
1/19https://immunenetwork.org

ABSTRACT

Osteoarthritis (OA) is the most common form of arthritis associated with ageing. Vitamin 
D has diverse biological effect on bone and cartilage, and observational studies have 
suggested it potential benefit in OA progression and inflammation process. However, 
the effect of vitamin D on OA is still contradictory. Here, we investigated the therapeutic 
potential of vitamin D in OA. Six-week-old male Wistar rats were injected with monosodium 
iodoacetate (MIA) to induce OA. Pain severity, cartilage destruction, and inflammation 
were measured in MIA-induced OA rats. Autophagy activity and mitochondrial function 
were also measured. Vitamin-D (1,25(OH)2D3) and celecoxib were used to treat MIA-
induced OA rats and OA chondrocytes. Oral supplementation of vitamin D resulted in 
significant attenuations in OA pain, inflammation, and cartilage destruction. Interestingly, 
the expressions of MMP-13, IL-1β, and MCP-1 in synovial tissues were remarkably 
attenuated by vitamin D treatment, suggesting its potential to attenuate synovitis in OA. 
Vitamin D treatment in OA chondrocytes resulted in autophagy induction in human 
OA chondrocytes and increased expression of TFEB, but not LC3B, caspase-1 and -3, in 
inflamed synovium. Vitamin D and celecoxib showed a synergistic effect on antinociceptive 
and chondroprotective properties in vivo. Vitamin D showed the chondroprotective and 
antinociceptive property in OA rats. Autophagy induction by vitamin D treatment may be 
a promising treatment strategy in OA patients especially presenting vitamin D deficiency. 
Autophagy promoting strategy may attenuate OA progression through protecting cells from 
damage and inflammatory cell death.
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INTRODUCTION

Osteoarthritis (OA) is the most common degenerative joint disorder in aged population, 
disrupting quality of life and causing disability (1-3). OA is characterized by progressive 
cartilage destruction, joint space narrowing, synovial inflammation, and chronic pain (2,4,5). 
Well-recognized risk factors for OA development are age, female gender, obesity, and joints 
injuries (6-8). As there is no disease-modifying treatment that can alter OA progression, its 
treatments mainly focus on alleviating pain. Interestingly, several dietary factors including 
vitamin D, and C have been suggested to be effective in preventing the development or 
progression of OA (9,10). Although vitamin D has the most extensive epidemiologic clues 
in OA development among several nutrients (9,11-13), the reason why vitamin D deficiency 
is associated with OA remains elusive. In addition, there have been still several studies that 
claim that vitamin D has no benefit in suppressing OA progression in patients (14-17).

Interestingly, vitamin D deficiency are associated with OA risk factors such as sarcopenia and 
mitochondrial dysfunction. Vitamin D has potential role in improving muscle strength and 
function in elderly people (18-20) and its biological roles on skeletal muscle have been widely 
investigated (21). Impaired mitochondrial biogenesis has gained spotlight in OA development 
(22,23). Mitochondrial function is associated with vitamin D status or vitamin D receptor in 
various organs (24-27). Vitamin D deficiency in elderly develops for several reasons, including 
reduced capacity of human skin to produce vitamin D3 (28). These previous evidences suggest 
that vitamin D may have a disease-modifying potential in OA, a representative chronic 
inflammatory joint disease associated with aging. Chondrocytes that is the only cell type in 
normal articular cartilage is responsible for the production and maintenance of extracellular 
matrix (ECM) in cartilage. Chondrocytes express vitamin D receptor (29,30), inferring that 
vitamin D may regulate chondrocyte metabolisms or senescence.

Autophagy is a self-degradative mechanism for maintaining cellular homeostasis and 
protecting cells through removal of unnecessary and dysfunctional components (31-33). 
Defective autophagy in chondrocytes leads to increased chondrocyte apoptosis and promotes 
joint aging and OA progression (4,34,35). Therefore, it is important to understand the 
mechanism of autophagy to prevent and cure OA. Recent studies have demonstrated that 
autophagy regulation, through use of drugs and molecular modifications, restricts OA 
development and progression (36-38). The PI3K/AKT/mTOR signaling pathway is a known 
modulator of autophagy (39). It has been reported that the mTOR inhibitor rapamycin 
decreases matrix metalloproteinase 13 (MMP-13) levels in OA chondrocytes, and protects 
articular cartilage against oxidative stress and cell death (40,41).

