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Chest computed tomography (CT) is used to screen for lung cancer and evaluate

pulmonary and extra-pulmonary abnormalities such as emphysema and coronary artery

calcification, particularly in smokers. In real-world practice, lung abnormalities are visually

assessed using high-contrast thin-slice images which are generated from raw scan

data using sharp reconstruction kernels with the sacrifice of increased image noise.

In contrast, accurate CT quantification requires low-contrast thin-slice images with low

noise, which are generated using soft reconstruction kernels. However, only sharp-kernel

thin-slice images are archived in many medical facilities due to limited data storage

space. This study aimed to establish deep neural network (DNN) models to convert

sharp-kernel images to soft-kernel-like images with a final goal to reuse historical

chest CT images for robust quantitative measurements, particularly in completed

previous longitudinal studies. By using pairs of sharp-kernel (input) and soft-kernel

(ground-truth) images from 30 patients with chronic obstructive pulmonary disease

(COPD), DNN models were trained. Then, the accuracy of kernel conversion based on

the established DNN models was evaluated using CT from independent 30 smokers

with and without COPD. Consequently, differences in CT values between new images

converted from sharp-kernel images using the established DNNmodels and ground-truth

soft-kernel images were comparable with the inter-scans variability derived from repeated

phantom scans (6 times), showing that the conversion error was the same level as

the measurement error of the CT device. Moreover, the Dice coefficients to quantify

the similarity between low attenuation voxels on given images and the ground-truth

soft-kernel images were significantly higher on the DNN-converted images than the

Gaussian-filtered, median-filtered, and sharp-kernel images (p < 0.001). There were

good agreements in quantitative measurements of emphysema, intramuscular adipose

tissue, and coronary artery calcification between the converted and the ground-truth

soft-kernel images. These findings demonstrate the validity of the new DNN model

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2021.769557
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2021.769557&domain=pdf&date_stamp=2022-01-17
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles
https://creativecommons.org/licenses/by/4.0/
mailto:ntana@kuhp.kyoto-u.ac.jp
https://doi.org/10.3389/frai.2021.769557
https://www.frontiersin.org/articles/10.3389/frai.2021.769557/full


Tanabe et al. Kernel Conversion for Chest CT

for kernel conversion and the clinical applicability of soft-kernel-like images converted

from archived sharp-kernel images in previous clinical studies. The presented method

to evaluate the validity of the established DNN model using repeated scans of

phantom could be applied to various deep learning-based image conversions for robust

quantitative evaluation.

Keywords: medical imaging, deep learning, lung, computed tomography, chronic obstructive pulmonary disease

(COPD), emphysema, reconstruction kernel

INTRODUCTION

Long-term exposure to cigarette smoke causes damage to the
parenchyma and airways in the lungs and lung cancer. Following
repeated injuries, smokers may develop emphysema and
airway remodeling, leading to chronic obstructive pulmonary
disease (COPD) (Vogelmeier et al., 2017). Chest computed
tomography (CT) is widely used to screen for lung cancer
and simultaneously provides information of emphysema, airway
diseases, and even extra-pulmonary abnormalities regarding
coronary artery disease, muscle wasting, and bone mineral
density loss (Ohara et al., 2008; Mcdonald et al., 2014; Labaki
et al., 2017). However, a variability in scanning conditions such
as different reconstruction kernels reduces the reproducibility of
the quantitative measurements on chest CT (Gierada et al., 2010).

In real-world clinical practice, lung abnormalities are visually
assessed by experts on high-contrast thin-slice images that are
generated from raw scan data using sharp reconstruction kernels
with the sacrifice of increased image noise. In contrast, low-
contrast thin-slice images with low noise, which are generated
using soft reconstruction kernels, are more appropriate for
quantitative measurements. Indeed, increased noise on sharp-
kernel images affects quantitative measurement of emphysema
on CT (Gierada et al., 2010; Gallardo-Estrella et al., 2016).
Nonetheless, only sharp-kernel thin-slice images are archived in
many medical facilities due to the limited data storage space.
Since the acquisition of CT data imposes radiation exposure and
prospective collection of longitudinal CT data requires a long
time and cost, computational methods to convert sharp-kernel
high-contrast images to soft-kernel-like low-contrast images
should be established to reuse archived sharp-kernel CT data
and to perform robust quantitative measurements in completed
previous studies.

