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Abstract: Non-ferrous metal smelting is a significant source of anthropogenic heavy metal emission
and has led to severe environmental pollution that ultimately threatens the health of local residents.
In this study, we determined concentrations of copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb),
as well as Pb isotopic compositions in rice, vegetables and human hair in areas surrounding the
Zhuzhou Pb/Zn smelter in Hunan, China and we assessed the health risks associated with rice
and vegetable consumption for local residents. Results showed that rice and vegetable samples
were significantly contaminated by Cd and Pb. Age and source of rice were important factors for
the enrichment of heavy metal concentrations in human hair. The ratios of Pb isotopes in human
hair (1.164–1.170 for 206Pb/207Pb and 2.102–2.110 for208Pb/206Pb) were comparable to those in rice
(1.162–1.172 for 206Pb/207Pb and 2.098–2.114 for208Pb/206Pb) and were slightly lower than those in
vegetables (1.168–1.172 for 206Pb/207Pb and 2.109–2.111 for208Pb/206Pb), indicating that Pb in human
hair mainly originated from food ingestion. A non-carcinogenic risk assessment showed that Cd
exposure was the dominant health risk for local residents. This study suggested that crops planted
surrounding the smelter were seriously contaminated with Cd and human exposure was related to
dietary intake.

Keywords: Pb/Zn smelter; Pb isotopes; heavy metals; health risk

1. Introduction

Non-ferrous metal smelting was one of the most important sources of heavy metal
emissions and heavy metals such as copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb)
were discharged to the surrounding environment during the Pb and Zn smelting process,
causing adverse effects on the environment and human health [1–7]. Heavy metals in soil
can be absorbed by plants [8] and enter human body through dietary intake [9]. Studies
have shown that food consumption has been the main pathway of heavy metals exposure
for humans in polluted areas apart from occupational exposure [10]. Cu and Zn are essential
for the human physiological function of the human body at appropriate concentrations,
while a deficit or excess of Cu and Zn can cause several diseases [11,12]. Cd and Pb are
non-essential elements for the human body and can adversely affect human health at high
levels of exposure. Cd is a toxic heavy metal and is classified as a Group 1 of human
carcinogens [13]. Long-term Cd exposure can lead to chronic and acute adverse health
conditions in humans, including kidney damage, osteoporosis and lung cancer [14–16].
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Excessive Pb in the human body may cause renal dysfunction, damage to the central
nervous system and a decrease in intelligence quotients (IQ) in children [17].

Hunan Province is a famous non-ferrous metal smelting center in China and the
smelting industry is a foundational industry in this region [2]. In addition, Hunan is a
major grain crop producer and rice production in this province ranked second in China in
2018 [18]. Therefore, food safety is particularly important. Studies have demonstrated that
soils surrounding a non-ferrous metal mining and smelting plant were severely impacted
by waste emission containing heavy metal [1,19]. Rice and vegetables grown near the
smelting areas were severely polluted by heavy metals, especially for Cd [2]. In addition,
intake of contaminated water, meat and eggs would also be subject to health risks for
residents [4]. However, the concentrations of heavy metals in different sources and types
of food are different, which leads to uncertainty of the health risk for different people.
Few studies have investigated human heavy metal exposure and associated health risks
through different types of food consumption in local residents.

Biomarkers are considered an important tool for estimating levels of human exposure
to environmental pollutants. Human hair, a more stable matrix than urine and blood [20,21],
has been widely used to assess human heavy metal exposure due to the higher feasibility of
collection and storage than that of urine and blood [22–24]. Reference values of Cu, Zn, Cd
and Pb in hair for adults given by the Trace Element Research Council of China (TERCC)
are 8.0–20.0, 120–210, <0.6 and <10 mg/kg, respectively [25]. Moreover, due to the stability
during physical and chemical processes [26], Pb isotopes have been widely used to trace
the sources of Pb contaminations in soils, sediments, vegetables and biomarkers [27–30].

In this study, we aim to assess the heavy metal contamination in rice and vegetables
grown in areas surrounding a Pb/Zn smelter, and the human exposure and health risks
through dietary ingestion. Concentrations of heavy metals (Cu, Zn, Cd and Pb) in human
hair were also investigated. The main impact factors of heavy metals in human hair were
analyzed and the Pb isotope approach was utilized to trace the sources of Pb pollution in
human hair. Potential non-carcinogenic risks for rice and vegetable ingestion were also
calculated by target hazard quotation (THQ) and hazard index (HI) to assess health risks.
Results obtained in this study could be important for development of dietary guidelines
and risk control measures in areas surrounding non-ferrous metal smelting plants.

2. Materials and Methods
2.1. Study Area and Sample Collection

Zhuzhou city is located in the eastern side of Hunan Province and downstream of
Xiang River. The city has a subtropical monsoon climate with high rainfall of 1327.6 mm
and an annual average temperature of 18.8 ◦C [31]. This climate is suitable for the growth
of a variety of high-yield grain crops in Hunan Province. Zhuzhou city is the heartland
of smelting activities with abundant mineral resources and is therefore also an important
industrial city.

The Zhuzhou smelter (27◦52′23.06” N, 113◦05′08.40” E), founded in 1956, is one of
the most important producers and exporters of Pb and Zn metal in China. The annual
production capacity of Pb and Zn products, achieved through pyrometallurgical and
hydrometallurgical processes, respectively, is 650,000 tons, including 100,000 tons of Pb and
550,000 tons of Zn. The smelter also recovers copper, gold, silver, cadmium and indium,
and produces sulfuric acid. Although environmental protection equipment is used during
the smelting process, the surrounding environment is still threatened by the smelting
activities [32].