Despite of the potential association between vitamin D deficiency and OA, the role of vitamin 
D supplement and its molecular roles on OA chondrocytes is currently unclear. In this study, 
we investigated the effects of vitamin D in an OA animal model. We observed that vitamin D 
supplementation improved OA pain, cartilage destruction, and joint inflammation. Vitamin 
D activated autophagy flux through lysosomal biogenesis in OA chondrocytes in vitro. Oral 
administration of vitamin D also attenuated inflammation cell death in inflamed synovium. 
Furthermore, co-administration of vitamin D and celecoxib demonstrated a synergistic 
effect on prevention of progressive joint destruction in OA joints. Our findings suggest the 
chondroprotective potential of vitamin D, as a nutrient, in OA.
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MATERIALS AND METHODS

Animals
Male Wistar rats weighing 140–230 g (6 wk old) at the start of the experiment were purchased 
from Central Lab Animal Inc. (Seoul, Korea). The animals were housed 2-per-cage in a room 
with controlled temperature (21°C–22°C) and lighting (12/12 h light/dark cycle), and had 
access to sterile food and water. The mice were randomized into 3 or 4 groups of 6 mice each. 
All the procedures were approved by the Animal Research Ethics Committee of The Catholic 
University of Korea (2019-0302-01).

OA induction and treatment
The animals were randomized to the groups before the study began. Following isoflurane 
anesthesia, 50 µl of 3-mg monosodium iodoacetate (MIA; Sigma-Aldrich, St. Louis, MO, 
USA) was injected into the intra-articular space of the right knee through the patellar 
ligament, using a 26.5-G needle. Control rats were injected with an equivalent volume of 
saline. Three days after MIA injection, vitamin-D (1,25-dihydroxyvitamin D3 [1,25(OH)2D3]) 
(Hanlim Pharm. Co., Ltd., Seoul, Korea) and celecoxib (Hanlim Pharm. Co., Ltd.) were orally 
administered daily in the doses of 100 IU or 500 IU, and 30 mg/kg, respectively. Vehicle-
treated animals were administered an equivalent volume of 10% DMSO solution.

Assessment of pain behavior
Mechanical sensitivity was used to assess pain, as previously described (42,43). Following 
MIA injection, a dynamic plantar aesthesiometer (Ugo Basile, Gemonio, VA, Italy) was used 
to assess the response. Von Frey hair was used for mechanical sensitivity assessment. Pain 
was scored based on previously published standards. MIA-treated mice were tested for hind-
paw response to mechanical stimulation of the masseter, using rigid von Frey filaments and a 
force transducer (Electronic von Frey, model 2290; IITC Inc., Woodland Hills, CA, USA). The 
force required to elicit hind-paw withdrawal was recorded 3 times following stimulations at 
1-min intervals. The mean 3 values were used for analysis.

Weight-bearing measurement
Weight bearing was evaluated using an incapacitance tester (Linton Instrumentation, Norfolk, 
UK) that included a dual-channel weight mean value. The rats were attentively positioned in a 
plastic chamber. The strength applied by an individual hind limb was averaged over more than 
a 3-s time. The individual data point was the average of 3 measurements. The percentage of 
weight divided onto the handled (ipsilateral) hind limb was calculated utilizing the following 
equation: (Weight on Right Leg/Weight on Right Leg and Left Leg)×100.