In the field of image processing, deep learning-based

techniques have been rapidly updated. Studies have proposed
the use of a convolutional neural network to perform kernel

conversions to reduce effects of different kernels on quantifying
emphysema and extracting radiomics features of nodules and
masses on chest CT (Choe et al., 2019; Lee et al., 2019;
Bak et al., 2020). In those studies, differences in CT values
between converted and ground-truth images were calculated
to evaluate the accuracy the image conversion. However,
acceptable differences in CT values in terms of clinical utility
remain unestablished.

This study aimed to establish and validate a deep learning-
based model to convert images to those with different kernels,
particularly sharp-to-soft kernel conversion on chest CT. For

improved validation process, this study used phantoms that
can be repeatedly scanned without concerns for radiation
exposure to estimate acceptable differences in CT values for
kernel conversion methods. During the careful analysis, it
was found that the error profile varies over different regions.
Therefore, conversion error was analyzed not only in regions
with a broad range of CT values (−1,000 to 1,000 HU) but
also in regions with specific range of CT values such as lung
parenchyma (−1000 to −500 HU), muscle and fat (−200 to
200 HU), and calcification and bone (>130 HU) (Vieira et al.,
1998; Coxson et al., 1999; Alluri et al., 2015; Popuri et al.,
2016). Based on the analysis, a novel conversion method to
fuse outputs of multiple neural networks was developed. For
the validation of clinical applicability, emphysematous change,
intramuscular adipose tissue and coronary artery calcification
on converted images were compared to those on ground-truth
images. For the reproducibility and convenience, the codes and
the trained models used in this study were made available
online in a ready-to-use form (https://github.com/shizuo-kaji/
CTKernelConversion).

MATERIALS AND METHODS

Acquisition of Chest CT Scans of Patients
and CT Scans of Phantoms
As shown in Figure 1, this study used inspiratory chest CT data
in smokers with and without COPD who visited the outpatient
COPD clinic in the University Hospital between 2016 and
2020. The data comprising of CT images acquired from 60
patients was divided into 30 training and 30 validation datasets.
Lung function was measured using a Chestac-65V (Chest MI
Corp., Tokyo, Japan) and a diagnosis of COPD was confirmed
based on post-bronchodilator forced expiratory volume in one
sec (FEV1)/forced vital capacity (FVC) <0.7 and respiratory
symptoms. All chest CT scans were obtained at full-inspiration
using an Aquilion Prime Scanner (Cannon Medical Systems,
Otawara, Japan) that was routinely calibrated with air and
water phantoms. The scanning conditions were as follows: 0.5-
mm collimation, 500-ms scan time, 120 peak kilovoltage, and
auto-exposure control. Raw data were converted to 512 × 512
matrix images with 0.5 and 1.0mm slice thickness using sharp
(FC51) and soft (FC13) reconstruction kernels, respectively.
Additionally, we used a set of phantom tubes that mimicked
airways, urethan and acrylic foam mimicking lung parenchyma,
hydroxyapatite phantom that mimicked the bone mineral, and
human body phantom. The phantom was repeatedly scanned six
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FIGURE 1 | Datasets used to establish and validate image conversion. (A) The training dataset comprised pairs of sharp and soft reconstruction kernel images from

30 smokers. The validation of deep learning-based conversion was performed using independent pairs of sharp and soft reconstruction kernel images from 30

smokers [validation dataset (B)], and phantom CT that were repeatedly scanned six times (C). Inter-scans variability was assessed by comparing each scan to the

averaged CT values from all six scans.

FIGURE 2 | Schematic explanation of deep neural convolutional network in this study. The network consisted of three down-sampling layers followed by nine

bottleneck layers of residual blocks flowed by three up-sampling layers. The instance normalization and the ReLU activation function were applied to each layer expect

the last. The arctan function was applied as the final activation. Skip connections were formed between the corresponding down and up layers.

times to evaluate inter-scans variability using the same scanner
under the scanning conditions except auto-exposure control. The
Ethics Committee of the Kyoto University Hospital approved
the study (approval no. R1323). The requirement for informed
consent from patients was waived due to the retrospective
analysis of the data.

