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Abstract

Intense spiking response of a memory-pattern is believed to play a crucial role both in nor-

mal learning and pathology, where it can create biased behavior. We recently proposed a

novel model for memory amplification where the simultaneous two-fold increase of all excit-

atory (AMPAR-mediated) and inhibitory (GABAAR-mediated) synapses in a sub-group of

cells that constitutes a memory-pattern selectively amplifies this memory. Here we confirm

the cellular basis of this model by validating its major predictions in four sets of experiments,

and demonstrate its induction via a whole-cell transduction mechanism. Subsequently,

using theory and simulations, we show that this whole-cell two-fold increase of all inhibitory

and excitatory synapses functions as an instantaneous and multiplicative amplifier of the

neurons’ spiking. The amplification mechanism acts through multiplication of the net synap-

tic current, where it scales both the average and the standard deviation of the current. In the

excitation-inhibition balance regime, this scaling creates a linear multiplicative amplifier of

the cell’s spiking response. Moreover, the direct scaling of the synaptic input enables the

amplification of the spiking response to be synchronized with rapid changes in synaptic

input, and to be independent of previous spiking activity. These traits enable instantaneous

real-time amplification during brief elevations of excitatory synaptic input. Furthermore, the

multiplicative nature of the amplifier ensures that the net effect of the amplification is large

mainly when the synaptic input is mostly excitatory. When induced on all cells that comprise

a memory-pattern, these whole-cell modifications enable a substantial instantaneous am-

plification of the memory-pattern when the memory is activated. The amplification mecha-

nism is induced by CaMKII dependent phosphorylation that doubles the conductance of all

GABAA and AMPA receptors in a subset of neurons. This whole-cell transduction mecha-

nism enables both long-term induction of memory amplification when necessary and extinc-

tion when not further required.

Author Summary

Amplifying the strength of a neuronal assembly that underlies a behavioral choice can

lead to a particularly long lasting dominant memory. We report experimental and
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theoretical evidence for a long-term mechanism that amplifies the response of a neuronal

assembly which we termed “memory amplification mechanism”. The amplification mech-

anism is mediated by doubling the strength of all inhibitory and all excitatory synapses in

the cell and is induced by whole-cell phosphorylation of all inhibitory and excitatory syn-

aptic receptors in a subset of cells, via a process that is distinct from memory formation.

Computationally, the inherent scaling of both excitation and inhibition yields a robust and

stable amplifier of the neuron’s response. When such an amplifier is induced in a set of

cells that compose a memory-pattern, it can selectively amplify the response of this mem-

ory. The memory amplification mechanism is independent from associative learning.

Thus, while associative learning forms a memory that encodes new associations, the ampli-

fication mechanism can promote an already formed memory to a dominant memory.

Introduction

Traditionally, increased synaptic response is believed to reflect activity dependent synaptic

plasticity, in which the association between different inputs is strengthened through synaptic-

specific potentiation. We have previously shown that acquiring the skill to perform in a partic-

ularly difficult olfactory-discrimination task [1–4] results in a robust enhancement of excit-

atory and inhibitory synaptic connectivity to and within the piriform cortex that lasts for days

after training [5–8]. The synaptic enhancement was observed few days after the rats were last

trained and thus indicates long term induced synaptic modifications.

In particular, we suggested that this increase in synaptic strength results from a process

where in a subset of cells all AMPA and GABAA receptors double their strength through a

whole-cell two-fold increase of their single channel conductance. This process results in a two-

fold increase in the strength of all excitatory and inhibitory synapses in the cell [9], and thus

can support the previously observed increase in synaptic strength [5–8]. Using a preliminary

study of a computational network model [9] we suggested that if this mechanism is induced in

a group of cells that compose a memory-pattern, it can substrate as a memory specific amplifi-

cation mechanism [9]. A memory amplification mechanism should largely increase the spiking

response of the cells that compose the memory pattern when the memory pattern is active,

and have a minor effect when not active. In this work we aim to computationally establish the

role of this mechanism in memory amplification by studying its effect on the net synaptic cur-

rent and on the spiking response of a single cell. Moreover, through characterization of the

amplification properties such as speed and stimulus dependencies we aim to obtain a further

characterization of the functional effect of this mechanism.

The memory amplification model extends beyond the well-studied activity-dependent syn-

aptic plasticity that was suggested to underlie memory formation in several key ways: (1) It

amplifies the response of an already formed memory-pattern rather than forming a new asso-

ciation between the different inputs. (2) The increased synaptic excitation that underlies the

memory amplification is not synapse specific and is mediated by the increased strength of vir-

tually all the excitatory synapses in the cell. (3) The increase in synaptic strength is not medi-

ated by an increased number of AMPA receptors, as was shown for LTP [10–12], but rather is

mediated by increased AMPA receptor channel conductance. (4) Importantly, unlike activity-

dependent synaptic plasticity, memory amplification requires a parallel and similar increase in

the strength of synaptic inhibition. These characteristics enable this mechanism to be indepen-

dent of memory formation and thus enable the promotion of an already learned memory into

a dominant memory.

Memory Amplification Mechanism

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005306 January 19, 2017 2 / 31



Several studies have shown that CaMKII-mediated phosphorylation of the AMPA channel

in ser831 causes a two-fold increase in AMPA channel conductance [13–15], which is similar

to the increase found in our setting. A co-increase in excitation and inhibition is vital for

whole-cell balanced amplification. This suggests that both increased excitation and increased

inhibition are induced by a shared process for which CaMKII is a potential candidate that dou-

bles the conductance of all AMPA and GABAA receptors in the cell. Indeed we recently

showed that the increase in inhibitory and excitatory synaptic transmission that was induced

by learning the task is CaMKII dependent and that this increase is the result of increased con-

ductance of the GABAA and AMPA channels [7, 8]. In these studies the blocker effect on each

cell was measured by comparing the averaged synaptic event amplitude before and after the

CaMKII blocker was applied. In the current study we further examined whether the task learn-

ing induced reduction in averaged synaptic event amplitude is mediated through the effect on

memory amplification mechanism, namely through reversal of the two-fold multiplication of

the strength of all GABAA and AMPA mediated events in a subset of cells.

In these studies, miniature inhibitory and excitatory post-synaptic currents were recorded

in trained and control animals before and after application of CaMKII blockers [7, 8]. The gen-

eration of a miniature synaptic event is triggered by a spontaneous release of one vesicle in the

presynaptic site which activates synaptic receptors that are densely packed in a nanodomain

cluster opposite to the release site [16]. Each nanodomain cluster is 70 nm in length, contains

20 synaptic receptors and has an average distance of 250 nm from other nanodomain clusters

in the same PSD [16]. The binding of the CaMKII molecule to the PSD in the cytoplasmatic

site [17, 18] enable it to phosphorylate the synaptic receptors. The nanoscale size of the cluster

and the auto-phosphorylation characteristics of CaMKII can enable a single CaMKII molecule

located in close proximity to phosphorylate all synaptic receptors in this cluster [19], and thus

to affect all synaptic receptors that mediate a single miniature synaptic event.

The miniature synaptic events are spontaneously evoked and therefore do not reflect a

pathway-dependent activity. This enables us to use these recordings to analyze the whole-cell

effect of CaMKII and to study if this enhancement can be explained within the scope of the

memory amplification mechanism. Moreover, while in the previous study [9] we indirectly

inferred the multiplication mechanism based on between-groups comparison, in the current

study, the learning specific effect of CaMKII blocker allows us to directly establish the induc-

tion of the memory amplification mechanism based on within-cell comparison. This enables

us to further examine the segregated effect of learning and the induction of a cell-based two-

fold multiplication through a whole-cell transduction mechanism.

If CaMKII phosphorylation is indeed the molecular mechanism that underlies memory

amplification, it is expected that in the selected subset of cells CaMKII blocker will induce a

two-fold reduction in all AMPA and GABAA mediated synaptic responses, through a two-fold

decrease in the conductance of all AMPA and GABAA receptors. Thus the memory amplifica-

tion model has four testable predictions for both GABAA and AMPA mediated miniature syn-

aptic events: (a) the effect of the CaMKII blocker will be prominent in a sub-group of cells. (b)

In this subset of cells the effect will be mediated by a decrease in the single channel conduc-

tance. (c) The effect of the CaMKII blocker should correspond to a reduction of each event

amplitude by a factor of two, and (d) the sub-group of cells that was affected by CaMKII block-

ers should be the sub-group of cells that was affected by task learning.

In this work we first analyze the experimental data in depth, to test the predictions of the

model. Then, using theory and single-cell biophysical simulations, we show how such a

whole-cell increase in excitatory and inhibitory synaptic inputs can function as an instanta-

neous and linear amplifier of the cell spiking response. These findings establish the basis for

the memory amplification mechanism; namely, applying a cell specific linear amplifier on a

Memory Amplification Mechanism
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subset of cells that constitutes a memory-pattern can lead to amplification of this memory

when activated.

Results

Confirming the model predictions

Summary of the experimental procedure. The analysis was performed on data taken

from sets of experiments that were published earlier [7, 8]. Here we present a short summary

of these experiments, where a more detailed description can be found in the Material and

Methods section or published before [7,8].