Human-chondrocyte separation and differentiation
The study was approved by the Institutional Inspection Board of Uijeongbu St. Mary’s 
Hospital (UC14CNSI0150). All 5 volunteers were from Uijeongbu St. Mary’s Hospital and 
were fully informed. Written consent was obtained from all OA patients who fulfilled the 
American College of Rheumatology criteria. Cartilage samples were obtained during the joint 
replacement surgery. Chondrocytes were isolated using a previously published method (44). 
Human chondrocytes were seeded in 24-well plates at a density of 5×104. The chondrocytes 
were treated with vitamin-D (20 nM), or with celecoxib (1 μM) in the presence of 20 ng/ml of 
human recombinant IL-1β (R&D Systems, Minneapolis, MN, USA) for 2 days.
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Gene-expression analysis using real-time PCR
Whole RNAs were isolated from the chondrocytes using the TRI reagent (Thermo Fisher 
Scientific, Waltham, MA, USA). The cDNA was arranged by reverse transcription of the 
single-stranded RNA according to the manufacturer’s instructions using a High-Capacity 
cDNA Reverse Transcription Kit (Thermo Fisher Scientific). The mRNA were analyzed using 
real-time PCR with the LightCycler FastStart DNA Master SYBR Green I kit (Takara Bio 
Inc., Shiga, Japan) according to the manufacturer’s directions. The following primers were 
utilized in the sequences: control human gene β-actin, 5′-GGA CTT CGA GCA AGA GAT 
GG-3′ (sense) and 5′-TGT GTT GGC GTA CAG GTC TTT G-3′ (antisense); human MMP-1, 
5′-CTG AAG GTG ATG AAG CAG CC-3′ (sense) and 5′-AGT CCA AGA GAA TGG CCG AG-3′ 
(antisense); MMP-3, 5′-CTC ACA GAC CTG ACT CGG TT-3′ (sense) and 5′-CAC GCC TGA 
AGG AAG AGA TG-3′ (antisense); MMP-13, 5′-CTA TGG TCC AGG AGA TGA AG-3′ (sense) 
and 5′-AGA GTC TTG CCT GTA TCC TC-3′ (antisense). All expression values were normalized 
to that of β-actin mRNA. PCR amplification and analysis were performed using a LightCycler 
real-time PCR system (Roche Holding AG, Basel, Switzerland).

Histological and immunohistochemical analyses
Histological changes were assessed to determine the effects of each agent on cartilage 
degeneration in the knee joints of OA rats. The animals were perfused via the ascending aorta 
with 10% neutral-buffered formalin (pH 7.4). The knee joints, including the patella and the 
joint capsule, were resected and fixed for an additional 48 h at 4°C. The fixed specimens were 
decalcified for 6 days using 5% formic acid at 4°C. The specimens were then embedded in 
paraffin. Standardized 7-μm serial sagittal sections were obtained from the medial and lateral 
midcondylar level and were stained with H&E, and safranin O–fast green to evaluate the 
proteoglycan content. Articular cartilage OA histopathology of Rat was assessed using the 
Osteoarthritis Research Society International (OARSI) and Mankin scoring methods (45,46). 
Immunohistochemistry slides were deparaffinized and rehydrated using graded ethanol 
series. The sections were depleted of endogenous peroxidase activity using methanolic H2O2, 
and then blocked with normal goat serum for 30 min. The samples were incubated overnight 
at 4°C with antibodies to IL-1β (Santa Cruz Biotechnology, Dallas, TX, USA), MCP-1 (Abcam, 
Cambridge, UK), MMP-13 (Abcam), caspase-1 (Abcam), casepase-3 (Abcam), LC3B (Abcam), 
MCP-1 (Abcam), and transcription factor EB (TFEB; Proteintech, Rosemont, IL, USA). The 
samples were then incubated with the respective secondary antibodies, biotinylated anti-
mouse IgG or rabbit IgG, for 20 min, conjugated to a streptavidin–peroxidase complex 
(Vector Laboratories, Burlingame, CA, USA) for 1 h, and finally with 3,3′-diaminobenzidine 
(Agilent Technologies, Santa Clara, CA, USA). The sections were counterstained with Mayer’s 
hematoxylin and photographed using the Olympus photomicroscope (Olympus, Tokyo, 
Japan). The all images were obtained from each mouse, and showing representative images. 
The numbers of positive cells showing in each image were measured.