Development of Image Conversion Method
Because the training CT datasets (n = 30) comprised 0.5-mm-
thickness images reconstructed with sharp-kernel (sharp-kernel
image) and 1.0-mm-thickness images reconstructed with soft-
kernel (soft-kernel image), every other sharp-kernel image was
selected to match the slice location to that corresponding soft-
kernel image. Then, ∼300 to 400 pairs of sharp-kernel and
soft-kernel images were prepared for each of the 30 patients,

and total 11,052 pairs were used to train a deep convolutional
neural network (DNN) to convert sharp-kernel images to soft-
kernel images (or convert soft-kernel images to sharp-kernel
images). DNN was based on U-Net (Ronneberger et al., 2015)
and implemented in Python by Kaji and Kida (2019) (https://
github.com/shizuo-kaji/PairedImageTranslation). As shown in
Figure 2, the network takes sharp-kernel images as input and
outputs soft-kernel-like images. The network was trained to
minimize the combination of the absolute and the squared
errors between the soft-kernel-like images and the corresponding
ground-truth soft-kernel images. It took 20 h on a personal
computer with a single Nvidia 2080 Ti to train the network for 40
epochs. Several techniques such as learning rate scheduling are
used to stabilize the training. The reader is referred to the code
for the details. The novelty in the network design peculiar to this

Frontiers in Artificial Intelligence | www.frontiersin.org 3 January 2022 | Volume 4 | Article 769557

https://github.com/shizuo-kaji/PairedImageTranslation
https://github.com/shizuo-kaji/PairedImageTranslation
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Tanabe et al. Kernel Conversion for Chest CT

FIGURE 3 | Protocol for the present sharp to soft kernel image conversions using full and partial deep neural networks. In training deep neural network (DNN), pairs of

original sharp kernel and soft kernel images were used as input and ground-truth, respectively. One model fully used these pairs without truncation (Full DNN model).

The other model partially used these pairs by truncating CT values to −300 and 300 HU (Partial DNN model). By using the full-DNN model and partial-DNN model,

sharp-kernel images in an independent validation dataset, were converted to soft-kernel-like images, respectively. Then converted two images were merged to finalize

soft-kernel-like images (Full-1-parital DNN conversion).

study lies in the region-wise learning as explained below. In the
error analysis presented in a later section, it was discovered that
the accuracy of the conversion deteriorated for the region with
CT values from −200 to 200 HU. To circumvent this problem,
an extra network (the partial-DNN model) was trained for the
conversion from the sharp-kernel to the soft-kernel images both
truncated to the range of −300 to 300 HU (Figure 3) in addition
to the full-DNN model that was trained with non-truncated
images. The final converted image Ifinal was generated by fusing
the outputs of the two models by a weighted sum:

Ifinal (x) = w Ipartial (x) + (1− w) Ifull (x) ,

w = max

(

min

(

max

(

1−
Ipartial (x) + 230

60
,
Ipartial (x) − 170

60

)

, 1

)

, 0

)

,

where Ipartial (x) (Ifull (x), respectively) is the CT value of the
output of the partial-DNN model (that of the full-DNN model,
respectively) located at a voxel x.

Validation of Established Conversion
Method
Two tests were performed to examine the validity of
conversion methods.