Water deprived rats were trained in an odor discrimination maze that consisted of 4 arms,

where at each trial one randomly chosen arm contained water at its far end. Rats in the trained

group had to choose the water containing arm based on a positive odor cue which signified the

presence of water in the containing arm and negative odor cue which signified no water in the

containing arm. The task was difficult to learn, as it took the rats 7–8 days to reach the learning

criterion of the first odor pair (negative and positive odors). The training was terminated once

the rats demonstrated enhanced learning capabilities using a different odor pair, which in

average lasted 1–2 days only. Rats designated to the pseudo-trained group were rewarded with

water when choosing any odor in a random manner and their exposure time to the odor maze

was artificially matched with the rats of the trained group. Rats in the naive group were left in

their home-cages and were water deprived only. 4–5 days after training termination, in which

rats stayed in their home cage, whole-cell recordings were made from identified pyramidal

cells in slices taken from the piriform cortex. In these recordings spontaneously evoked minia-

ture synaptic events could be identified. Each cell exhibited only excitatory miniature postsyn-

aptic synaptic currents (mEPSCs) or inhibitory synaptic currents (mIPSCs), due to a different

pharmacology, holding potential and pipette solution (Materials and Methods).

CaMKII induces a whole-cell two fold increase of the GABAA single channel current in

a subset of cells from trained rats. We first tested the four predictions of the memory ampli-

fication model by analyzing the spontaneous miniature inhibitory synaptic events before and

after the application of two different CaMKII blockers (KN93 and tatCN21) [7, 8].

We started by testing the first prediction, namely that the effect of the CaMKII blocker on

the inhibitory synaptic transmission would be prominent in a subset of cells. The effect of

CaMKII blocker was calculated as the average amplitude of all the events that were recorded

before CaMKII blocker was applied divided by the averaged amplitude of all events recorded

after the blocker was applied. Since a multiplicative process equally affects the average and the

standard deviation, for each cell we also measured the effect on the standard deviation of

events’ amplitudes in order to yield a robust measure of the blocker effect. Plotting the effect

of CaMKII blockers on the average and the standard deviation for each cell (Fig 1A and 1E)

yielded a clear clustered effect (mean silhouette values: KN93; 0.72; tatCN21: 0.7) where the

affected cluster exhibited a large CaMKII blocker effect (KN93: 165±9%, tatCN21: 147±7%)

and the non-affected cluster exhibited a small effect (KN93:110±10%, tatCN21: 107±7%).

Importantly, the effect of the CaMKII blockers differed significantly between neurons from

the control (naïve and pseudo trained) and trained rats. While only a small fraction of the cells

from the two control groups was in the affected cluster (KN93: 10%, tat: 0%) both CaMKII

blockers had a pronounced effect on a large proportion of neurons taken from trained rats;

41% from the kn93-treated trained cells and 30% from the tatCN21-treated trained cells were

clearly distinct from the remainder of the trained group and the control groups, which did not

differ from each other. This clustered effect of the CaMKII blockers does not reflect animal-

dependent variability, since for almost every cell in the affected cluster there was another cell

Memory Amplification Mechanism
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from the same animal that belonged to the less affected cluster (6 out of 7 for KN93, and 4 out

of 4 for the tatCN21). This analysis confirms our first prediction in which learning the task

exerts its main effect on a subset of cells. A complete reversal of the learning effect in the

affected cells requires that CaMKII blocker will reduce the averaged event amplitude by a fac-

tor of two. However, since in order to be in the physiological range we used moderate concen-

trations of CaMKII blocker, we did not attain a full blocker effect, where KN93 had clearly a

bigger effect than tatCN21 (P<0.05). The synaptic structure enables a single CaMKII molecule

to phosphorylate all the synaptic receptors that mediates a single miniature event (see intro-

duction), therefore blocking the locally bound CaMKII will effectively reduce the amplitude of

Fig 1. CaMKII blockers (KN93 left; tatCN21 right) act through a whole-cell, two-fold division of the GABAA single channel conductance in

a subset of cells from trained rats. A, E: Depicted for each cell is the effect of CaMKII blocker on the average and standard deviation of the event

amplitudes. The effect of the CaMKII blocker clearly exhibits two clusters, where one cluster exhibits a large blocker effect on the average and standard

deviation of the event amplitude (KN93: trained, n = 16; pseudo, n = 8; naïve, n = 10. tatCN21: trained, n = 10; pseudo, n = 7; naive, n = 5) B, F: Similarly, the

effect of CaMKII blocker on the average event amplitude and single channel current exhibits two clusters (KN93: trained, n = 12; pseudo, n = 6; naive, n = 5.

tatCN21: trained, n = 10; pseudo, n = 4; naïve, n = 5). C, G: An amplitude distribution curve averaged for all cells in the affected cluster (all cells in the

blocker affected cluster for which the single channel current could be calculated; KN93: n = 5; tatCN21: n = 4) is shown for the event amplitudes recorded

before (purple) and after (orange) CaMKII blocker. The blocker effect was computationally reversed (black curve) by applying the reverse calculation on the

data recorded after applying the CaMKII blocker: The fraction of events that were affected by the drug was calculated (Materials and Methods). This fraction

of events was randomly selected from the events recorded after the blocker was applied and the amplitude of these events was multiplied by a factor of two.

A new amplitude distribution curve was calculated from the whole set of data, using both the multiplied and the non-multiplied events, exhibiting a fully

computationally reversed CaMKII blocker effect. The P values were calculated using Cramer Von Mises two-sample test. D, H: the blocker effect could

be reversed in each cell separately. Left: an example of one cell where the histogram of events amplitudes before CaMKII blocker (blue) matched the

histogram of the calculated events amplitude after the blocker effect was computationally reversed (red), right the P value was calculated for each cell and

the average of these P values was calculated from all cells in the highly affected cluster.

doi:10.1371/journal.pcbi.1005306.g001
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the miniature synaptic event by a factor of two. Thus due to the partial blocker effect a fraction

of the events will reduce their amplitude by a factor of two, while the remainder of the events

will not be affected. Calculating the fraction of events that were affected by the blocker (see

Materials and Methods) in the affected cells yielded that 65% of the events were affected by

KN93 and 47% of the events were affected by tatCN21.

To examine the second prediction we tested if CaMKII blockers also exhibited a clustered

effect on the single channel conductance. We also tested if the reduction in the single channel

current both overlapped with and was similar to the reduction in the average amplitude. We

found that the effect of both CaMKII blockers (KN93 and tatCN21) on the single channel con-

ductance was not homogenous over all cells in the trained group (mean silhouette values:

KN93 0.8; tatCN21: 0.73), where some cells exhibited the same effect as the control groups

while others exhibited a major effect (Fig 1B and 1F). Cells that exhibited a large decrease in

the average amplitude exhibited a large decrease in the GABAA single channel current (KN93:

167±15%, tatCN21: 152±4%) which was similar to the effect on the average event amplitude.

These results led us to conclude that the effect of the CaMKII blocker on the average event

amplitude was mediated by its effect on single channel conductance in only a subset of cells.

To test the third prediction we examined the effect of the CaMKII blocker on the histogram

of event amplitudes in the largely affected cells, to determine if it could be computationally fully

reversed by a two-fold multiplication of the amplitude of each event. For each cell in the affected

cluster the fraction of the events affected by the CaMKII blockers was calculated (Materials and

Methods) and accordingly a randomly chosen set of events was multiplied by a factor of two. A

new amplitude distribution curve was calculated from the whole set of data, both the multiplied

and the non-multiplied events. This manipulation completely reversed the blockers’ effect on

the event amplitude distribution curve (Fig 1C and 1G; KN93: P<0.001; tatCN21: P< 0.01;

where the P value is the likelihood that the two distribution curves are drawn from different

populations). Remarkably, the reverse of the blocker effect was evident not only in the average

amplitude distribution curve but also when examining each cell separately, yielding a P value of

0.004±0.0012 for KN93 and a P value of 0.006±0.0017 for tatCN21 (Fig 1D and 1H).

Does our ability to computationally reverse the effect of CaMKII blocker on the amplitude

distribution curve indeed validate our assumed model of two-fold multiplication? We exam-

ined the sensitivity of the amplitude distribution curve for the hypothesized model and

attempted to reverse the blocker effect using two models that were different from our model.

In the first model (Fig 2, left panel) we assumed that for each synapse a random number of

GABAA channels were added. In the second model (Fig 2 right panel) we assumed that the

amplitude of all events was multiplied by a factor of three. For both models, although the

average event amplitude was restored to the level before the blocker (a ratio of 0.99±0.01 and

1.00±0.02), the effect of the blocker on the average distribution curve could not be reversed

(P<0.12 and P<0.65 for the average distribution, Fig 2A and 2D; for the single cells P<0.32

±0.21 and P<0.7±0.17 Fig 2B, 2C, 2E and 2F).

Next we tested the fourth prediction and examined whether the cells that were largely

affected by CaMKII were likely to be the cells that were modified by the task learning in the

manner predicted by the memory amplification model. We compared the cells in the affected

group before CaMKII blocker was applied to the cells in the control groups. According to the

amplification model, their single channel current was expected to be twofold higher than the

single channel current of the controls, and their amplitude distribution curve should be recon-

structed by multiplying all the events in the control group by a factor of two. We found that

the single channel current averaged over all the largely affected cells, both from the KN93 and

from tatCN21 experiments, was almost twofold higher than the average single channel current

in the naïve group and in the non-affected cells from the trained group (Fig 3A). Moreover,

Memory Amplification Mechanism
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the amplitude distribution curve averaged over the largely affected cells prior to the CaMKII

blocker application could be reconstructed by doubling the amplitude of all events from the

naïve group (P<0.05, Fig 3B).

If the diverged effect of the CaMKII blocker on the cells recorded from trained animals is a

consequence of the diverged effect of learning the task, we expect that the affected subset of

neurons would deviate from the non-affected neurons prior to the CaMKII blocker applica-

tion. Indeed, the same cells that were selected based on the large effect of CaMKII blocker

could be clearly segregated based on their single channel current, but not on their number of

GABAA channels (P<0.2) as predicted by the memory amplification model (Fig 3C).

