Table 3.

Discussion
This study demonstrates that musculoskeletal models, even if they are based on extremely lim-
ited amounts of quantitative data, can provide important insights. The moment arms estimated
by the models and measured in the cadaveric experiment both indicate that a critical difference
between PRC and SE4CF is how they alter radial-ulnar deviation versus flexion-extension
moment arms at the wrist. Although numerous studies have examined post-operative differ-
ences between PRC and SE4CF [55–58], the biomechanical factors contributing to reported
differences are not known. In particular, both PRC and SE4CF are known to cause functional
impairments in wrist range of motion and grip strength [57]. Understanding how separately
altering the wrist’s degrees of freedom influences these functional impairments may be instru-
mental in delineating post-operative differences between PRC and SE4CF.

This study also demonstrates that musculoskeletal models can be used to inform the design
of experiments. Traditionally, surgically altered moment arms are examined through cadaveric
experiments by performing a muscle-by-muscle comparison of whether changes in moment
arm due to a given surgery are statistically significant. However, incremental changes in indi-
vidual muscle moment arms for multiple muscles at a given joint are difficult to interpret. In
this study, we built upon these traditional analyses by using musculoskeletal models to learn
about the system before performing an experiment. The need to synthesize and interpret our
modeling analyses directly informed our hypothesis, which then guided our experimental
design. Specifically, examining global changes in muscle actions, including changes to groups
of muscles and differences between degrees of freedom, led to the decision to examine changes
in flexion-extension versus radial-ulnar deviation moment arms in the nonimpaired, SE4CF,
and PRC wrists.

The simulation-based hypothesis was robust because it accurately predicted clinically rele-
vant, global changes in muscle moment arms for both the primary wrist and extrinsic thumb
muscles. However, we were unable to exactly predict the values of moment arms for specific
muscles through surgical simulations (Fig 7). To further improve the ability of musculoskeletal

Table 3. Extrinsic ThumbMuscles: Experimentally Measured Wrist Muscle Moment Arms#.

Muscle Flexion-Extension Radial-Ulnar Deviation

Nonimpaired SE4CF PRC Nonimpaired SE4CF PRC

FPL -1.46 (0.30) -1.75 (0.43) -1.14 (0.37)* -0.71 (0.26) -1.16 (0.30)* -0.61 (0.48)

EPL 0.73 (0.36) 0.85 (0.33)* 1.03 (0.41)* -1.56 (0.56) -1.76 (0.48) -0.88 (0.81)

APL -0.76 (0.31) -0.89 (0.52) -0.72 (0.46) -2.05 (0.41) -2.76 (0.26)* -1.35 (1.03)

EPB -0.55 (0.24) -0.55 (0.32) NA -2.27 (0.73) -2.78 (0.29)* -0.81 (0.81)*

Total: — 1 2 — 3 1

#Moment arms reported in centimeters at a neutral wrist posture. Positive values indicate extension and ulnar deviation. Values in parentheses represent

one standard deviation, thereby denoting variability due to specimen. NA indicates that the condition was not analyzed due to a paucity of data. Total

indicates number of muscles with significantly altered moment arms following the given surgery.

*Denotes significant difference (p<0.05) between nonimpaired and surgically salvaged moment arm versus joint angle curves.

doi:10.1371/journal.pone.0157346.t003
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Fig 7. Model Predicted and Experimentally Measured Moment Arm Comparison. Comparison of
moment arms predicted by the models (non-circular shapes) to moment arms measured in the experiment
(filled circles) for the (A) nonimpaired, (B) SE4CF, and (C) PRC wrists. In each graph, flexion-extension
moment arms are plotted as a function of radial-ulnar deviation moment arms. Error bars represent one
standard deviation. In (B) and (C), the model data (triangles) represent the centroid of the moment arms
predicted by the surgical models, and the shaded regions are the minimum area ellipses that enclose the
predicted values, thereby representing the spread of the model predictions. All values are moment arms at a
neutral wrist posture.

doi:10.1371/journal.pone.0157346.g007
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models to exactly predict moment arms, techniques must be developed to accurately guide
modeling decisions when data is limited or not yet available. For example, the SE4CF model,
which was based on assumed axes of rotation, closely predicted flexion-extension moment
arms, but not radial-ulnar deviation moment arms for the primary wrist muscles (Fig 7B, flex-
ion-extension moment arms predicted by models within one standard deviation of those mea-
sured experimentally for all five muscles, versus only one muscle for radial-ulnar deviation
moment arms). This suggests that the assumed radial-ulnar deviation axes of rotation in the
SE4CF models do not accurately capture the kinematics of the SE4CF wrist. Techniques, such
as utilizing motion predictions based on contact modeling of the surgically altered joint inter-
face, may lead to more accurate estimation and implementation of unknown axes of rotation
in surgical models.

In contrast, the PRC model, which was based on assumed muscle lines of action, closely pre-
dicted both flexion-extension and radial-ulnar deviation moment arms for two of five primary
wrist muscles (Fig 7C, flexion-extension and radial-ulnar deviation moment arms predicted by
models within one standard deviation of those measured experimentally for ECRB and FCU).
This suggests that the assumed position of the wrapping surfaces in the PRC models more
accurately captured the muscle lines of action for these two muscles than the other three.
Although magnetic resonance imaging techniques exist to estimate muscle moment arms,
these methods require extensive data collection and analysis [59, 60]. Improving methods for
quickly capturing the anatomical constraints dictating how muscle lines of action are guided
by bones and soft tissue may lead to more accurate and efficient implementation of unknown
muscle paths in surgical models.

This study illustrates that biomechanical models based on extremely limited data sets pro-
vide novel insights that can be used to guide the design of experiments and test the predictive
limits of current computer simulation techniques. Challenges remain before we can predict the
exact values of moment arms for a specific surgical candidate through surgical simulations.
However, models are valuable tools when examining of how the geometric changes imposed by
orthopaedic surgery impact clinical outcomes.
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