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Abstract
Bacteria are assumed to efficiently remove organic pollutants from sewage in sewage treat-

ment plants, where antibiotic-resistance genes can move between species via mobile

genetic elements known as integrons. Nevertheless, few studies have addressed bacterial

diversity and class 1 integron abundance in tropical sewage. Here, we describe the extant

microbiota, using V6 tag sequencing, and quantify the class 1 integron-integrase gene

(intI1) in raw sewage (RS) and activated sludge (AS). The analysis of 1,174,486 quality-fil-

tered reads obtained from RS and AS samples revealed complex and distinct bacterial

diversity in these samples. The RS sample, with 3,074 operational taxonomic units, exhib-

ited the highest alpha-diversity indices. Among the 25 phyla, Proteobacteria, Bacteroidetes

and Firmicutes represented 85% (AS) and 92% (RS) of all reads. Increased relative abun-

dance of Micrococcales, Myxococcales, and Sphingobacteriales and reduced pathogen

abundance were noted in AS. At the genus level, differences were observed for the domi-

nant genera Simplicispira and Diaphorobacter (AS) as well as for Enhydrobacter (RS). The
activated sludge process decreased (55%) the amount of bacteria harboring the intI1 gene

in the RS sample. Altogether, our results emphasize the importance of biological treatment

for diminishing pathogenic bacteria and those bearing the intI1 gene that arrive at a sewage

treatment plant.

Introduction
Although water is fundamental to life on earth and is considered a renewable and infinite
resource, it is still limited. Wastage, environmental imbalances and water pollution due to
domestic and industrial sewage threaten the availability of this natural resource, which is in
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high demand. The contemporary world has contributed to environmental pollution by releas-
ing large amounts of sewage into waterways, leading to human exposure and the contamina-
tion of several environments. In Brazil, approximately 8 billion liters of non-treated sewage is
released into rivers each day from one hundred of the largest Brazilian cities [1]. This repre-
sents a environmental challenge because the discharge of untreated or improperly treated
waste into waterways can introduce potentially pathogenic microorganisms to humans and
change the indigenous microbial community, with ecological and public health implications
[2]. Notably, the aquatic environment harbors different antibiotic resistance-associated mobile
genes that are scattered among environmental bacteria [3]. As outlined in a review by Gillings
et al. [4], class 1 integron-integrase is consistently linked to genes that confer resistance to anti-
biotics, disinfectants and heavy metals, is found in pathogenic and commensal bacterial species
of humans and animals and is able to move between species. Wastewater discharge, manure
disposal and aquaculture are the main sources of antibiotics in aquatic environments [5]. Previ-
ous studies have agreed that the microbiota of wild animals can acquire antibiotic resistance
genes by consuming waste or drinking contaminated water [6, 7].

Efforts to treat sewage are occurring worldwide. Among these processes, aerobic biological
treatment by activated sludge (AS) has been successfully applied and widely accepted for treat-
ing domestic sewage. This system represents an environmental protection and offers a low-cost
and effective way to treat sewage [8], with the removal of over 90% of organic material [9, 10].
However, the efficacy of this treatment depends on a series of metabolic interactions among
diverse microorganisms, mostly bacteria, that play a key role to remove organic and inorganic
pollutants.

Many studies based on 16S rRNA gene analysis have described microbial groups found in
anaerobic reactors and AS [11–13], but less is known regarding microbiota from raw sewage
(RS) and the abundance of the class 1 integron-integrase gene (intI1) in this environment.
Knowledge on this microbiota is important because it may identify bacteria that can harm
human health. Additionally, the distribution of class 1 integrons from metagenomic samples,
in contrast to culturable bacteria, remains under-explored. Thus, evaluating the abundance of
class 1 integrons, which are often associated with multiresistant clinical pathogens, is impor-
tant [14, 7]. To gain insight into this knowledge gap, we investigated the bacterial diversity of
RS and AS of a full-scale activated sludge system using high-throughput sequencing. Moreover,
we also investigated the abundance of the 16S rRNA and intI1 genes in these environments
using real-time PCR.

Materials and Methods

Ethics statement
For sampling in the Arrudas wastewater treatment plant, no specific permit was required for
the described study area and we confirm that it did not involve endangered or protected
species.