We concluded that all model predictions were satisfied and therefore that learning the task

induces a whole-cell, two-fold increase of GABAA synaptic receptors in a subset of cells.

Next we inquired whether in addition to the changes required by the memory amplification

mechanism, learning had induced an additional measurable modification of the synaptic

Fig 2. The CaMKII blocker effect cannot be reversed by an additive model (left) or a 3-fold multiplicative

model (right). A, D: Amplitude distribution curve before and after CaMKII blocker (as in Fig 1C). The black

curve in A was calculated assuming a model in which the amplitude of each event was increased by a random

number ranging from zero to twice the difference between the average event amplitude before the blocker and

after the blocker. The black curve in D was calculated assuming a model of multiplication by a factor of 3, where

the fraction of events that were affected by the blocker was calculated for each cell and the calculated amplitude

distribution curve was reconstructed accordingly. In both models the reverse calculation assuming these

models did not yield an effective reversal of the blocker effect on the amplitudes distribution curve. B, E The

effect of the blocker could not be reversed on a single cell basis, yielding a high average P value as was shown

in the C, F.

doi:10.1371/journal.pcbi.1005306.g002

Memory Amplification Mechanism
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transmission. We approached this by examining if the distribution of averaged event ampli-

tude of cells from the trained group can be reconstructed using cells from the naïve group

assuming the memory amplification mechanism: The averaged event amplitude of a randomly

selected subset of neurons from the naïve group was multiplied by two. The subset of cells

entailed 35% of the neurons which is the proportion of largely affected cells in this data set. We

found that the calculated cumulative frequency curve of the cell’s averaged event amplitude

was similar (P<0.34 Kolmogorov-Smirnov test) to the experimental cumulative frequency

curve of the trained group (Fig 3D), suggesting that the memory amplification model can

account for virtually all task learning induced modifications in synaptic strength.

Effect on AMPA mediated events. The memory amplification model requires the modu-

lation of the GABAA synapses to be paralleled by the same modulation of the AMPA mediated

synapses, such that the four predictions regarding the effect on the GABAA mediated events

Fig 3. The cells in the CaMKII blocker affected cluster were affected by the task learning through whole-cell twofold multiplication of

the GABAA single-channel current. A. The average single channel current of the cells in the CaMKII affected cluster from the trained group

(T-reduced) was approximately twice that of the average single channel current in the naïve group and the non affected trained group (T–not

reduced). B. The amplitude distribution curve of the cells in the affected cluster in the trained group could be reconstructed by multiplying all

events in the naive group by a factor of two (T-reduced, n = 9; T-not reduced, n = 12; naïve, n = 12). C. The trained group deviated from the

control group mainly by the presence of the sub-group of cells that exhibited a large single channel current. D. The cumulative frequency

distribution of the trained group could be explained by multiplying by two the average event amplitude of a randomly selected 35% of the cells

in the naïve group (P<0.34 Kolmogorov-Smirnov test). Each point represents the average event amplitude in a neuron (x-axis).

doi:10.1371/journal.pcbi.1005306.g003
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can also be confirmed for the AMPA mediated events. Since CaMKII is known to double the

AMPA channel conductance we expected that CaMKII blocker would have the same effect on

the AMPA mediated events as it had on the GABAA mediated events.

Similar to GABAA, the first prediction was examined by analyzing for each cell the effect of

the CaMKII blocker on the average and standard deviation of the event amplitudes. We found

that both CaMKII blockers (tatCN21, KN93) had a clustered effect (mean silhouette values:

KN93 0.75; tatCN21: 0.72) on the cells (Fig 4A and 4E), where the affected cluster exhibited

a large CaMKII blocker effect (the averaged event amplitudes before applying the blocker

divided by the average event amplitudes after; KN93: 173±21%, tat: 148±3%) and the non-

affected cluster exhibited a small effect (kn93:105±11%, tatCN21: 109±12%). While only

a small fraction of the cells from the control groups was in the affected cluster (kn93: 5%,

tatCN21: 7%), neither CaMKII blockers had a homogenous effect on the trained group, where

44% of the kn93 trained cells and 43% of the tatCN21 trained cells clearly differed from the

rest of the trained group and the control groups. Here too, the clustered effect of the CaMKII

Fig 4. CaMKII blockers (KN93 left; tatCN21 right) act through a whole-cell twofold division of the AMPA single channel conductance in a subset

of cells from trained rats. A, E For each cell, the effect of CaMKII blocker on the average and standard deviation of the AMPA mediated event

amplitudes is shown. The effect of the CaMKII blocker exhibits a clear division into two clusters (KN93: trained, n = 16; pseudo, n = 6; naïve,

n = 14. tatCN21: trained, n = 7; pseudo, n = 5; naïve, n = 7). B, F Similarly, the effect of CaMKII blocker on the AMPA mediated average event amplitude

and AMPAR single channel current exhibits two clusters (KN93: trained, n = 10; pseudo, n = 6; naïve, n = 10. tatCN21: trained, n = 6; pseudo, n = 3; naïve,

n = 4). C, G A distribution curve of the AMPA mediated event amplitude averaged for all cells in the affected cluster recorded before and after the CaMKII

blocker (KN93: n = 5; tatCN21: n = 4). The black curve computes the reverse of the blocker effect under the multiplication model after calculating for each

cell the fraction of events that were affected by the blocker (see Fig 1C and 1G). D, H the blocker effect could be reversed for each cell separately. Left: an

example of one cell; right: the P value was calculated for each cell and the average of these P values was calculated from all cells in the affected cluster.

doi:10.1371/journal.pcbi.1005306.g004
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blockers does not reflect animal-dependent variability since for almost every cell in the affected

cluster there was another cell from the same animal that belonged to the less affected cluster (6

out of 7 for KN93, and 2 out of 3 for the tatCN21).

As stated in the second prediction, CaMKII blockers had a clustered effect as well on the

single channel current (mean silhouette values: KN93 0.74; tatCN21 0.74), where the cells that

exhibited a pronounced reduction in the average event amplitude exhibited a similarly pro-

nounced reduction in the AMPA single channel current (KN93 173±22%, tatCN21 148±6%;

Fig 4B and 4F). Similar to inhibition, the effect of the blockers was partial, where KN93 had a

significantly larger affect than tatCN21. Calculating the fraction of events that were affected by

the blocker (see Materials and Methods) in the affected cells yielded that 73% of the events

were affected by KN93 blocker and 48% of the events were affected by tatCN21. Similar to

inhibition we tested the third prediction by examining if for each cell in the affected cluster

the effect of the CaMKII blocker could be fully computationally reversed by multiplying the

events’ amplitudes by a factor of two, after calculating the fraction of affected events for this

cell. Remarkably, a complete reversal was observed both when averaged over all the affected

cells (Fig 4C and 4G) and for each cell separately (Fig 4D and 4H).

We tested the fourth prediction by examining whether the neurons that were affected by

the CaMKII blocker were also the neurons that were modified by learning the task according

to the memory amplification model. These cells exhibited an average single channel current

that was twofold higher than in the controls and the non-affected trained cells (Fig 5A). More-

over, their amplitude distribution curve could be constructed by doubling the amplitude of all

events in the control group (Fig 5B). Indeed, these cells could be segregated from the non-

affected cells based on their AMPA single channel current, but not based on the number of

channels (P<0.15; Fig 5C). We concluded that also for the AMPA mediated synaptic transmis-

sion all model predictions were satisfied.

Next we examined whether the memory amplification model accounts for all learning

induced effects on AMPA mediated synaptic transmission. The averaged event amplitude of a

randomly selected 40% of the cells in the naive group was multiplied by two. While we could

reproduce the observed break in the cumulative frequency curve fairly well (Fig 5D), we could

not reproduce the shift (P<0.01 Kolmogorov-Smirnov test). Therefore, it is likely that learning

the task induced an additional process that modulated the excitatory event amplitude homoge-

nously in all cells.

In summary, our experimental data confirmed the four predictions for both inhibition and

excitation, and therefore support the whole-cell amplification model.

Modeling

In this part, we aim to explore the functional significance of whole-cell synaptic multiplication,

in which the strength of all excitatory and all inhibitory synapses in a single cell was doubled.

We previously showed in a preliminary study, using integrate and fire neurons, that such a

whole-cell two-fold multiplication in synaptic strength functions as a memory amplification

mechanism [9]. Here we attempt to bridge the gap between the simplified integrate and fire

neuron that was used in the network simulations and a more realistic biophysical neuron. To

that end, using biophysical simulations, we first characterize the effect of a whole-cell, two-fold

increase in synaptic strength on the neurons’ firing response. A detailed characterization of

the effect of the whole-cell amplification mechanism on the number of spikes should enable a

better understanding of its effect on memory amplification. An amplifier whose main effect on

the single cell firing response is at the near-threshold level should have a different effect on

memory amplification than an amplifier whose main effect is at the supra-threshold level.
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Moreover, an amplifier which instantaneously follows the changes in synaptic input is likely to

exert a different effect than a history dependent amplifier.

We used a single cell with a simplified morphology and realistic biophysical properties (see

Materials and Methods), where realistic post-synaptic excitatory and inhibitory responses

were implemented along the basal and apical dendritic cylinders. In order to simulate synaptic

bombardment as recorded in vivo we mimicked the firing of populations of inhibitory and

excitatory pre-synaptic neurons using an independent random Poisson process such that the

reversal potential of the net synaptic current (see Material and Methods) during background

activity was about -37 mV [20].