Oxygen consumption rate (OCR) measurement
An XF24 Extracellular Flux Analyzer (Seahorse Bioscience, North Billerica, MA, USA) 
was used to measure the cellular OCR. Chondrocytes were plated at 2×104 per well in XF 
24-well culture microplates for 24 h. Next day, Cells were incubated with XF assay media 
supplemented with 1 mM sodium pyruvate, 2.5 mM glucose, and 4 mM GlutaMax in non-
CO2 incubator for 30 min. Mitochondrial electron transport was assessed through sequential 
injections of 4 μM oligomycin, 3 μM carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone 
(FCCP), and 2 μM rotenone/2 μM antimycin A. Basal respiration was calculated as baseline 
OCR-rotenone/antimycin A OCR; ATP-linked respiration as basal respiration-oligomycin 
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OCR; maximum respiration rate as FCCP OCR-rotenone/antimycin A OCR; and reserve 
capacity as maximal respiration-basal respiration.

ELISA
The concentrations of IL-6, MCP-1, and IL-8 in culture supernatants were measured by DuoSet 
ELISA kit (R&D System). The 96-well plates (Nunc, Roskilde, Denmark) coated with capture 
antibodies for anti-human IL-6, anti-human MCP-1, or anti-human IL-8 (R&D Systems) and 
incubated overnight at 4°C. After the overnight incubation, the plates were blocked with 
phosphate-buffered saline containing 1% bovine serum albumin and 0.05% Tween 20 for 2 h 
at room temperature. Cell culture supernatants were added to the plates and incubated at room 
temperature for 2 h. Subsequently, the plates were washed, detection antibodies were then 
added, and the reaction mixtures were incubated for 2 h at room temperature. The plates were 
washed again and then incubated with streptavidin-HRP for 20 min. Following an additional 
wash step, substrate solution was added and incubated for 20 min and then added stop 
solution. The results were analyzed by determining the absorption at 405 nm (A405).

Immunoblotting
Cells were lysed with RIPA Lysis and Extraction Buffer (Thermo Fisher Scientific) including 
Halt™ Protease Inhibitor Cocktail (Thermo Fisher Scientific) and protein concentrations 
were determined using the Bradford method (Molecular Devices, San Jose, CA, USA). Protein 
samples were separated using sodium dodecyl sulfate–polyacrylamide gel electrophoresis 
and transferred to Hybond membranes (Amersham Pharmacia Biotech, Piscataway, NJ, USA). 
Proteins were incubated with antibodies against LC3B (Abcam), LAMP1 (Santa Cruz), and 
β-actin (Santa Cruz Biotechnology) for 15 min. The membrane was washed and incubated 
with horseradish peroxidase-conjugated secondary antibody for 10 min at room temperature. 
Band density was estimated by image-capture densitometry.

Immunofluorescence
Human chondrocytes were cultured with IL-1β (20 ng/ml) in the absence or presence of 
1,25(OH)2D3 (20 nM) or metformin (1 mM) for 24 h. To measure autophagy influx, cells 
were stained with FITC-conjugated anti-LC3B (Santa Cruz Biotechnology), PE-conjugated 
anti-LAMP1 (Santa Cruz Biotechnology), and DAPI for nucleus. To measure co-localization 
between LC3B and mitochondria, cells were loaded with 50 nM of MitoTracker Deep 
Red (MTDR; Thermo Fisher Scientific) and stained with FITC-conjugated anti-LC3B. 
Fluorescence analysis was performed using the ZEN2012 (blue edition; ZEISS, Oberkochen, 
Germany) program. The positive color was analyzed against the background value by dividing 
the sites of the photograph.

Statistical analysis
Data are presented as means ± standard deviation of at least 3 independent experiments or 
independent samples and for 6 mice in each group. One-way ANOVA followed by Bonferroni 
post hoc test was used to compare differences between ≥3 groups. The Mann-Whitney U test 
was used to compare numerical data between 2 groups. To assess the Gaussian distribution 
and the equality of variance, Shapiro-Wilk test and Levene test were used, respectively. A 
p-value <0.05 was considered statistically significant. Statistical analysis performed using 
GraphPad Prism software (version 5.01; GraphPad Software, San Diego, CA, USA).
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RESULTS