Differences in CT Values Between Newly Converted

Images and Ground-Truth Images
When sharp-kernel images were converted to new images
(converted sharp-kernel images), soft-kernel images were
considered ground-truth and the difference was measured.
Because regions with different CT values might affect the
performance of the conversions, the differences in CT values
between new images and ground-truth images were evaluated
not only in the entire regions but also in local regions limited by
CT values such as regions with CT values between −1,000 and
−600 HU mainly reflecting lung parenchyma, those between
−600 and −200 HU, those between −200 and 200 HU mainly
reflecting blood vessel, muscle, and adipose tissue, those between
200 and 600 HU mainly reflecting coronary artery calcification
and bone mineral, and those between 600 and 1000 HU.
Additionally, CT values of repeated phantom CT scans (n = 6)
were averaged and the differences between CT values on each
scan and the averaged CT values were calculated to evaluate a
variation in CT values that a CT scanner intrinsically generates.
The distributions of the differences in CT values between the
converted images and the ground-truth images were compared
to those in CT values calculated from repeated phantom scans.
The variation of repeated phantom scans indicates the intrinsic
noise due to the measurement limitation, and conversion error
below this level is deemed to be inevitable and acceptable.
Similarly, the conversion in the opposite direction was also
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performed and evaluated in which soft-kernel images were
converted to sharp-kernel-like images, and the sharp-kernel
images were considered as ground-truth.

Comparisons of Quantification of Clinically Relevant

CT Findings Between Newly Converted Images and

Ground-Truth Images
The validity of conversion method was confirmed from clinical
perspectives. Emphysema was radiographically identified as
voxels with CT values <-950 HU. The percentage of these low
attenuation voxels to those in the entire lungs (LAV%) was a
standard CT index for emphysema severity. Additionally, the
sharp kernel images were converted using median and Gaussian
filters, respectively. LAV% was calculated on soft-kernel and
sharp-kernel images as well as DNN-based converted images
and median and Gaussian filtered images as previously reported
(Tanabe et al., 2021c). The quality of emphysema segmentation
was evaluated using the Dice coefficients (Rao, 1948), which
quantified the similarity between low attenuation voxels on given
images and the ground-truth soft-kernel images.

Moreover, because comparisons of LAV% between images
with different reconstructions evaluate the validity of conversion
method for regions with lower CT values, this study also
evaluated intramuscular adipose tissue (IMAT) in the pectoralis
major and minor muscles on the anterior chest. Pectoralis major
and minor muscles were manually segmented on an axial slice
above the aortic arch (Mcdonald et al., 2014; Diaz et al., 2018;
Bak et al., 2019). Adipose tissue was defined as regions <-30 HU
(Popuri et al., 2016; Donovan et al., 2021) and the percentage of
IMAT to the total area of pectoralis major and minor muscles
(IMAT%) was calculated. Moreover, regions including coronary
arteries weremanually traced and coronary artery calcium (CAC)
that was defined as regions with >130 HU were identified. CAC
volume was calculated by multiplying the total number of CAC
voxel by volume of each voxel (Alluri et al., 2015).

Statistics
Statistical analyses were performed using R version 3.5.1 [R
Foundation for Statistical Computing (R Core Team, 2021)].
Data were expressed as median and 1st and 3rd quantiles. A p <

0.05 was considered statistically significant. The Dice coefficients
to quantify the similarity between low attenuation voxels on
given images and the ground-truth soft-kernel images were
compared between the DNN-converted images, the Gaussian-
filtered, median-filtered, and sharp-kernel images using multiple
paired t-tests with Bonferroni correction. The inter-methods
variability in LAV%, IMAT%, and CAC volume was compared
using Bland-Altman plots, in which the average values were
plotted on the x-axis and the difference values were plotted on
the y-axis (Bland and Altman, 1986, 1996).

RESULTS

Characteristics of Study Subjects
Table 1 shows demographics of smokers with and without
COPD. The training dataset comprised 30 smokers with COPD

TABLE 1 | Clinical information in two datasets.

Training data (n = 30) Validation data (n = 30)

Age, years 72.4 ± 6.9 70.3 ± 8.9

Male/Female 27/3 24/6

Height, cm 164.0 ± 0.6 165.0 ± 0.6

Body mass index 22.3 ± 3.3 22.5 ± 3.3

Current/former smoker 6/24 10/20

Smoking pack-years 67.7 ± 39.2 48.1 ± 22.6

FEV1, % predicted 67.6± 19.3 71.4 ± 18.6

FVC, % predicted 91.7 ± 18.1 90.9 ± 14.8

FEV1/FVC 0.56 ± 0.09 0.61 ± 0.14

FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity.

whereas the validation dataset comprised 25 smokers with COPD
and 5 smokers without COPD.