The amplification mechanism scales the net synaptic current without affecting its

polarity. The net synaptic current at each moment is defined as Iinhib(t)+Iexcit(t) and is the

Fig 5. The cells in the CaMKII blocker affected cluster were affected by the task learning through whole-cell

twofold multiplication of the AMPA single-channel current. A. The average single channel current of the cells in the

CaMKII affected cluster from the trained group (T-reduced, n = 6) was approximately twice that of the average single

channel current in the naive group (n = 13) and the non-affected cells in the trained group (T-not reduced, n = 11). B. The

amplitude distribution curve of the cells in the more affected cluster could be reconstructed by multiplying all events in the

naive group by a factor of two (T-reduced, n = 6; T-not reduced, n = 11; naïve, n = 13). C. The trained group deviated from

the control group mainly by the sub-group of cells that exhibited a high single channel current. D. The cumulative frequency

curve of the cell’s average distribution curve could not be fully explained by two-fold multiplication of the average event

amplitude of a randomly selected 40% of the cells in the naive group.

doi:10.1371/journal.pcbi.1005306.g005
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sum of the currents mediated by all active inhibitory and all active excitatory synapses at time

t. When the inhibitory synaptic current overcomes the excitatory current, the net synaptic cur-

rent is negative and will hyperpolarize the membrane potential (Fig 6A). When the excitatory

current is stronger, the net synaptic current is positive and will depolarize the membrane

potential. Multiplication of both the excitatory and inhibitory currents by the amplification

mechanism [9] will multiply the sum of the excitatory and the inhibitory currents at any given

time and will therefore multiply the net synaptic current (Fig 6A). Here, we further tested

whether such multiplication would hold at a more realistic biophysical cell in order to include

the possible additional effects of reversal potential and voltage dependent currents on the net

synaptic current.

We first examined whether the synaptic multiplication maintains the polarity of the net

synaptic current. These properties can enable the amplification mechanism to act as a precise

amplifier that amplifies the cell’s response without affecting its information. We conducted a

set of simulations in which the size and the polarity of the net synaptic current were varied by

simultaneously decreasing the activation frequency of each inhibitory synapse and increasing

the activation frequency of each excitatory synapse.

Multiplication of both excitatory and inhibitory conductance by whole-cell balanced ampli-

fication scaled the net synaptic current, with no effect on its reversal point (Fig 6B). At a posi-

tive net synaptic current, the amplification mechanism had a larger effect due to the larger

driving force of the excitatory synapses as compared to the inhibitory synapses. The multipli-

cation factor of the net synaptic current was small when the average membrane potential

approached the GABAA reversal potential and became higher and more stable (1.4–1.8) as

the average membrane potential became more depolarized (Fig 6C). Thus, the effect of the

amplification mechanism on the net synaptic current was correlated with its initial size and its

polarity, indicating that the inhibition-excitation balance was maintained as well after its

induction. Moreover, the amplification of the net synaptic current tended to increase as the

neuron received a larger proportion of excitatory synaptic input.

Whole-cell balanced amplification increases the gain of the spiking response. The mag-

nitude of the excitatory synaptic current can be modified by increasing the relative contribu-

tion of the strong excitatory synapses, or by homogeneously increasing the activation of all

excitatory synapses (Materials and Methods).

We first examined the effect of the amplification mechanism in simulations where the net

synaptic input was varied by increasing the activation frequency of strong excitatory synapses

and decreasing the activation frequency of the weak excitatory synapses (see Material and

Methods). Such increase in the proportion of activated strong synapses is expected when the

cell participates in an active learned memory pattern.

We used the size of the net synaptic current before the amplification mechanism was

induced as an indicator of the strength of the total synaptic input. In Fig 7A it can be seen that

increasing the relative contribution of strong synapses increased the net synaptic current,

which elicited a linear increase in the number of spikes. As shown in this example, the amplifi-

cation mechanism increased the slope of the input-output curve and as such increased the

spiking response in a multiplicative fashion; namely, the gain of the cell’s response to the same

synaptic activity pattern increased. In Fig 7B, for each point in the parameter space (i.e. for

each simulated cell) the slope of the regression line after the induction of the amplification

mechanism differed from the regression in the same cell prior to the amplification. In all the

simulations whole-cell balanced amplification increased the slopes significantly (P<0.0001) by

a factor that ranged from 1.6 to 4.8 with an average of 2.75±1.5. We concluded that the amplifi-

cation mechanism effectively increased the gain of the cell for the same input, and as such may

be a mechanism for gain modulation. Gain modulation is a change in the slope of the firing
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rate curve corresponding to a multiplicative scaling which is distinct from an additive shift.

The multiplicative effect on the number of spikes of the amplification mechanism supports

our previous hypothesis of memory amplification. Thus, when the cell is not tuned to the syn-

aptic input and thus receives a small net synaptic current, whole-cell amplification appears to

induce a small net effect; however, when the cell participates in an active memory-pattern and

thus receives a large excitatory net synaptic input, the net effect of whole cell amplification is

likely to be large.

Fig 6. The amplification mechanism multiplied the net synaptic current. A. The net synaptic current is the sum of the inhibitory and excitatory currents.

Multiplication of both the inhibitory (upper panel) and excitatory currents (middle panel) multiplies the net synaptic current (lower panel). Therefore, if the net

synaptic current is positive this multiplication will further depolarize the cell and if negative will further hyperpolarize the cell. B. The ratio of the activation

frequency of inhibitory to excitatory synapses was varied by decreasing the activation frequency of each inhibitory synapse from11Hz to 3Hz, and increasing

the activation frequency of each excitatory synapses from2Hz to 10Hz by 0.5Hz (x-axis). Each point on the graph is the average of 10 simulations. The

different ratios of activation frequencies (inhibitory activation frequency divided by the excitatory activation frequency x-axis) resulted in different net synaptic

currents (y-axis). The amplification mechanism increased the net-synaptic current while maintaining its polarity. A significant multiplicative effect was mainly

observed at positive net synaptic currents, thus primarily when the effect of the net synaptic current was excitatory. This figure is a result of one simulated

cell. C. Multiplication factors of the net synaptic current as a function of the average membrane potential. The simulation protocol is as described in B, where

each color indicates a different set of simulations (in total 10 different sets of simulations). The sets of simulations differed in terms of intrinsic characteristics

(resting potential: -90 - -60 mV) and the average strength of the synapses (excit/inhib: 0.6–1.3). Each dot in a set of simulations is a result of a different

activation frequency of the inhibitory and excitatory synapses, as was described in B.

doi:10.1371/journal.pcbi.1005306.g006
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The multiplicative effect of the amplification mechanism on the number of spikes can be

attributed to its multiplicative effect on the net synaptic current, where for all activation

strengths and over all simulations, the average amplification of the net synaptic current was

similar and amounted to a factor of 1.47±0.06 (a range of 1.42 1.62). Such a relatively uniform

scaling factor demonstrates the stability and the robustness of whole-cell balanced amplifica-

tion. The multiplication factor of the net synaptic current was considerably less than the multi-

plication factor of the inhibitory and excitatory conductance’s (2.0) due to the increased

average membrane potential following the amplification mechanism (from an average of -66.6

mV to an average of -64.5 mV) which specifically increased the inhibition driving force.

We next examined whether the increase in number of spikes was also mediated by the

increase in variance of the net synaptic current as a result of the amplification mechanism.

The effect of whole-cell balanced amplification on spiking response is also mediated via

its effect on the fluctuations of the membrane potential. Whole-cell balanced amplification

multiplied the standard deviation of the net synaptic current (Fig 7C) by a value that was simi-

lar to the increase in its mean. This is a direct consequence of the multiplication of the strength

of the inhibitory and excitatory conductance. For all simulations, the average multiplication

factor of the standard deviation of the net synaptic current was similar and amounted to a

value of 1.70±0.07 (a range of 1.53–1.79).

Fig 7. Whole-cell balanced amplification increased the slope of the input-output curve through an increase of the average and the stdev of the

membrane potential. A. The number of spikes measured during an interval of 500 ms, before (yellow) and after (green) whole-cell balanced amplification

is shown for increasing fractions of active strong synapses (red: 15%; orange: 30%; purple: 45% and blue: 60%) as evidenced by the increased net

synaptic current (X-axis). Whole cell balanced amplification increased the gain of the spiking response to the same input. B. Slopes of the regression lines

before (left) and after (right) whole-cell balanced amplification. In all simulations (20 different sets of simulations) the data matched a linear fit (r>0.95) C.

Membrane potential before (left) and after (right) the amplification mechanism was applied.D. Distribution of the membrane potential before and after the

amplification mechanism was applied. Whole-cell balanced amplification increased both the average and the standard deviation of the membrane potential.

Black lines indicates the fit to a normal distribution where the amplification shifted the average by 3.7 mV and multiplied the stdev by 1.6.

doi:10.1371/journal.pcbi.1005306.g007
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The increase in standard deviation as a result of the amplification mechanism can be

derived from the equation below. This equation calculates an approximation of the variance of

a synaptic current that results from N synaptic events with decay time constant τ, average

EPSC amplitude o, coefficient variation of amplitudes CV in a time interval T assuming that τ
� T (see Appendix 1 in S1 Text):

σ2 ¼ ω2 � N �
τ
T
�

1

2
þ
τ
T
� ðCV2 � 1Þ

� �

; ð1Þ

The variance has a quadratic dependency on the average amplitude of the synaptic event.

Thus, it is consistent with our results that multiplying the current mediated by all synaptic

sites through the amplification mechanism has the same effect on the fluctuation of the net

synaptic current as its effect on its average. It has been shown both experimentally and theoret-

ically that increasing the variance of the membrane potential while preserving its mean

increases the number of spikes [21–22]. Thus whole-cell balanced amplification increases the

number of spikes not only through the increase in the mean net synaptic current but also

through the increase in its variance. The effect of the amplification mechanism is illustrated in

Fig 7D, where we calculated the voltage distribution before and after the amplification. The

amplification mechanism affected both the average and the standard deviation of the mem-

brane potential. This resulted in a higher proportion of the membrane potential that exceeded

threshold and consequently, amplified the spiking response of the cell.