1,25(OH)2D3 attenuates pain production and cartilage destruction in MIA-
induced OA rats
Pain and cartilage destruction are predominant characteristics of OA. Thus, we assessed 
secondary tactile allodynia in MIA-induced OA rats to determine whether vitamin-D can 
attenuate pain. In the von Frey hair assessment test, the paw withdrawal latency (PWL) 
and the paw withdrawal threshold (PWT) were prolonged and increased significantly in 
the inflamed hind paw of the rats given oral vitamin-D (100 and 500 IU/day) compared 
with vehicle-treated OA rats (Fig. 1A). Weight bearing was also significantly increased by 
vitamin-D treatment in OA rats compared with vehicle-treated animals (Fig. 1B). These 
results demonstrated the significant anti-nociceptive effect of vitamin-D in vivo. Then, to 
evaluate the chondroprotective property of vitamin-D, the isolated knee joints from 3 groups 
were analyzed microscopically. Staining with H&E and safranin O–fast green showed the 
attenuated destruction of articular cartilage in OA rats by vitamin-D treatment (Fig. 1C). 
OARSI and Mankin scores revealed significantly reduced cartilage destruction in the vitamin-
D-treated MIA-induced OA rats (100 or 500 IU/day) compared to the vehicle-treated animals 
(Fig. 1D). Above results showed the significant anti-nociceptive and chondroprotective 
properties of vitamin-D in vivo.

The effect of vitamin-D on MMP-13, IL-1β, and MCP-1 expression in OA 
synovium and human OA chondrocytes
Although cartilage degradation is the characteristic feature of OA, synovitis is frequently 
observed in OA patients, even before evident cartilage degeneration has occurred. Mounting 
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evidences have suggested that synovitis and resultant inflammatory mediators might 
contribute to cartilage destruction in OA. MMP-13 plays a pivotal role in OA by degrading type 
II collagen in articular cartilage. Interestingly, the expression of MMP genes, including MMP-
13, were upregulated not only in cartilage but also in OA synovium (47). So, we determined 
to evaluate the effect of vitamin-D on MMP-13 expression in OA synovium isolated from each 
group of OA rats. We confirmed that vitamin-D treatment, even in lower dose (100 IU/day), 
significantly inhibit the expression of MMP-13 in synovium of experimental OA rats (Fig. 2A).

MCP-1 has pro-arthritic potential through induction of chondrocyte apoptosis (48). It is an 
important chemokine secreted by synovial fibroblast. Like IL-1β, MCP-1 also propagated 
synovial inflammation and cartilage damage in OA animals (49). Thus, we next examined the 
expression of IL-1β and MCP-1 in inflamed synovium. We identified that the expressions of 
IL-1β, and MCP-1 were significantly attenuated in vitamin-D-treated rats compared to vehicle-
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treated group (Fig. 2B). In vivo results demonstrated the significantly attenuated expression 
of MMP-13, IL-1β, and MCP-1 in OA synovium by vitamin-D treatment. Next, to explore the 
effect of vitamin-D in human OA chondrocytes, human OA chondrocytes were stimulated 
with 20 ng/ml of IL-1β in the presence or absence of vitamin-D (20 nM). The mRNA 
expression of MMP-3 and MMP-13 in IL-1β-stimulated OA chondrocytes were significantly 
decreased by vitamin-D treatment (Fig. 2C). In addition, IL-6 and MCP-1 expressions in 
culture supernatants were examined by ELISA (Fig. 2D). Vitamin-D treatment decreased the 
production of these proinflammatory mediators from IL-1β-stimulated OA chondrocytes.