DNN-Based Conversion Model
First, the full-DNN model was trained using paired sharp-
kernel images (input) and soft-kernel images (ground-truth) to
convert sharp-kernel images to new images whose values were
as close to the ground-truth soft-kernel images as possible for
the whole range of CT values. Based on the full-DNN model,
sharp-kernel images in the validation dataset were converted.
Figure 4A shows that differences in CT values between the
full-DNN-based converted and soft-kernel images were smaller
than those between the sharp-kernel and soft-kernel images.
Figure 4B shows distributions of differences in CT values for
regions with CT values between −1,000 and 1,000 HU that
covered the entire thoracic cage, those between−1,000 and−600
HU that mainly covered the lung parenchyma, and those between
−200 and 200 HU that mainly covered the vessel, muscle, and
adipose tissues. The difference between the converted images and
soft-kernel images in regions between−1,000 and−600 HU was
as small as that among the repeated phantom scans. However,
the median values were higher in the converted images than in
the soft-kernel images for the regions between −1,000 to 1,000
HU and −200 to 200 HU, suggesting that the full-DNN-based
conversion of sharp-kernel to soft-kernel-like images was good
in regions between −1,000 and −600 HU, but not in regions
between−200 and 200 HU.

Next, as shown in Figures 3, 5, the partial-DNN model was
trained by truncating CT values to −300 and 300 HU on
sharp-kernel and soft-kernel images to improve the quality of
conversion in regions between −200 and 200 HU. Then, sharp-
kernel images in the validation dataset were converted by the
partial-DNN model and the full-DNN-based model, which were
fused to full-1-partial-DNN converted images. Furthermore, two
other DNNmodels using images whose CT values were truncated
to −2,048 to 0 HU and to 0 to 1,500 HU were made. Images
generated based on the 3 partial-DNNmodels (−2,048 to 0,−300
to 300 HU, and 0 to 1,500 HU) were fused to the 3-partial-DNN
converted images. Figure 5 shows that the error distribution of
the full-1-partial-DNN converted images was closer to the inter-
scans variability of CT values on phantom CT, compared to that
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FIGURE 4 | Differences in CT values between deep learning-based (sharp to soft) kernel-converted images and ground-truth soft kernel images. (A) Sharp kernel

images in the validation dataset (n = 30) were converted using a deep neural network without truncating input images (FULL-DNN conversion). The difference in CT

values between converted and soft kernel images was smaller than the differences in CT values between the original sharp and soft kernel images. (B) These

differences in CT values were assessed in regions with CT values between −1,000 and 1,000 HU (broad range), those between −1,000 and −600 HU, and those

between −200 and 200 HU. In regions with CT values between −200 and 200 HU, the differences in CT values between converted and soft kernels were higher than

differences between averaged phantom CT and each phantom CT.

of the full-DNN converted images, the 3-partial-DNN converted
images, and sharp-kernel images in all CT value regions.

Validation of Quantitating Emphysema,
Intramuscular Adipose Tissue, and
Coronary Artery Calcification Using
Converted Images
Figure 6 compares LAV% on the full-1-partial-DNN-converted
images, sharp-kernel images, median-filtered images, Gaussian-
filtered images, and soft-kernel (ground-truth) images. The Dice
coefficients for low attenuation voxels using the soft-kernel
images as the reference were significantly higher on the DNN-
converted images than the Gaussian-filtered, median-filtered,
and sharp-kernel images (p < 0.001 based on paired-t tests with
Bonferroni correction). Moreover, Bland-Altman plot shows that
the difference between the converted and soft-kernel images was
much smaller than that between the sharp-kernel and soft-kernel
images [Bias (95% limits of agreement), 0.54 (−1.04, 2.12) vs.
11.68 (1.16, 22.20)%, respectively]. Figure 7 shows that IMAT%
of the pectoralis major and minor muscles and CAC volume in
the converted and soft-kernel images were close to each other
[Bias (95% limits of agreement) for IMAT% and CAC volume =
−0.56 (−1.23, 0.12)% and 31.67 (−98.40, 161.74) mm3].