In Eq 1 it can be seen that increasing the average amplitude of a synaptic response (o) has

a much stronger effect on the variance than increasing the number of active synapses (N).

Next we examined the effect of whole-cell balanced amplification on spiking activity when the

increase in excitatory synaptic input resulted from a homogenous increase in activation fre-

quency of the excitatory synapses rather than an increase in the relative contribution of strong

synapses. For all activity strengths, the activation frequency was increased such that the increase

in net synaptic current was identical to the increase found in previous simulations (a ratio of

0.998±0.011). In agreement with the analytical results we found that increasing the proportion

of strong synapses resulted in an increase of 25% in the standard deviation, whereas increasing

the synaptic activation frequency only resulted in an increase of 5%. This difference was reflected

in the slope of the input-output curve, which was 32% higher when induced by increased pro-

portions of strong synapses. Despite these differences between the two sets of simulations, the

amplification mechanism multiplied the slope of the input-output curve by a similar factor

(P<0.65) demonstrating the stability and the robustness of this amplification mechanism.

Whole-cell amplification functions as a linear multiplicative amplifier in the balanced

state. A significant body of theoretical and experimental evidence suggests that the neuronal

network exists in the regime of a balanced state, where excitatory and inhibitory synaptic

inputs balance the mean values of the synaptic current but add their fluctuations [23].The net-

work in the balanced state is capable of fast tracking the temporal changes in the external input

to the network. The mode of activity in this state is referred to as the “asynchronous state” or

“rate mode”.

Whole cell balanced amplification multiplies the strength of all inhibitory and excitatory

synapses equally and therefore maintains the balanced state. Our findings, which demonstrate

that the average and the standard deviation of the net synaptic current are multiplied by almost

the same factor, maintain the outcome of the balanced state in which the network’s average net

synaptic current is much smaller than its fluctuations. One of the characteristics of the bal-

anced state is that the synaptic inputs are very weakly correlated. As a consequence, the fluctu-

ations of the net synaptic current obey Gaussian statistics characterized by the variance and
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the mean of the net synaptic current. Indeed, the voltage distribution both before and after bal-

anced amplification obeyed the normal distribution (r2 = 0.98, Fig 7D) and the effect on the

standard deviation and the average, fit the values that we reported in previous sections (ratio

of stdev: 1.65±0.09 mV; increase in average potential: 3±0.7 mV).

Since whole-cell balanced amplification is independent of past activity, we could derive its

impact on the number of spikes from its impact on the voltage distribution. Assuming a linear

threshold neuron in which below threshold the firing frequency is zero and above threshold it

is a linear function of the net synaptic current, the firing frequency can be evaluated through a

convolution of the Gaussian function and the linear threshold transfer function of the neuron,

resulting in the following equation (see Appendix 2 in S2 Text):

FðI ; sÞ ¼ b � s
1
ffiffiffi
p
p � e

� I � y

s
ffiffi
2
p

� �2

þ
ðI � yÞ
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ffiffiffi
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p
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0

@
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A ð2Þ

where θ is the net synaptic current that is required to reach threshold, σ is the standard

deviation of the synaptic current, I is the mean of the net synaptic current, and β is the multi-

plication factor of the linear transfer function. Using this equation, whole- cell balanced am-

plification can be induced by multiplying σ and I by the same factor (which as a result of the

simulation was determined to be 1.7). Thus, the amplification factor can be estimated from Eq

2 by calculating the ratio between the number of spikes before and after whole-cell balanced

amplification. Under this model, the amplification factor is independent of the exact imple-

mentation of the input-output relation (β) and the whole parameter space can be covered

solely by varying the terms y

s
and I

s
.

Whereas the size of fluctuations was suggested to be mainly determined by the network

activity [19], the spiking threshold and the size of the average net synaptic current were sug-

gested to differ between neurons as a result of non-homogenous intrinsic excitability, random

synaptic connectivity and non-homogenous external input. To account for the variability that

result from differences in intrinsic variability, we examined the amplification factor induced

by whole-cell balanced amplification at different values of spiking threshold y

s

� �
. For each value

of intrinsic excitability y

s

� �
, we varied the mean net synaptic input ( I

s
) such that � 0:1 < I

s
< 0:9,

yielding a range of synaptic inputs in which the average net synaptic current was smaller than

its fluctuation. We found that for a large range, the multiplication factor induced by whole cell

balanced amplification was nearly independent of the magnitude of the mean net synaptic

input (Fig 8A). As the neuron’s intrinsic excitability shifted further from threshold y

s
> � 0:8

� �
,

the amplification factor exhibited a mild dependency on the net synaptic current as expected

near threshold. This result solidifies our observation from simulations that the amplification

mechanism functions as a linear amplifier on the number of spikes.

Next we investigated the sensitivity of the multiplication factor induced by whole-cell bal-

anced amplification on the intrinsic excitability of the neuron. Although y

s

� �
varied consider-

ably, the variation in the amplification factor was small (1.7–3.5). At low intrinsic excitability

the amplification factor was higher, as is expected when the neuron is in the threshold range.

We showed that in the balanced state regime, whole cell balanced amplification functions

as a linear amplifier, where its multiplication factor is stable and exhibits low variability at dif-

ferent states. The range of amplification factors that were found analytically are similar to the

amplification factors found in the simulations. This similarity between the analytical study and

the simulation study indicates that these results are resistant to the specifics of implementation

and characteristics of the neuron’s physiology.
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Whole-cell amplification functions as an instantaneous amplifier. So far, the impact

of whole-cell balanced amplification was studied in conditions where the mean membrane

potential was constant and where Poisson-like fluctuations in the membrane potential cause

irregular spiking activity. Next we examined the effect induced by the amplification mecha-

nism when the mean membrane potential is briefly elevated due to an orchestrated increase of

the synaptic input that is considerably higher than the ongoing fluctuations induced by synap-

tic noise [24]. In-vivo, such brief and orchestrated elevations of the membrane potentials can

be a result of a brief external stimulus such as touch, sound or visual stimulation [25]. A reli-

able spiking response during these voltage bumps enables the neuron to reliably transfer the

information conveyed by these bumps to other neurons. However the irregularity of the volt-

age due to synaptic noise reduces the ability of the neuron to reliably elicit a spike during these

voltage excursions.

The continuous multiplication of the net synaptic current by the amplification mechanism

and its independence of previous spike activity enable it to respond instantaneously to changes

in the membrane potential, where its effect is especially pronounced at the peaks of the depo-

larized fluctuations (Fig 9A). Thus we expected that the amplification would reliably increase

the number of spikes that these bumps elicit, despite differences in ongoing synaptic activity

(Fig 9B). To test the consistency of the impact of amplification in these conditions we con-

ducted a set of simulations with ongoing varying synaptic noise, where the elevated synaptic

activity was randomly located in time.

Fig 8. In the balanced state, whole cell balanced amplification functions as a stable and robust linear amplifier. A. For each level of intrinsic

excitability (indicated by the color bar) the multiplication factor induced by whole-cell balanced amplification was calculated for different strengths of net

synaptic input ( I
σ, x-axis) using Eq 2. We examined the sensitivity of the multiplication factor to the net synaptic current by normalizing it to its mean value

(Y-axis). For all intrinsic excitability levels (θσ), indicated by the color bar), the value was close to one, indicating an almost constant multiplication factor.

The image above the color bar helps to visualize θ
σ, by indicating for each value of θ

σ (and thus for the aligned color) the proportion of the voltage above the

threshold when the mean synaptic current was zero. B. The mean multiplication factor (Y-axis) was calculated for each level of intrinsic excitability (θσ,

X-axis).

doi:10.1371/journal.pcbi.1005306.g008

Memory Amplification Mechanism

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005306 January 19, 2017 17 / 31



First we investigated the impact of the amplification mechanism on the number of spikes

during a brief (90 ms) elevation of synaptic activity. Despite the ongoing varying synaptic

noise (Fig 9B), the amplification increased the number of spikes in the large majority of the

bumps (74%, Fig 9C). The number of spikes did not differ for 23% of the bumps, and had

decreased in less than 5% of the bumps. Thus the amplification mechanism appeared to reli-

ably amplify the number of spikes during almost every event of elevated excitatory synaptic

activity, despite the ongoing variability in synaptic noise. Due to the multiplicative effect of

whole-cell amplification its net effect was pronounced primarily during the periods of elevated

activity: while the increase in average firing frequency as a result of the amplification mecha-

nism was amounted to 10.1±0.3 Hz during the bumps, during baseline the increase amounted

only to 0.65±0.2 Hz (Fig 9D). The multiplication factors of the number of spikes during these

bumps were similar to the ones reported in the previous sections.

Next we examined the impact of the amplification mechanism on the probability of eliciting

a spike during very brief (30 ms) periods of elevated activity (Fig 10A). The parameter space

was explored by modulating the resting membrane potential, and hence the threshold distance,

and by modulating the strength of the excitatory and inhibitory synaptic responses. Despite

Fig 9. Whole-cell amplification functions as an instantaneous amplifier. A. At the peaks of the fluctuations the effect of the amplification was larger.

The synaptic activity exhibited the same pattern before and after the amplification thus demonstrating the instantaneous effect of whole-cell balanced

amplification. B. The probability of the excitatory synapses was increased according to a time course described by an alpha function (tau = 24 ms), with a

multiplication factor of 5, resulting in voltage transients that were considerably larger than the ongoing voltage fluctuations with a half time around 90 ms.