Study area and sampling
The Arrudas wastewater treatment plant, Belo Horizonte, Brazil (19°53’42”S and 43°52’42”W)
occupies an area of 63.84 ha, and treats the domestic sewage (2.25 m3/s design flow) generated
by 1 million inhabitants using a conventional activated sludge process. Samples from sewage
and wastewater treatment station represent a combination of inputs from human faecal
microbes and enrichment of specific microbes from the environment to form a unique and sta-
ble population structure [15].
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RS (10 L) and AS (2 L) samples were placed in sterilized bottles on 7 May 2013 and trans-
ported on ice to the laboratory within 2 h. The AS sample corresponded to a mixed liquid con-
taining flocs and suspended bacteria from the aerobic zone of the aeration tank. The samples
were then centrifuged at 14,000x g for 10 min, and the supernatants were discharged and the
final pellets were stored at -20°C until further processing.

DNA extraction and sequencing
Total DNA was extracted from 10 g of wet pellets stored at -20°C after thawing at room tem-
perature, using the PowerSoil DNA Isolation Kit (Mobio Laboratories Inc., Carlsbad, CA,
USA) according to the manufacturer's instructions. The quantity and quality of the total DNA
were determined using a NanoDrop spectrophotometer (NanoDrop Technologies).

Partial amplification of the 16S rRNA gene was achieved using the primer set 985F (5’-CAA
CGCGAAGAACCTTAC C-3’) and 1046R (5’-CGACAGCCATGCANCACCT-3’) [16], which
corresponded to the V6 hypervariable region. Gene amplification and sequencing were per-
formed at the Beijing Genomics Institute (BGI), using the 100 bp paired-end strategy on the
Illumina HiSeq 2000 platform.

Data analysis and taxonomic assignment
In this study, reads assembly, trimming and screening were carried out using Mothur v.1.32.0
[17]. Sequences with low quality (�20) or ambiguous bases and with more than eight homo-
polymers and a read length outside the range of 56–63 bp were discarded. Reads approved
using these quality criteria were aligned and classified against a V6 region trimmed alignment
that was based on the Silva v.119 16S rRNA database [18]. Chimeric reads were identified and
excluded using the Uchime method [19], and mitochondrial and chloroplast reads and reads
that did not match any reference sequence from the bacterial 16S rRNA database were dis-
carded. Subsequently, the reads were grouped into operational taxonomic units (OTUs) by
considering a genetic similarity of 95% using the average neighbor method. The samples were
normalized to the lowest number of reads using the command rarefy_even_depth with the
Phyloseq [20] package of the R software [21] to determine the alpha diversity indices. The
nucleotide sequences were submitted to Sequence Read Archive (http://www.ncbi.nlm.nih.gov/
sra/) with the accession numbers of SRR 1801880 to SRR 1801935.

Quantitative real-time PCR (qPCR)
For each RS and AS sample, we estimated the abundance of the bacterial 16S rRNA and intI1
genes using an ABI PRISM 7900HT sequence detection system (Applied Biosystems, Foster
City, CA). The primer sets 338F (5’-TACGGGAGGCAGCAG-3’) [22] and 518R (5’-ATTACC
GCGGCTGCTGG-3’) [23] and qINT-3 (5’-TGCCGTGATCGAAATCCAGATCCT-3’) and
qINT-4 (5’-TTTCTGGAAGGCGAGCATCGTTTG-3’) [24] were used to amplify the 16S
rRNA and intI1 genes, respectively. The amplification reaction conditions were described by
Reis et al. [25] and Rosewarne et al. [24], respectively. Standard curves were generated using
seven dilutions, in triplicate, of the 16S rRNA and intI amplicons from the Escherichia coli
ATCC 25922 (3.82 x 1011 copies/μL) and E. coli BH100 strains (3.20 x 1012 copies/μL). To
determine the number of the 16S rRNA and intl1 genes copies used as templates for the stan-
dard curves, the following online calculator was accessed: http://www.uri.edu/research/gsc/
resources/cndna.html [26].

Each sample was run in triplicate, and a negative control was included for each analysis.
The standard curves for the primer sets generated slopes of -3.19 and -3.27, respectively, and
the R2 values were greater than 0.97 for both curves (S1 Fig). Bacterial qPCR exhibited Ct
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values of 10.7 and 12.50 for RS and AS, respectively. In contrast, the Ct values obtained for
intI1 were 16.81 and 19.68 for RS and AS, respectively (S2 Fig). The proportion of bacterial
cells harboring the intI1 gene in each sample was estimated as previously described by Hard-
wick et al. [27].

Results and Discussion

Overview of the datasets and alpha diversity
Illumina-based V6 tag sequencing yielded 1,885,944 raw reads (943,000 in RS and 942,944 in
AS, 339.47 Mb). The resultant clean reads (598,119 in RS and 587,243 in AS, with an average
length of 61 bp) were used for downstream analysis. There were a total of 3,074 (RS) and 1,952
(AS) OTUs (S1 Table).