Conversion of Soft-Kernel Images to

Sharp-Kernel-Like Images
Finally, we tested whether the principle for establishing the
DNN model to convert sharp-kernel images to soft-kernel-like
images was applied to establish the DNN model to convert soft-
kernel images to sharp-kernel-like images. The full-DNN model
and partial-DNN model were trained using paired soft-kernel
images (input) and sharp-kernel images (ground-truth) without
truncation and with truncation of CT values to −300 to 300
HU. Based on these two models, the soft-kernel images in the
validation dataset were converted to two types of images and
fused to sharp-kernel-like images. Figure 8 shows that the error
distribution of the full-1-partial-DNN converted images were
close to the inter-scans variability of CT values on phantom CT
for not only regions with CT values between −1,000 and 1,000
HU but also those with CT values in any specific ranges such as
between−1,000 and−600 HU.

DISCUSSION

This study established and validated the DNN model for
kernel conversion of chest CT by comparing differences in
CT values between the converted and ground-truth images to
those calculated from repeated phantom scans representing the
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FIGURE 5 | Differences in CT values between images converted using a combination of full and partial deep neural network models and the ground-truth soft kernel

images. An inter-scans variability was estimated as differences between the averaged CT values of six repeated scans of the phantom and each of them. Deep neural

network (DNN)-based conversion from sharp kernel images in the validation dataset (n = 30) were performed without truncating CT images for training (Full-DNN

conversion) and with truncating the CT values to a given range such as −300 to 300 HU (partial DNN). Full-1-partial DNN conversion indicates a combination of

images converted with the full DNN and images converted with a partial DNN with truncation of CT values to −300 to 300 HU. Additionally, 3 partial DNN conversions

were performed by combining partial DNN with truncation of CT values to −2,048 to 0, −300 to 300, and 0 to 1,500 HU. The differences in CT values between each

converted images and ground-truth soft-kernel images were compared to the phantom-derived inter-scans variability.

inter-scans variability that a scanner had intrinsically. Moreover,
the clinical validity of the kernel conversion was confirmed by
showing that quantitative measurements of the well-established
CT indices, LAV%, IMAT%, and CAC volume on the converted
and ground-truth images were matched well. Therefore, the
deep learning-based kernel conversion method presented here
contributes to effective reuse of historical chest CT images for
robust quantitative measurements, particularly when detailed
clinical data and sharp-kernel thin-slice images, but not soft-
kernel thin-slice images, were preserved in completed previous
longitudinal studies.

One of the main findings of the current study is that neural-
network-based CT conversion has varying error profiles with
respect to the CT value range. Natural images, with which the
foundation of neural-network-based image conversion methods
have been developed, have much narrower dynamic range
(typically, 8 bit) compared to CT images (typically, 16 bit). Since
different CT value ranges correspond to different anatomical

structures, CT images encompass a rich structure that makes it
a difficult task for a single neural network to deal with. In fact,
our careful analysis showed that the accuracy of the conversion
deteriorated for the middle CT value region from −200 to 200
HU. A possible explanation is that the sigmoid-type activation
function used in the last output layer has a larger gradient in
the middle range value, which would lead to poor convergence
and less stability in learning the conversion for the CT range
around 0HU. To circumvent this problem, training an additional
neural network for the specific range from −300 to 300 HU
and fusing the output of multiple networks was proposed in
this study. The resulting conversion was validated with both the
CT values and some major clinical indices. Moreover, finding
that the combination of 3 partial-DNN models did not improve
the conversion error compared to the combination of the two
DNN models (a full DNN and a partial DNN) suggests that
two networks were sufficient to obtain acceptable soft-kernel-
like images. An alternative solution could be the use of a wider
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FIGURE 6 | Emphysema quantification on deep learning-based kernel-converted images. (A) Emphysematous change (blue) on the original sharp-kernel,

median-filtered, Gaussian-filtered (sharp to soft), kernel conversion, and original soft-kernel images. (B) The Dice coefficients quantified the similarity between low

attenuation voxels on given images and the ground-truth soft-kernel images in the validation dataset (n = 30). *indicates p < 0.001 based on paired t-tests with

Bonferroni correction. (C) Bland-Altman plots of the extent of emphysematous change, assessed as low attenuation volume % (LAV%), show that LAV% on converted

and soft-kernel images were close to each other. Solid blue line indicates the mean difference (bias) between the two measurements. Upper and lower dashed lines

indicate 95% limits of agreement.

and deeper neural network that has a larger capacity. However,
larger models are prone to overfitting and poor convergence,
particularly when trained with the same amount of data.