Despite a different synaptic activity pattern, and the relatively short duration of these transients the amplification induced by whole-cell balanced amplification

was very evident. In both traces the sodium conductance was set to zero to eliminate the action potentials. C. Whole-cell balanced amplification induced

robust event based amplification where in the large majority of the synchronized events (74%) the number of spikes increased. Simulation were performed at

30 different simulation sets at which both resting potential and synaptic strength were varied (see Materials and Methods) D. Due to the multiplicative nature

of whole-cell amplification, the increase in the number of spikes was pronounced during the increased voltage transients while the increase in the number of

spikes during the baseline was negligible.

doi:10.1371/journal.pcbi.1005306.g009
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the brief interval and the irregularity of both the synaptic noise and the bumps, the effect of

the amplification mechanism on the probability of eliciting a spike was striking (Fig 10B and

10C). Even at probabilities just above zero, whole-cell amplification increased the firing proba-

bility of the cell to threshold values, and thus to approximately 50% chance. When the cell was

near the threshold value (P�50%), the amplification caused the cell to reliably respond to the

bumps (>90%).

Finally, we examined whether the sharp increase in the probability of firing a spike during

these bumps could be explained solely by multiplying the standard deviation and the average

of the net synaptic current, as we observed for the effect on the firing frequency. The parameter

Fig 10. Whole-cell balanced amplification had a considerable impact on the probability that very short voltage transients would elicit a spike. A.

An alpha function-like time course of increased rate activation of excitatory synapses was induced (tau = 12 ms, multiplication factor = 5) resulting in brief

(half time ~ 30 ms) excursions of voltage bumps. B. For each trace (30 bumps of voltage elevations) the probability of eliciting a spike was calculated before

and after whole cell balanced amplification. The simulation parameter space was spanned by varying the resting membrane potential, the synaptic strength,

and the activation frequency of the synapses as indicated in the Materials and Methods. Binning the probabilities in all conditions resulted in highly non-

linear amplification, where bumps that had a low likelihood of eliciting a spike were amplified to threshold values with probabilities of 50%. Using Eq 2 we

tested whether the multiplication of σ and I by a factor of 1.7 could account for the simulation results. βwas set such that the maximum frequency was 100

Hz or 150 Hz [58] at values where the average current was 3σmore depolarized than threshold (a range in which sodium channels still do not undergo

pronounced inactivation). The parameter space (35 different sets of simulations) was spanned by varying I
σ (0.4–0.9, similar to the values obtained in the

simulations) and the threshold θ
σ (0.5–3.7), yielding results that spanned the same area as the simulations. The values of I

σ are indicated by color coding, and

the values of β are indicated by solid lines (max firing frequency of 150 Hz) and double lines (max firing frequency of 100 Hz). C. Binning these calculated

values based on the probability before whole-cell amplification yielded a curve that was similar to the simulated curve.

doi:10.1371/journal.pcbi.1005306.g010
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space was spanned by varying the average net synaptic current I
s

� �
and the threshold y

s

� �
. The

probability of eliciting spike was calculated before and after multiplication of σ and I by a

factor of 1.7 using Eq 2. The calculated probabilities spanned a space that was similar to the

simulated probabilities (Fig 10B), where on average the calculated curve approximated the

simulated curve (Fig 10C). At zero probability of eliciting a spike, the likelihood of eliciting a

spike also remained negligible after whole-cell balanced amplification. Thus whole-cell bal-

anced amplification mainly affected the bumps that were not very distant from threshold.

Discussion

In this study we show that a subset of cells exhibited a task learning induced CaMKII depen-

dent process in which the single channel conductance of all AMPA and GABAA synaptic

receptors in the cell was doubled. Subsequently we show using both analytical and numerical

studies that this process functions as a linear, real-time and history- independent amplifier of

the cell’s spiking response. These features enable whole-cell amplification to have robust

event-based amplification, and to reliably follow the irregular and rapid changes in the cell’s

synaptic input. The multiplicative nature of the amplifier ensures that the amplification will

have an impact primarily when the cell’s synaptic input is largely excitatory; hence, when the

cell is tuned to the input.

All four predictions of the model were experimentally validated

In this study we verified the hypothesis in which in a subset of cells, learning the task induced

a whole-cell, CaMKII dependent process, in which all the inhibitory and excitatory synapses

doubled their strength through a two-fold increase in the single channel current of the AMPA

and GABAA receptors.

All the predictions derived from this hypothesis were confirmed using two different block-

ers of CaMKII for both inhibition and excitation. Validation of the first and second predictions

indicates that only a subset of the cells underwent a task learning induced CaMKII dependent

phosphorylation that significantly increased the synaptic single channel current and as a

consequence the average event amplitude. The clustered effect could not be explained using

within-animal variation since for almost every cell in the affected cluster there was a cell from

the same rat that was in the non effected cluster. Moreover, the recordings were taken from

identified pyramidal neurons in layer II of the piriform cortex; therefore the clustering effect

could not be ascribed to different types of cells being different [7, 8].

The blocker effect was mainly apparent in cells from the trained group (30–40% of the

cells), present to a lesser extent in the pseudo-trained group (0–10%) and absent in the naïve

group (0%). Thus, learning the task clearly induced the amplification process, even though the

recordings were made 4–5 days after training ended.

The third prediction stated that CaMKII blocker would reduce the amplitude of each event

by a factor of two. This prediction required a uniform synaptic event-based effect rather than

an average effect. We approached this issue by computationally reversing the effect of the

CaMKII blocker on the histogram of event amplitudes through a uniform two-fold multiplica-

tion of the events amplitudes. In each cell in the affected cluster, this manipulation yielded a

full computational reversal of the blocker effect, thus confirming that the CaMKII blocker

reduced the amplitude of each synaptic event by a factor of two. Due to the moderate con-

centrations of CaMKII blockers, the blockers did not yield a full effect on the cells in the

affected cluster (see results). The effect of tatCN21 (inhibition 147±7%; excitation 148±3%)

was significantly smaller than the effect of KN93 (inhibition 165±9%; excitation 173±21%).
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The similar effect of each blocker on inhibition and excitation supports the notion that indeed

the discrepancy between the expected effect of the twofold reduction and the experimentally

observed effect is due to a partial effect of the blocker. For each cell, the fraction of blocker

affected events was used when calculating the reversal of the blocker effect on the amplitude

distribution. This reversed blocker effect cannot be attributed to the calculated fraction since

when assuming different processes we did not achieve a full reversal of the blocker effect on

the events amplitude histogram, even though the effect on the averaged amplitude was

reversed.

The fourth prediction stated that the cells that were affected by CaMKII blocker are the

cells that were affected by the task learning; thus in these cells, there was a process that caused

all the synaptic AMPA and GABAA receptors to multiply their single channel current by a fac-

tor of two. This prediction was confirmed by demonstrating that the single channel current in

these cells was twice as high as in the controls, and that their amplitude distribution curve

could be reconstructed by two-fold multiplication of all the events in the control group. The

affected cells could be discriminated from the non- affected cells solely based on their single

channel current, which was indicative of their difference before the CaMKII blocker was

applied.

Learning induced an additional additive increase in the averaged

strength of excitatory synapses

In addition to demonstrating the task learning effect on the CaMKII blocker-affected cells, we

argued that for inhibition, the multiplication process might account for virtually all the mea-

sured learning induced modifications of the synaptic events. We showed that the two-fold

multiplication of the average inhibitory event amplitude in a randomly selected 35% of the

cells could fully account for the learning induced modification on the cumulative frequency

curve of all the cells. However we could not fully explain the learning induced modification in

the cumulative frequency curve of excitatory events. Task learning induced a shift in the cumu-

lative curve that could not be accounted for by the multiplication process in a subset of cells.

Thus learning the task induced an additional process that caused an almost constant increase

in the average excitatory events amplitude in all cells in the trained group.

The applicability of memory amplification mechanism to other brain

areas

Phosphorylation of the AMPA receptor by CaMKII is known to double the single channel con-

ductance of AMPA receptors [13–15]. These findings consolidate our basic premise that CaM-

KII induces a two-fold increase of the AMPA receptor conductance. Although a two-fold

increase in the AMPA channel conductance as a result of CaMKII dependent phosphorylation

is believed to be a universal property of the AMPA receptor, currently there are no other find-

ings that demonstrate the induction of the memory amplification mechanism in other brain

regions. However since the amplification mechanism is a whole-cell mechanism and thus

appears to be independent of circuit property, the memory amplification mechanism is likely

to be induced also on pyramidal cells in other brain regions. Future demonstration of the

induction of this mechanism in other regions can further increase its impact, as learning is

known to be supported by parallel modifications in several regions.

As expected by a mechanism that is induced through whole-cell transduction mechanism,

the reversal of the memory amplification mechanism using CaMKII blockers was rapid (sev-

eral minutes passed between the application of the drug in the perfusion solution and the effect

of CaMKII blocker). In this set of experiments the recordings were made at a fixed interval of
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4–5 days after training termination [7, 8]. This interval allows us to suggest that the memory

amplification mechanism comprise a long-term effect of learning, nevertheless it does not

enable us to determine the time scale of the induction of this mechanism. Resolving this issue

is significant for understanding the behavioral role of the amplification mechanism in different

settings.

Mechanism for gain modulation

Using simulations we have shown that whole-cell balanced amplification acts mainly via multi-

plicative amplification of the average and standard deviation of the net synaptic current; as

such its effect is correlated with the size and the polarity of the net synaptic current. Moreover,

we showed using simulations and analytical study that in the balanced state this modification

leads to a linear amplification of the number of spikes with a fairly stable multiplication factor.

This trait suggests that the amplification mechanism is a robust and stable mechanism for gain

modulation.