To estimate the relative diversity captured in each sample, the normalized libraries (with the
lowest number of reads, 587,243) were used to calculate the cumulative relative frequency
curve, OTU richness, ChaoI and ACE richness estimators, as well as the Shannon and Simpson
diversity indices. Good’s coverage values were similar in both samples (RS, 99.85%; AS, 99.9%).
As illustrated in Fig 1, the bacterial communities from RS and AS were dominated by a few
OTUs. The long tails of the taxon rank distribution curves indicated that the diversity in these
environments mostly arose from rare taxa. Although both communities exhibited a high num-
ber of rare OTUs, the read distribution of dominant OTUs in each sample was relatively equi-
table, as shown by the high Simpson index values (RS, 0.93; AS, 0.95). Altogether, Good’s
coverage and the cumulative relative frequency curve suggested that most of the diversity was
captured. The Shannon index (RS, 3.96; AS, 3.9) revealed considerable bacterial diversity in the

Fig 1. Cumulative relative frequency of the OTUs of raw sewage (RS) and activated sludge (AS).

doi:10.1371/journal.pone.0131532.g001
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samples. Moreover, the Chao1 (RS, 3677.6; AS, 2346.2) and ACE (RS, 3843.4; AS, 2441.0) val-
ues also predicted higher bacterial diversity in the RS sample (S2 Table).

Taxonomic composition
The taxonomic diversity profile by V6 tag sequencing is shown in Fig 2 and S3 Table. The
1,174,486 reads were affiliated with 25 bacterial phyla. Additionally, 1,025 OTUs were consid-
ered to be unclassified at the phylum level and thus might represent new bacterial taxa. Impor-
tantly, three phyla (Proteobacteria, Bacteroidetes and Firmicutes) accounted for 97% and 85%
all of the reads in the RS and AS samples, respectively. Although the RS and AS samples
revealed similar phylum-level representation, distinct distributions were observed. Previous

Fig 2. Distribution of the community members in raw sewage (RS) and activated sludge (AS). AVA group: Actinobacteria, Verrucomicrobia,
Acidobacteria. Other phyla: BD1-5, Candidate_division_OD1, Candidate_division_OP11, Candidate_division_OP8, Candidate_division_TM7,
Candidate_division_WS3, Candidate_division_WS6, Chlamydiae, Chlorobi, Cyanobacteria, Elusimicrobia, Fusobacteria, Gemmatimonadetes,
Lentisphaerae, Nitrospirae, SHA-109, Spirochaetae, Tenericutes.

doi:10.1371/journal.pone.0131532.g002
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studies of microbial sewage and activated sludge communities also revealed a predominance of
these phyla [8, 11, 15]; however, they showed a lower proportion of Proteobacteria (36%-65%)
than that observed in our study. In contrast to our observations, Firmicutes was previously
found in low abundance in the RS [8] and in high abundance in the AS [28]. Moreover, the
abundance of Bacteroidetes ranged from 2.7% to 15.6% in activated sludge samples from 14
sewage treatment plants [11]. This difference between our data and those of previous studies
can be due to differences in sewage composition because of climatic, geographical and popula-
tion conditions [12, 29] as well as because of organic loading, pH, temperature, dissolved oxy-
gen and sludge retention time applied in the aeration tank [12, 30].

The compositions of the bacterial communities were distinct and represented by broad
intra-phylum diversity. A total of 147 (127 from RS and 113 from AS) families comprising 307
(282 from RS and 207 from AS) genera were identified in both environments. Proteobacteria,
especially Beta- and Gammaproteobacteria, were the dominant community members (Fig 2).
Comamonadaceae (12.6% from RS and 12.4% from AS) and Pseudomonadales (12.4% from
RS and 4.9% from AS) were the predominant taxa in both samples, covering 42.2% of all reads.
Betaproteobacteria constitute a major fraction of the microbial community in the activated
sludge of domestic sewage treatment plants [31–33], suggesting that their physiological charac-
teristics are functionally relevant for this ecosystem. Moreover, members of the Comamonada-
ceae family, which play an important role in nutrient removal, were among the most dominant
taxa in wastewater treatment systems [15, 32]. Here, two dominant genera, Simplicispira and
Diaphorobacter, were found in AS; these genera have been recovered from activated sludge sys-
tems and comprise denitrifying bacteria [34].