Recent technical advances in the field of image processing
have invented convolutional neural networks that improved
image quality and segmentation of specific regions of medical
imaging including chest CT (Kim et al., 2018; Choe et al.,
2019; Lee et al., 2019; Bak et al., 2020; Handa et al., 2021;
Tanabe et al., 2021a). Indeed, Lee et al. (2019) invented a deep
learning-based method to convert CT images into those of
different reconstruction kernels and to achieve a more rigorous
measurement of emphysema. Bak et al. (2020) also established
a deep learning-based method to convert sharp-kernel low-dose
CT images to reduce image noises and quantify emphysema

more reproducibly. Furthermore, Choe et al. (2019) performed
the deep learning-based kernel conversion and succeeded in
reducing a variability in radiomics features of pulmonary nodules
and masses between different reconstruction kernels. Those
previous findings were extended by the present data that
proposed the novel method to evaluate the accuracy of the
conversion using repeated scans of phantom.

Repeated phantom scans allowed using the difference between
CT values from a given scan and those calculated as the average
as an index of inter-scans variability. It was found that the
differences in CT values between the images converted from
sharp-kernel images and the ground-truth soft-kernel images
were considered the acceptable level that was compatible with
the inter-scans variability. Moreover, the comparisons of the
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FIGURE 7 | Quantification of intramuscular adipose tissue and coronary artery calcification on deep learning-based kernel-converted images. (A) Intramuscular

adipose tissue (IMAT, yellow) in pectoral muscles (blue) on the DNN-converted image near the top of the aortic arch. (B) Bland-Altman plots of the volume percentage

of IMAT to pectorals muscles (IMAT%) showed that IMAT% on DNN-converted and soft-kernel images in the validation dataset (n = 30) were close to each other.

(C) Coronary artery calcification (CAC, yellow) on DNN-converted image. (D) Bland-Altman plots of the volume of CAC showed that CAC volume on DNN-converted

and soft-kernel images was close to each other. Solid blue line indicates the mean difference (bias) between the two measurements. Upper and lower dashed lines

indicate 95% limits of agreement.

differences in CT values to the phantom-derived inter-scans
variability were performed not only in the entire regions defined
as pixels with CT values between −1,000 and 1,000 HU but also
specific regions defined as pixels with CT values within specific
regions such as−1000 to−600HU. This strategymade it possible
to find that when sharp-kernel images were converted based
on the full-DNN method only, the distribution of CT values
was higher in the converted images than in the ground-truth
soft-kernel images.

Because the process of deep learning-based methods such as
DNN is hard to interpret like “black-box,” establishing rigorous
methods to check the accuracy of image conversions is essential.
In this context, the proposed validation process is important for
secure use of deep learning-based image conversion in clinical
practice, where the top priority is placed on the safety problem.

The Bland-Altman plots showed that LAV%, IMAT%, and
CAC volume on the converted sharp-kernel images were
compatible with those on the ground-truth soft-kernel images

with acceptable levels. Additionally, although the normalization
of the reconstruction kernel using filtering may allow accurate
quantification of emphysema (Gallardo-Estrella et al., 2016), the
present data showed that the Dice coefficient for emphysematous
changes on the DNN-based converted images was higher than
the Gaussian-filtered and median-filtered images. This finding
suggests that the DNN conversion is more appropriate than other
filtering methods to quantify emphysema.