Vitamin-D treatment can enhance autophagic flux and mitochondrial activity 
in OA chondrocytes
Autophagy is a lysosome-dependent macromolecular cycle. It is characterized by the 
formation of autophagosomes for the delivery to lysosomes. LC3B is a well-known 
autophagosomal protein. Immunofluorescent staining showed that 20 nM of vitamin-D 
treatment in IL-1β-stimulated human OA chondrocytes increased LC3B level (Fig. 3A). 
Metformin is used as positive control, as an autophagy inducer. Recent study revealed that 
metformin can activate autophagy in murine chondrocytes (38). Human OA chondrocytes 
also showed the similar result (Fig. 3A). Lysosomal associated membrane protein 1 (LAMP1) 
is widely used lysosomal marker. The fusion of the autophagosomes with lysosomes is 
an important stage of autophagic flux. To determine whether vitamin-D would affect the 
fusion of autophagosomes with lysosomes, we performed immunostaining for LAMP1 
and quantified the colocalization of LAMP1 with LC3 after vitamin-D treatment in IL-1β-
stimulated OA chondrocytes (Fig. 3A). We found that chondrocytes treated with 20 nM 
of vitamin-D significantly increased the colocalization of LC3B with LAMP1 compared 
with vehicle treated cells (Fig. 3A). Although metformin treatment showed the tendency 
to increase colocalization of LC3B with LAMP1, the difference did not meet statistical 
significance. We sought to examine the effect of vitamin-D on mitophagy, confocal 
microscopy was used to examine the co-localization of MitoTracker with LC3B, as an index 
of mitophagy. We observed that co-localization between LC3/MTDR (mitochondrial marker) 
or LAMP1/MTDR in the presence of vitamin-D did not differ with that of vehicle-treated OA 
chondrocytes (Fig. 3B), indicating the insignificant effect of vitamin-D on mitophagy in vitro.

Next, to study the effect of vitamin-D on autophagosome and autolysosome formation, 
we assessed endogenous LC3-I, LC3-II and LAMP1 by western-blotting. The results 
demonstrated that the amounts of LC3-II as well as LC3-II/LC3-I ratio are increased by 
vitamin-D treatment in IL-1β-treated chondrocytes as compared with vehicle-treated cells 
(Fig. 3C), indicating increased autophagosome. LC3-II is relatively specifically associated 
with autophagosomes and autolysosomes. At the final stages of autophagy, autophagosomes 
fuse with lysosomes to form single-membrane-bound autophagolysosome, and subsequently 
degraded, that is necessary for lysosomal activation. To determine the formation of 
autophagolysome, LAMP1 expression which is widely used lysosomal marker, was assessed 
by immunoblotting. We identified that vitamin-D treatment significantly increased LAMP1 
level in OA chondrocytes, implying the increase in autophagolysosome formation and 
lysosomal activity (Fig. 3C). Mitochondrial dysfunction is implicated in both OA onset and 
its progression (50). As mitochondria plays a pivotal role in autophagy, through autophagy 
induction and autophagosomal biogenesis from mitochondria (51), the respiratory ability 
of OA chondrocytes was examined. The results showed that the respiratory ability of 
mitochondria in IL-1β-stimulated OA chondrocytes was enhanced by vitamin-D treatment 
compared with vehicle treated cell (Fig. 3D, upper panel). The basal, maximal, ATP-linked 
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mitochondrial respiratory rates, and mitochondrial proton leak were all higher in vitamin-D-
treated OA chondrocytes than in vehicle-treated cells (Fig. 3D, lower panel). Taken together, 
our findings suggest that vitamin-D treatment in OA chondrocytes can enhance autophagic 
flux and mitochondrial function, implying protective potential of vitamin D on degenerative 
chondrocytes.

In vivo effect of vitamin-D on autophagic flux and inflammatory cell death in 
OA synovial tissues
Recent study suggested that autophagic degradation is blocked in OA (52). Lysosomal 
dysfunction is suggested to be implicated in OA pathogenesis (53). We determined to 
compare the changes of autophagic flux and inflammatory cell death in synovial tissues 
among the vehicle- and vitamin-D-treated groups. Autophagic flux and lysosomal activity was 
analyzed by immunohistochemistry of LC3B and TFEB in synovial tissues of OA rats. TFEB is 
a master transcriptional factor that mainly regulates autophagy-lysosomal pathway with its 
own positive feedback loops. TFEB is required for the clearance of damaged lysosomes and 
is essential for lysosomal homeostasis (54). Our results showed that vitamin-D treatment in 
OA rats significantly increased TFEB level at synovial tissues in a dose-dependent manner, 
whether LC3B level was reciprocally decreased (Fig. 4A and B). Interestingly, recent study 
claimed that LC3 prominence even when LC3-II is not formed may indicate the incomplete 
inhibition of autophagosome biogenesis and abrogated autophagosome formation (55). 
Based on that, it is estimated that vitamin-D treatment may enhance autophagic flux via 
restoring lysosomal dysfunction in OA synovial tissue cells.