Within the Gammaproteobacteria class changes in the bacterial community composition
between the samples were observed. Interestingly, considerable enrichment of an OTU
(Otu00002) classified only at the Pseudomonadales order level was found in AS (Table 1).
Thus, this taxon likely has an ecologically significant role in reducing environmental pollution
in wastewater treatment plants. Moreover, the Enhydrobacter genus was overrepresented in the
RS sample, but information on Enhydrobacter is scarce and comprises that of only one species
(Enhydrobacter aerosaccus) [35] found in primary influent sewage samples [36].

The Alpha- and Deltaproteobacteria classes were found at very low abundances in RS (0.4%
and 0. 8%, respectively), whereas they were enriched in AS (2.9% and 12.7%, respectively).
Among the 10 most abundant alpha- and deltaproteobacterial OTUs, the Caulobacteraceae
family (Alphaproteobacteria) and the Myxococcales (Deltaproteobacteria) order were identi-
fied. The presence of Caulobacter species in AS is intriguing because these organisms are typi-
cally found in water and are considered to be oligotrophic (i.e., adapted to conditions with low
nutrient availability) [37, 38]. Myxobacteria are known to be micropredators [39, 40] that are
highly effective at degrading organic matter and are found in various habitats but mostly on
decaying organic material [37].

The abundance of Firmicutes in AS was significantly lower (0.6%) than in RS (20%),
whereas the abundance of Bacteroidetes was greater in AS (19%) than in RS (2%). Previous
studies have suggested that Firmicutes species do not thrive in intense aeration conditions, e.g.
in activated sludge [8, 41]. The majority of Bacteroidetes were represented by the Flavobacter-
iales (RS) and Sphingobacteriales (AS) orders, the latter of which are widely abundant in AS
plants and metabolize macromolecules such as polysaccharides and proteins [42].

Actinobacteria, Acidobacteria and Verrucomicrobia were the minor phyla and were found
mostly in the AS sample. Notably, however, three of the 30 top OTUs of all of the phyla were
assigned to the Intrasporangiaceae family (Actinobacteria) and the Geothrix (Acidobacteria)
and Prosthecobacter (Verrucomicrobia) genera. Interestingly, Intrasporangiaceae and Geothrix
harbor species that accumulate polyphosphates [43] and that participate in the biogeochemical
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recycling of metals [44], respectively. The genus Prosthecobacter has been recovered from acti-
vated sludge and can use algal metabolites as carbon and nutrient sources [45, 46].

Interestingly, we found a few pathogen-related OTUs. Among the top 21 OTUs classified at
the genus level, Neisseria, Acinetobacter and Streptococcus, which are known to be harmful to
humans, were detected (Table 1). Additionally, it should be noted that a significant reduction
in the abundance of these potential pathogens in AS was observed, suggesting that the condi-
tions of the activated sludge tank are unfavorable for pathogens. Pathogens that are a risk to
public health have been previously identified in wastewater treatment plants. In particular, Lep-
tospira,Mycobacterium and Vibrio have been frequently recovered from waste of wastewater
treatment plants [12, 47]. Although enteric pathogens are consistently retrieved from sewage
using culture-based approaches, OTUs related to Escherichia-Shigella were found at very low
abundance (0.15% from RS and 0.001% from AS).

The core microbiota was determined using a Venn diagram (Fig 3). A total of 849 OTUs
were shared by the two communities, resulting in an overlap of 20.3% of all OTUs. Common
OTUs with more than 100 reads were assigned to the Proteobacteria (37 OTUs), Firmicutes
(5 OTUs), Bacteroidetes (2 OTUs), Actinobacteria, and Fusobacteria (one OTU each) phyla,
comprising 75.6% (RS) and 26.1% (AS) of the reads of these OTUs. Among the core commu-
nity, the Comamonadaceae, Neisseriaceae, Rhodocyclaceae, Moraxellaceae, Xanthomonada-
ceae and Aeromonadaceae families were shared by the samples. Moreover, the Acinetobacter,
Neisseria, Enhydrobacter, Dechloromonas, Tolumonas and Candidatus Accumulibacter genera
were overrepresented in RS. In contrast, most OTUs were only detected in a particular bacterial
community. These unique OTUs were largely dominant (72.3%) in relation to the total OTUs

Table 1. The top 21 OTUs classified in raw sewage (RS) and activated sludge (AS); (-) unclassified.