It is well-known that the extent of emphysema on CT is
associated with various clinical outcomes such as rapid lung
function decline, exacerbations, and increased mortality (Haruna
et al., 2010; Han et al., 2011; Vestbo et al., 2011; Nishimura
et al., 2012). Moreover, CT indices regarding extra-pulmonary
comorbidities including sarcopenia and cardiovascular diseases
also affect outcomes in patients with COPD (Mcdonald et al.,
2014; Tanimura et al., 2016; Bak et al., 2019; Tanabe et al., 2021b).
Indeed, increased IMAT and coronary artery calcification have
been shown to be associated with poor outcomes in smokers
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FIGURE 8 | Differences in CT values between deep learning-based kernel-converted (soft to sharp) images and ground-truth sharp-kernel images. (A) Deep

learning-based soft-to-sharp conversion of original soft-kernel images to sharp-kernel-like images. Two deep leaning convolutional networks with and without

truncation of CT values to −300 to 300 HU (partial DNN and full DNN) were trained using pairs of soft-kernel images (input) and sharp-kernel-images (ground-truth),

and output images from the partial DNN and full DNN were merged based on the same principle as sharp-to-soft conversion method. (B) Differences in CT values

between converted images and ground-truth sharp images were compared to an inter-scans variability calculated from repeated phantom scans.

with and without COPD (Williams et al., 2014; Pishgar et al.,
2021). Therefore, the found validity of measurement of LAV%,
IMAT%, and CAC volume using the DNN-based converted
images would help re-analyze previously archived sharp-kernel
images to explore better clinical management. Furthermore, since
LAV%, IMAT%, and CAC volume reflect low, middle, and high
CT values, reproducible measurements of these indices suggest
that other CT abnormalities can be reliably quantified using the
converted soft-kernel-like images.

The deep learning-based conversion from soft kernel images
to sharp-kernel-like images was also established in this study.
The differences in CT values between the converted images and
the ground-truth sharp kernel images were consistent with those
in CT values obtained from repeated phantom scans. Although
the conversion from soft to sharp kernel images is less required
than the conversion from sharp to soft kernel images, the found
accuracy of the soft-to-sharp kernel conversion suggests that the
proposed pipeline to establish kernel conversion methods can be
applied to various kernels conversion when CT pairs for model
training are available.

Dual-energy CT scanners are rapidly emerging worldwide.
Because a single contrast-enhanced acquisition can provide both
contrast-enhanced images and virtual unenhanced (VUE) images
and reduce radiation dose by eliminating the need for the true
unenhanced scans, this technique has been used in many fields
including vascular imaging (Otrakji et al., 2016). Indeed, VUE
images derived from iodine contrast-enhanced CT data can be

used to evaluate coronary artery calcification with equal quality to
the true unenhanced scans (Yamada et al., 2014). Although VUE
images have been used for density analysis such as quantitative
emphysema assessment (Lee et al., 2012), we believe that the
present image conversion method is applicable to improve the
quality of VUE images further and to achieve more robust
density-based quantitative measurements in various diseases.

This study has some limitations. First, this study evaluated two
reconstruction kernels (sharp kernel = FC51 and soft kernel =
FC13) for a single CT scanner. Establishing a new DNN model
might be necessary to perform accurate kernel conversion for
other kernels and types of scanners. However, this task is not
hard because the present method can be applied directly once
the dataset is prepared. Furthermore, transfer learning should
save the amount of data needed. Second, although the validity of
the converted images was confirmed in terms of CT values and
clinical CT indices such as LAV%, IMAT%, and CAC volume,
clinical impacts of quantitative analysis of the converted images
cannot be evaluated due to the small sample size. Third, the
present kernel conversion method was not compared to other
machine learning-based conversion methods. This should be
performed in future studies.

In conclusion, this study established the DNN model for
kernel conversion and the method to validate the established
model using repeated phantom scan data. The accuracy of
the kernel conversion was confirmed by comparing error
distributions of CT values on converted images to the
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phantom-derived inter-scans variability and by showing good
agreements in the extents of emphysema, intramuscular adipose
tissue, and coronary artery calcification between converted
and ground-truth images. The data indicate the clinical
applicability of sharp-to-soft kernel conversions to perform
robust quantitative CT analyses in regular practice where
only sharp-kernel thin-slice images were stored. The presented
process of establishing and validating the DNNmodel using pairs
of input and ground-truth images as well as repeated scans of
phantom can be applied to various deep learning-based image-
to-image translation.
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