Next, we examined caspase-1 and -3 level in synovial tissues. Caspase-1 and -3 belongs to 
the caspase family of proteins responsible for apoptosis and inflammation. The result 
demonstrated that vitamin-D treatment inhibit caspase-1 and -3 level in synovial tissues in 
vivo (Fig. 4C and D). Taken together, anti-arthritic effect of vitamin-D in terms of synovitis 
was associated with significant enhancement of autophagic flux via lysosomal activity and 
decrease in inflammation cell death among synovial tissues cells.

Synergistic effects of vitamin-D and celecoxib on pain behavior and joint 
destruction in rats of experimental OA
Celecoxib, an anti-inflammatory cyclooxygenase-2 inhibitor, is one of the most commonly 
prescribed nonsteroidal anti-inflammatory drugs (NSAIDs) to attenuate pain and 
inflammation in OA patients to lessen the risk of gastrointestinal adverse events and 
development of cardiovascular diseases that are greater importance in in elderly patients 
than relatively younger OA patients. So, we determined to study whether vitamin-D may exert 
synergistic effects with celecoxib regarding pain and cartilage degeneration. The treatment 
with each agent vitamin-D (100 IU), celecoxib (30 mg/kg), or combinations of these 2 
agents) was initiated at 3 days after OA induction through MIA injection. In the von Frey 
hair assessment test, the PWL and PWT were significantly prolonged in the inflamed hind 
paw of the rats given oral vitamin-D alone or celecoxib alone compared with vehicle-treated 
group (Fig. 5A). Although the treatment with vitamin-D alone was superior to celecoxib 
alone regarding pain behavior, combined administration of vitamin-D showed a superior 
anti-nociceptive property compared to celecoxib alone (Fig. 5A). In weight bearing data, 
co-administration of vitamin-D and celecoxib did not show a synergic effect compared to 
monotherapy (Fig. 5B). Next, we examined whether co-administration with vitamin-D and 
celecoxib has synergistic effects on cartilage damage and histological changes compared 
with celecoxib monotherapy. As shown in Fig. 5C, the joints from rats with MIA-induced OA 
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demonstrated that cartilage degeneration and proteoglycan depletion, as demonstrated by 
H&E and safranin O–fast green stain, were more attenuated in combination of vitamin-D 
and celecoxib-treated OA group, compared with those of either agent alone. The results 
demonstrated that combined administration of vitamin-D and celecoxib induces a synergistic 
effect on histomorphological changes compared to celecoxib monotherapy (Fig. 5D). These 
results demonstrated the antinociceptive and chondroprotective synergism of vitamin D and 
celecoxib in an experimental OA animal model.

Synergistic effects of vitamin-D and celecoxib on apoptosis
We also investigated the synergistic effects of vitamin-D and celecoxib on inflammation 
and inflammatory cell death. The number of LC3B (Fig. 6A), and caspase-1 and -3 (Fig. 6B) 
positive cells were significantly reduced in the joints of 3 groups of OA rats (both in either 
agent alone and combination therapy) as compared with those of vehicle-treated animals. 
The mRNA expressions of MMP-1, MMP-3 and MMP-13 in IL-1β-stimulated OA chondrocytes 
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were significantly decreased by celecoxib treatment (1 μM) (Fig. 6C). Our results showed that 
the treatment with vitamin-D in human chondrocytes did not affect the mRNA expressions 
of these MMPs in celecoxib-treated cells. Then, the concentrations of IL-6, MCP1 and 
IL-8 in culture supernatants in these cells were analyzed by ELISA. The results showed a 
significantly further decreased production of IL-6, MCP-1, and IL-8 by vitamin-D treatment, 
implying a synergistic effect of vitamin-D in terms of anti-inflammatory properties when co-
administered with celecoxib.