Quite a few studies have attempted to describe the mechanism of gain modulation. It has

been shown that tonic inhibition creates a divisive operation during physiological excitation in

which the cell is under continuous bombardment of synaptic activity [26–30]. In other studies

[22, 29, 31–33], it was shown that depolarizing the membrane potential in the presence of syn-

aptic noise increases the response gain. In both mechanisms (i.e. increase in tonic inhibition

and depolarization of the membrane potential), the change has an additive effect on the input-

output function, and in both, the amplitude of the baseline noise determines the shift from

additive to multiplicative operations [26, 31]. Indeed, theoretical studies [31, 32] have shown

that in the presence of noise, the firing frequency becomes a power-law function of the mem-

brane potential but only for a limited range of values, and that this is primarily visible at low

firing frequencies. Due to this limitation, these mechanisms cannot be considered a robust

driver of gain modulation at supra-threshold conditions [34].

The mechanism we suggest here is inherently multiplicative and cell selective, and hence

can cause robust cell specific gain modulation. We found that both the amplitude and the stan-

dard deviation of the net synaptic current were multiplied through a whole-cell balanced mul-

tiplication by approximately the same constant for all simulations. The simulations spanned a

large space of several parameters, which effectively produced different initial conditions for

the inhibition excitation ratio, and a different activation curve of the cell. We confirmed these

results analytically and showed that in the balanced state whole-cell multiplication induces a

linear amplifier on the number of spikes. Moreover, this analysis showed that when the cell is

not in the threshold regime, the multiplication factor is fairly stable.

Whole-cell amplification functions as an instantaneous amplifier

Theoretical works suggested that gain modulation can be mediated by changes in intrinsic

excitability [35,36], and more specifically through modulation of the currents that mediate

the firing frequency adaptation; however using simulations these studies indicated that the

induced gain is not robust at lower firing frequencies [36]. Moreover, since pyramidal cells dif-

fer in their firing adaptation properties, the resulting gain modulation varies considerably

across cells.

Gain modulation mechanisms that act through modulation of the firing frequency adapta-

tion are dependent on the past spiking activity of the cell. In the balanced regime spiking

activity is inherently irregular and therefore a consistent gain modulation effect of such mech-

anisms can be achieved by averaging, or by long time integration of the spiking activity.

Whole-cell balanced amplification modifies the synaptic input directly and as such is not
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dependent on past spiking activity. Moreover its underlying multiplicative process enables it

to respond in particular to large deviations in the membrane potential. These characteristics

enable it to act instantaneously to rapid changes in the synaptic input. We showed that whole

cell balanced multiplication could reliably amplify the number of spikes in 75% of the voltage

bumps that are caused by a transient, brief elevation of excitatory synaptic activity, despite

ongoing differences in synaptic noise. These characteristics enable a reliable instantaneous

amplification during transient periods of brief orchestrated elevations of the membrane poten-

tial that results from a brief external stimulus such as touch, sound and visual stimulation [25,

37–39].

To summarize, to our knowledge the memory amplification mechanism is currently the

only candidate for a real-time amplifier that creates a high impact also at highly supra-thresh-

old values. While a mechanism that works through depolarizing the membrane potential is

real time, it exerts its main impact mainly at near threshold, and mechanism that works

through firing frequency adaptation is history dependent and thus does not react instan-

taneously to changes in the membrane potential.

Whole-cell amplification as a memory amplification mechanism

Amplification of a subset of cells that comprise a memory-pattern would primarily amplify the

response of these cells when memory is activated. Due to the multiplicative nature, the net

effect of the amplification during baseline activity is much smaller than when the cell is tuned

to the input. This tendency is increased by the larger multiplication factor of the net synaptic

current at membrane potentials that are considerably more depolarized than the GABAA

reversal potential. This enables the amplification to have a large net effect mainly when the

memory-pattern is activated and the cells receive large excitatory input. In this fashion, the

amplification mechanism does not modify the information carried by the memory pattern,

but only amplifies it. We showed previously [9] using a simple computational model that this

mechanism induces selective memory amplification. The current work explains the underlying

cellular basis of this property.

A parallel increase in inhibition and excitation was previously suggested to function as a

network-wide gain increase mechanism [40, 41]. This effect is mediated by the non-specific

effect of neuro-modulators which increases the membrane potential of both the excitatory and

inhibitory neurons [41]. While such a mechanism can affect coding by generally impacting

synaptic circuits between different regions [40], the mechanism presented here is cell-specific

and thus can affect coding by amplifying an input specific response.

A pattern of cells that underlies a critical behavioral response should reliably respond to the

input, even during brief periods. Increasing the reliability of eliciting a spike in each of these

transient periods can create a consistent response in such states. We showed that the effect of

whole-cell multiplication on the probability of eliciting a spike possesses the following proper-

ties (a) at threshold values the probability of eliciting a spike was increased nearly to one and

(b) the increase in probability was prominent only if the ability of the event to elicit a spike was

not zero. These properties enable whole-cell multiplication to induce reliable coding without

modifying the information carried by the synaptic input.

Relation to previously described forms of synaptic plasticity

The whole-cell increase in synaptic strength observed after learning the task is not the result of

homeostatic synaptic scaling [42, 43]; Learning-induced increase in synaptic strength occurs

when the spike firing rate is enhanced [44–46] rather than decreased [42,43]. Thus, while

homeostatic synaptic scaling is a negative feedback control mechanism, learning-induced
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whole-cell synaptic strengthening appears to be a positive feedback mechanism. Moreover,

while the memory amplification mechanism appears to induce a uniform scaling of all synapses,

homeostatic synaptic scaling appears to cause a general increase in synaptic strength which does

not appear to be uniform. Indeed, increase in synaptic strength that is supported by a pseudo

binary increase in single channel conductance as we showed for the memory amplification

mechanism allows such a uniform increase, while increase in synaptic strength which is sup-

ported by addition of synaptic receptors appears to be more general and less uniform [43].

An across-the-board increase in the strength of all excitatory synapses in a sub-group of

cells cannot be explained by the classical learning theories that underlie memory formation in

which only synapses relevant to the storage of a memory are strengthened. Moreover, while we

show that doubling the channel conductance underlies the increase in synaptic strength; activ-

ity-dependent synaptic enhancement is thought to be mediated by an increase in the number

of AMPA channel receptors [47, 48]. Indeed, memory amplification should not modify the

composition of the subset of cells that compose the memory and thus should be uniformly

applied on all synapses in this subset. Moreover, since memory formation is tuned by the cor-

relation between presynaptic and postsynaptic activity in each synapse, it should support a

continuous increase in synaptic strength and thus can be implemented by addition of AMPA

channels. In contrast, a linear amplification of a memory can be induced by multiplying its fir-

ing response by a single factor and thus can be implemented by a uniform two-fold increase of

the synaptic strength.

We presented a cell-specific amplification mechanism that can induce a memory selective

amplification process when induced on a subset of cells that comprise a memory-pattern. This

memory enhancement is independent of memory formation. A memory of vital importance

needs to be enhanced to dominate subsequent behavior [49, 50]. When the memory becomes

less crucial it should be de-enhanced to balance its weight with the weights of other memories.

The induction of whole cell multiplication via a whole cell transduction mechanism and its

action through channel conductance enables it to be readily toggled-on when needed and off

when no further needed. Such properties may underlie the extinction and relapse seen in our

behavioral settings. Thus whole-cell CaMKII mediated phosphorylation can function as a

“software switch” unlike a hardware switch that requires morphological modulation as was

suggested in processes that accompanies memory formation.

Materials and Methods

Experimental procedures

In this study we have used data from previously published experiments in which training-

induced modification of inhibitory [8] and excitatory [7] synaptic transmission was studied.

For sake of clarity we present here a brief description of the animal training and the experi-

mental recording setup. More details can be found in previously published works (behavioral

settings: [1, 2,51]; Slice preparation and recordings: [7,8])

Animal training: Rats designated to the trained group were rewarded with water when they

chose the correct positive cue. Rats designated to the pseudo-trained group were rewarded

with water when choosing any odor in a random manner, and rats in the naive group were left

in their home cages and were water deprived only. Training consisted of 20 trials per day for

each rat [2]. Two learning phases can be seen during training [1,6]: in the initial phase of "rule

learning", which requires 7–8 consecutive training days, the rat forms a strategy for executing

the olfactory discrimination task, and in the second phase the rat exhibits an enhanced learn-

ing ability, and can learn novel odors within 1–2 training days. Once the rats have reached the

Memory Amplification Mechanism

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005306 January 19, 2017 24 / 31



criterion for olfactory discrimination, they were allowed to rest for 4–5 days and then brain

slices were prepared.

Recordings [7, 8]: Whole cell recordings of spontaneous events where done in the presence

of 1 μM tetrodotoxin and were performed 10–15 min after membrane rupture and lasted for

up to 45–50 min. Miniature excitatory post-synaptic currents (mEPSCs) were recorded at

holding potential of −80 mV causing miniature inhibitory synaptic events to be exceedingly

small due to the small driving force and leaving most voltage-dependent channels closed and

NMDA receptors seldom activated. To record GABAA-mediated miniature IPSCs (mIPSCs),

the recording electrode contained 140 mM cesium chloride solution in order to reach a rever-

sal potential of 0 mV, yielding a strong GABAA-mediated currents at holding potential of −60

mV. The perfusion solution also contained DNQX (20 μM) and APV (50 μM), to block gluta-

matergic synaptic transmission via AMPA receptors, thus allowing recording of pure IPSCs.

CaMKII blockers: the CaMKII inhibitor KN93 (10 μM) and the CaMKII cell-penetrating

peptide inhibitor, tatCN21 (5 μM; GL Biochem, Shanghai Ltd, China) were used in order to

inhibit the active state of CaMKII.