OTU Phylum Class Order Family Genus Number of
reads RS

Number of
reads AS

Otu00029 Acidobacteria Holophagae Holophagales Holophagaceae Geothrix 0 8025

Otu00024 Actinobacteria Actinobacteria Micrococcales Intrasporangiaceae 37 10356

Otu00006 Bacteroidetes Sphingobacteriia Sphingobacteriales Chitinophagaceae 0 35350

Otu00013 NS11-12marine
group

0 19713

Otu00021 Chitinophagaceae 0 11502

Otu00022 Flavobacteriia Flavobacteriales Flavobacteriaceae Cloacibacterium 8849 1912

Otu00012 Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus 21360 315

Otu00017 12806 106

Otu00001 Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae 121196 84732

Otu00002 Gammaproteobacteria Pseudomonadales 8 53118

Otu00003 Moraxellaceae Enhydrobacter 45770 727

Otu00004 Deltaproteobacteria 0 46424

Otu00005 Gammaproteobacteria Pseudomonadales Moraxellaceae Acinetobacter 40636 1607

Otu00007 30397 2027

Otu00008 Betaproteobacteria Burkholderiales Comamonadaceae 2720 24761

Otu00009 5 23976

Otu00010 Gammaproteobacteria 20329 2325

Otu00011 Pseudomonadales Moraxellaceae Enhydrobacter 21462 257

Otu00014 Betaproteobacteria Neisseriales Neisseriaceae Neisseria 16592 398

Otu00015 Gammaproteobacteria 16384 300

Otu00016 Deltaproteobacteria Myxococcales Polyangiaceae Sorangium 0 14549

doi:10.1371/journal.pone.0131532.t001
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in the RS sample but were less important in relation to the relative abundance (2.5%, only
14,638 reads), which is in contrast to the AS sample (43.1%, 253,406 reads). Thus, changes in
the community composition between these samples originated from rare OTUs, whereas the
core microbiota included strikingly more abundant OTUs.

Quantitative analysis of the bacterial communities and the intl1 gene
Molecular tools such as quantitative PCR can effectively measure the amount of bacteria and
specific genes, including non-dominant bacteria in various environmental samples [48]. In
contrast to studies on environmental samples, many studies in clinical settings have investi-
gated the abundance of class 1 integrons using metagenomic approaches. Sewage and wastewa-
ter treatment plants are considered significant sources of resistance genes and mobile elements
[49–51]; therefore, these environments are hotspots for the environmental spread of antibiotic
resistance mediated by class 1 integrons. Here, the 16S rRNA and intI1 gene copy numbers of
each sample were quantified using qPCR to estimate the proportion of bacteria harboring class
1 integrons.

The bacterial load in the AS sample was higher (2.64 x 108 copies/L) than that in the RS
sample (1.23 x 108 copies/L). Moreover, the intI1 gene copies number per L was 6.54 x 107 in
RS and 6.3 x 107 in AS. Thus, the proportion of bacterial cells containing a class 1 integron dif-
fered between the samples (RS, 53%; AS, 24%); similar to the results of other studies [50, 52].
Consistent with previous findings [52], we also observed the high removal of bacteria carrying
class 1 integrons (55%) after the activated sludge process, suggesting that this process is effec-
tive in removing bacteria containing class 1 integrons. Interestingly, an increase in the abun-
dance of the intI1 gene during the wastewater treatment process has been reported in some
studies [53, 54]. The variation of results observed among studies may be attributed to selected
bacterial taxa, the climatic and population conditions, occurrence of rain events before sam-
pling as well as organic loading, pH, temperature, dissolved oxygen and sludge retention time
applied in the aeration tank. This high removal was accompanied by a decrease in the relative
abundance (61%) of Gammaproteobacteria in AS, which could be a consequence of this
group’s association with the intI1 gene. Indeed, it has been suggested that class 1 integrons are
broadly distributed throughout Proteobacteria [55].

Fig 3. Venn diagram showing the exclusive and shared OTUs from raw sewage (RS) and activated
sludge (AS). *%of all OTUs, **%of all the reads.

doi:10.1371/journal.pone.0131532.g003
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Our study provides comprehensive insight into the complex bacterial community composi-
tion that is associated with sewage treatment plant influent and activated sludge. V6 tag
sequencing uncovered not only the dominant taxa but many rare members. Despite the broad
taxonomic diversity, only 22.8% of the detected reads were required to explain the differences
in community structure between RS and AS. The RS and AS communities were dominated by
several taxa that accounted for a large number of reads, and the groups that were found were
consistent with those found in all wastewater treatment plant and sewage studies. However, the
profiles of the potential pathogens greatly differed among these studies. Our results suggest
that class 1 integrons are important outside of the context of Enterobacteriaceae.
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