DISCUSSION

OA is the most common type of arthritis that occurs in middle age, and has multiple risk 
factors, including age, obesity, gender, and genetics. There is no cure for OA, but analgesic 
and anti-inflammatory drugs, such as corticosteroids and NSAIDs, are commonly used 
(56,57). Although these medicines effectively reduce pain, they are associated with safety 
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issues. Steroids can cause numerous complications, making their long-term use difficult, 
while NSAIDs can cause gastrointestinal problems and hepatotoxicity. Therefore, it is 
necessary to develop medications for long-term use without such complications. Vitamin D 
has proven long-term safety, and may be useful in the treatment of OA patients. In this study, 
we investigated the effects of vitamin D in OA.

MMPs are enzymes involved in the degradation of ECM proteins. Increased MMP levels 
were observed in OA patients and animal models (58). MMP-13 is known to cause cartilage 
degradation. We previously reported that high MMP-13 levels in OA chondrocytes decreased 
when co-cultured with metformin-treated mesenchymal stem cells (59). MMP-13 expression 
is affected by several cytokines and growth factors, including IL-1β. IL-1β is a key mediator of 
inflammatory response, and is regulated by caspase 1. Several studies have demonstrated that 
IL-1β is involved in autoimmune inflammation (60). We previously demonstrated that MMP-
13 and IL-1β levels decreased significantly in OA chondrocytes, and pain severity indices, such 
as PWL and PWT, and cartilage destruction reduced with metformin.

Age is a major risk factor for OA, as autophagy is decreased with aging. The expression of 
autophagy-related proteins decreases with age in both human and mouse articular cartilage 
(4). Therefore, autophagy regulation is a therapeutic strategy for slowing OA progression. 
Autophagy is related to several signaling pathways. A recent study showed that baicalin 
protects OA chondrocytes against IL-1β-induced apoptosis and ECM degradation through 
autophagy activation (61). MMP-13 and caspase expression, and apoptosis rates, decreased, 
while LC3-II levels increased in baicalin-treated chondrocytes. A recent study demonstrated 
that vitamin D reduced OA through activation of chondrocyte autophagy by mediating the 
AMPK-mTOR signaling pathway (62). Vitamin-D downregulates mTOR expression followed 
by inducing autophagy by inhibiting mTORC1 complex (63,64). On the other hand, Chen et 
al. (65) reported vitamin-D inhibits mitophagy in TNF-α-induced inflammatory condition 
and ischemia/reperfusion-induced cardiac injury condition (66). The role of vitamin-D 
in autophagy and mitophagy needs further studies. Vitamin D is widely considered to be 
beneficial in several diseases. However, its effects remain controversial (67-69). A recent 
study demonstrated that vitamin-D deficiency is associated with OA onset and progression 
(70). Clinically, significant improvements in the Manchester Foot Pain and Disability Index 
have been reported in vitamin-D-treated OA patients compared to the placebo group (71). 
Vitamin D is commonly used in combination with calcium for the treatment of osteoporosis. 
The major risk factor for osteoporosis is also aging. Therefore, if the effectiveness of vitamin 
D in OA is demonstrated, it may prove a valuable treatment option in older patients.

In this study, we demonstrated chondroprotective effects of vitamin-D in OA animals and 
human OA chondrocytes. Vitamin-D treatment significantly decreased pain severity, cartilage 
destruction, and inflammation in experimental OA model. MMP-13, IL-1β, and MCP-1 levels 
were also significantly decreased in OA synovium of vitamin-D-treated group. The increase 
in TFEB expression while decreasing LC3B level supports the hypothesis that vitamin-D 
administration showed anti-nociceptive and chondroprotective effects by enhancing 
autophagic flux in OA synovium. The synergistic effect of vitamin-D and celecoxib shown 
in our present study may have clinical significance in that it suggests the importance of 
vitamin-D as a nutrient in treatment strategies for OA patients. Taken together, our findings 
demonstrated that vitamin-D has chondroprotective and pain-reducing properties by 
enhancing autophagic flux in chondrocytes as well as in OA synovium.
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