Analyzing single channel current

Estimate of the average single channel current and the average number of active channels were

obtained using a peak-scaled non-stationary fluctuation analysis (NSFA) of synaptic events

[13]. The NSFA was applied on the events that were electrotonically nearby (10–90% rise-

times< 1.5 ms). Using Mini analysis software (Synaptosoft Inc.), events (80–300 per each cell)

were scaled and aligned by their peak, and their decay phase was divided to 30 bins. The single

channel current (i) and the number of channels (N) were calculated (using Mini Analysis Soft-

ware) by fitting the theoretical relationship for the peak scaled variance (σ2) after subtraction

of the background variance s2
b:

s2 ðtÞ ¼ i � IðtÞ � IðtÞ2=Nþ s2

b

Only cells in which the fitting of the equation yielded an R>0.85 were incorporated in the

analysis.

Analyzing the fraction of events affected by the blocker

Under the assumption of a model in which the blocker effect (averaged events amplitude

before the blocker divided by the averaged events amplitude after the blocker) on the event

amplitude is a division by a factor of a, given that a fraction x of the events was affected by the

blocker then the blocker effect y should be calculated as follows:

y ¼ ð1 � xÞ þ x � a

Some algebra enables as to calculate the fraction of the events that was modified by the

blocker (x) as

x ¼
y � 1

a � 1

Modeling

This study examined the effect of whole-cell balanced multiplication on the spiking activity of

neurons, using computer simulations. We used a conductance based cell with simplified mor-

phology and a realistic generation and adaptation of action potentials as was observed in

recordings from pyramidal cells in the piriform cortex [2].
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Morphology and passive properties

The uniform whole-cell property where the strength of all synapses is doubled makes whole-

cell balanced amplification relatively insensitive to the locality of the synaptic responses and

thus relatively independent of the precise morphology of the cells. This enabled us to imple-

ment the modeled cell morphology as a simplification of a pyramidal cell where the apical and

basal dendritic trees were reduced to long cylinders connected to the soma [52]. Both the mor-

phology and the passive properties were constructed such that the membrane decay time con-

stant (12 ms) and the size of a single excitatory synaptic current (1 mV) would approximate

previously measured parameters in-vitro [1, 53]. In our model cell, the input resistance (114

MΏ) was in the high range of previously reported values [1], in order to compensate for the

leak introduced by the sharp electrode used in these experiments.

Synaptic input

The currents generated by the excitatory and inhibitory synapses were modeled by an alpha

function with realistic rise times and decay times. The excitatory and inhibitory synapses had

characteristics of decay and rise times as measured for AMPA and GABAA receptor mediated

currents [6]. 350 Excitatory and 350 inhibitory synapses were uniformly distributed along the

apical and basal dendrites. The reversal potential of the net synaptic current resulted to a value

of around -37mV, which similar to the value measured experimentally during UP-states [20],

and is theoretically expected at balanced state. In our simulations, we measured the reversal

potential of the net synaptic current by measuring the amplitudes of the averaged net synaptic

current at various holding potentials.

The amplitudes of the excitatory synapses were chosen based on the excitatory miniature

event amplitude distribution (Fig 5B, naive) and scaled to result in average amplitude of 70pA.

The scaling factor reflects the ratio of the average miniature excitatory synaptic event (mepsc)

amplitude and the average synaptic response to one presynaptic action potential in piriform

neurons [54]. Since there is no definitive evidence that in general Hebbian learning also modi-

fies the inhibitory synapses, for simplicity we modeled the inhibitory synapses as a uniform

distribution where the average response yielded a synaptic current with amplitude of 100 pA.

The activation frequencies of inhibitory and excitatory synapses differed across simulations

and ranged from 2 to 5 Hz. These values resulted in a voltage standard deviation of 3.9±0.23

mV.

The reversal potential of the net synaptic current was determined as the holding potential at

which the net synaptic current averaged over 200 ms was amounted to zero.

Varying proportions of strong excitatory synapses

Although the tail of this distribution cannot be fully accounted by learning, a simple way to

divide the population of synapses to strong and weak synapses is through a division of the min-

iature amplitude distribution curve. The synapses were divided into strong and weak based on

the miniature amplitude distribution curve (Fig 5A, weak synapses < 13 pA the Gaussian like

section of the distribution; strong synapses > = 13 pA the tail of the distribution). When scal-

ing values between zero and one, strong synapses had a relative conductance of 0.25–1 and

weak synapses had a relative conductance of 0.04–0.25. The rationale behind increasing the

proportion of strong synapses is that in Hebbian learning synapses that connect co-active cells

become stronger. Therefore when a cell participates in a learned Hebbian memory the propor-

tion of strong synapses will increase.

We divided the increase into four levels where the proportion of active strong excitatory

synapses was 30%, 45% and, 60%. At rest, strong and weak synapses had the same activation
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probability. The increase in the proportion of strong synapses was generated by increasing the

frequency of the strong synapses and decreasing the frequency of weak synapses. The decrease

in the frequency of weak synapses and the increase in the frequency of strong synapses were

done such that the total number of excitatory synaptic events was maintained constant.

Active conductance

The whole-cell balanced amplification mechanism acts directly through modulation of the

synaptic strength and is only indirectly dependent on intrinsic excitability. In this paper we

aimed to understand the functional outcome of this mechanism and not address its quantitative

effect on spike frequency. Therefore we did not do extensive modeling of the cell’s intrinsic

properties. We modeled a regular spiking pyramidal cell that exhibits moderate adaptation [2].

We included voltage dependent currents that are known to participate in the generation of the

action potential and the refractory period: transient (inactivating) sodium current gNa; delayed

rectifier potassium current gK(DR); transient inactivating gK(A); In addition we included cur-

rents that participate in spike adaptation: muscarinic receptor suppressed potassium conduc-

tance gK (M); slow calcium dependent potassium conductance gK (AHP). For the activation of

the gK (AHP) we implemented a high threshold non- inactivating calcium conductance gCa(H)

and calcium homeostasis mechanism. [Ca]i was elevated by the calcium current and decayed

due to calcium homeostasis mechanisms according to the following equation:

½Ca�0i ¼
� Ica

depth � F � 4000
� 107 �

½Ca�i � ½Ca�o
t

;

where depth is the cell diameter, and τ is the time constant of [Ca]i removal.

The equation describing muscarinic conductance was taken from [55]; the equations

describing the rest of the active conductance were taken from [56] in a work that modeled a

cortical pyramidal cell. The rate parameters were kept at the same values and conductance

densities were varied to result in spiking activity that resembled a regular spiking pyramidal

cell. The conductances that generate the action potential (gNa; gK(DR; gK(A)) were located in the

soma whereas the currents that underlie the after- hyperpolarization and the calcium current

(gk(M); gca(H); gk(AHP)) were located in the proximal apical dendrite.

The response of the cell to a step current was similar to the responses of cells as recorded in

the piriform cortex, both in the characterization of action potential and their firing frequency

adaptation (Fig 2A; [1, 2]).

Whole-cell balanced multiplication

The mechanism of whole-cell balanced multiplication was implemented by multiplying the

strength of all excitatory and inhibitory synapses. As was observed previously (see Results), the

increased strength was mediated by multiplying the conductance of both the excitatory and

the inhibitory synapses by a factor of 2.

Simulation parameter space

The default values for the simulation parameters are noted at Table 1. The parameter space for Fig

7 was created by varying the amplitudes of the excitatory and inhibitory currents and their activa-

tion frequency. The average conductance of the AMPA receptor ranged from 0.6 and 10 nS and

the average conductance of the GABAA ranged from 0.9–2.7 nS. For each value of the excitatory

and inhibitory conductance the activation frequency of both synapses ranged from 2-5Hz. Only

simulations that yielded an average membrane voltage of less than -55 mV were included.
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For each point in this parameter space, simulations were performed for the 4 activation lev-

els of the strong synapses; for each level the average over ten trials was calculated and each trial

was calculated over a period of 500ms. In this parameter space where both the average ampli-

tude and activation frequency of the synapses varied, the net synaptic current before whole-

cell balanced amplification was used as a uniform indicator of the synaptic strength.

For Figs 9 and 10 the parameter space was created by varying the reversal potential of the

leak current from -100 to -70. This manipulation modified the averaged membrane potential

during baseline activity from -62 mV to -75 mV, which effectively shifted the distribution of

the baseline membrane potential relative to threshold and is equivalent to modification of the

term y

s
in Eq 2. In addition, the strength of the excitatory and inhibitory synapses was varied by

independent multiplication by factors that ranged from 0.6 to 2, and the activation frequency

of the inhibitory and excitatory synapses was co-modulated up to a factor of 3. These manipu-

lations are equivalent to modulating σ and I .

As the aim of these simulations was to yield instantaneous and not the average effect of

whole cell multiplication, the results presented in this figure are from single traces.

Simulations were conducted using the Neuron simulation program [57].
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Table 1. Values for simulation parameters.

Morphology and passive properties

Length/diameter of apical dendrite 200/2.5 μm

Length/diameter of basal dendrite 80/3 μm

Length/diameter of soma 12/20 μm

Axial resistivity (Ra) 50 Ώ cm

Membrane capacitance 2 μF/cm2

Leak conductance 0.0002 S/cm2

Leak reversal potential -80 mV

Active conductance

gna 0.2 S/cm2

gk(DR) 0.14 S/cm2

gk(A) 0.1 S/cm2

gk(M) 0.01 S/cm2

gca(H) 0.003 S/cm2

gk(AHP) 0.002 S/cm2

Sodium reversal potential 55 mV

Potassium reversal potential -90 mV

Calcium reversal potential 90 mV

τ of [Ca]i homeostasis 10 ms

doi:10.1371/journal.pcbi.1005306.t001
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