Three sample sites (A, B and C) were selected within 3 km of the plant (Figure 1).
Local residents who had been living in these areas for at least 6 months were recruited for
voluntary participation in this study. Dyers and occupational exposed population were
also excluded. Hair samples of 1–2 cm in length were cut with stainless steel scissors from
the nape of the neck, close to the occipital region of the scalp, and then stored in plastic
bags. White rice (Oryza sativa L.) samples were collected from the homes of the volunteers
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at the same time. Sources of sampled rice were recorded to determine whether the rice was
cultivated in local areas or purchased from the market. Vegetable samples collected from
farmlands in the residential areas were divided into leafy vegetables, including Chinese
cabbage (Brassica rapa L. var. chinensis (Linnaeus) Kitamura), water spinach (Ipomoea
aquatica Forsskal) and lettuce (Lactuca sativa L. var. ramosa Hort.) and non-leafy vegetables,
including green bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata (L.) Walp.)). A
total of 115 hair samples, 69 polished rice samples and 24 vegetable samples were collected
in September 2017. The rice and vegetable samples were washed with pure water, dried in
an oven at 50 ◦C and ground to 120 mesh. The hair samples were washed with detergent,
pure water and acetone, air dried and cut into sections of 1–3 mm long with stainless steel
scissors for further analysis [33]. All participants signed a consent form before participating
in the study. Ethics approval was obtained from the Institute of Geochemistry, Chinese
Academy of Science and the Ethics Committee of Guizhou Medical University.
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2.2. Chemical Analysis
2.2.1. Heavy Metal Concentrations

Hair (50 mg), rice (100 mg) and vegetable (100 mg) samples were placed in the
Teflon digestion tanks, added with 3 mL HNO3 and heated in an oven at 150 ◦C for 24 h.
These solutions were cooled, filtered and diluted with HNO3 (2%, v/v) to analyze the
concentrations of heavy metals (Cu, Zn, Cd and Pb) using an inductively coupled plasma
mass spectrometer (ICP-MS; Agilent 7700, USA) [34]. Quality control was undertaken using
method blanks, certified reference materials (CRMs) (NIES-13, GBW09101b, GBW10020
and GBW100359) and blind duplicates. Recoveries of CRMs averaged at 93% ± 9% for Cu,
Zn, Cd and Pb. The relative standard deviations (RSDs) of replicate samples were lower
than 10% and this is acceptable for trace element analysis.

2.2.2. Lead (Pb) Isotope

Digested solutions were diluted with Milli-Q water to 10 µg/L of Pb in 2% HNO3 (v/v)
and Pb isotopic compositions were measured by ICP-MS (Agilent 7900, Santa Clara, CA,
USA). The lead isotopic standard (NIST SRM 981) was used for quality control and compo-
sitional correction for mass discrimination. The measured Pb compositions of 204Pb/207Pb,
206Pb/207Pb and 208Pb/206Pb in SRM 981 were 0.0645 ± 0.0003, 1.0936 ± 0.0025 and
2.1808 ± 0.0053, which were in agreement with certificated values of 0.0645, 1.0933 and
2.1681, respectively. The RSDs of replicate samples were generally lower than 0.5%.

2.3. Health Risk Assessment

The pathway of human heavy metal exposure includes drinking water intake, water-
skin contact, air inhalation, soil intake, soil–skin contacts and food intake [30]. To study the
health risk of heavy metal exposure through food consumption, the average daily dose
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(ADD), target hazard quotation (THQ) and hazard index (HI) were applied to calculate the
potential non-carcinogenic risks [23,35].

The food intake for heavy metal exposure was calculated using Equation (1):

ADD = (C × IR × EF × ED)/(BW × AT) (1)

where ADD is the average daily dose (mg/kg/d); C is the concentration of heavy metal
in rice or vegetables (mg/kg); IR is intake rate (g/d) [36] EF is exposure frequency
(365 d/year); ED is exposure duration (70 years in this study); BW is body weight (kg) [31]
and AT is average time (AT = ED × 365 d). Data of IR and BW are listed in Table S1.

Non-carcinogenic risk was calculated by Equations (2) and (3):

THQ = ADD/RfD (2)

HI = THQCu + THQZn + THQCd + THQPb (3)

where THQ is target hazard quotation; RfD is the reference dose (40, 300, 1 and 3.5 µg/kg/day
for Cu, Zn, Cd and Pb, respectively) [37] and HI is the sum of THQ for multiple toxic
substances. When HI ≤ 1, the risk is considered to be slight or negligible and when HI > 1,
there is a non-carcinogenic risk.

2.4. Statistical Analysis

Statistical analysis was performed by SPSS19.0 for windows. The Shapiro–Wilk test
was used to examine the normality of data. The characteristics of heavy metal concen-
trations were described by geomean. Analysis of variance (ANOVA) was conducted to
investigate the differences of four heavy metals concentrations among different samples.
Results of the statistical test were considered statistically significant if p < 0.05.

3. Results and Discussion
3.1. Heavy Metals in Rice and Vegetables

The correlation of Cu, Zn, Cd and Pb in rice and vegetables were shown in Table S2
and the concentrations of heavy metals were significantly correlated with each other.
The Cu, Zn, Cd and Pb concentrations in rice samples ranged from 0.28–4.66, 1.72–31.4,
<0.01–3.35 and 0.01–2.40 mg/kg, respectively. National maximum allowable concentrations
of heavy metals in rice were 0.2 mg/kg for Cd and 0.2 mg/kg for Pb in China [38] and
the limits were 10 mg/kg for Cu and 60 mg/kg for Zn, set by World Health Organiza-
tion [39,40]. The averages of Cu and Zn concentrations in all rice samples were 2.20 ± 0.82
and 16.6 ± 4.55 mg/kg, respectively. All the concentrations of Cu and Zn in rice were
below these limits. The averages concentrations of Cd and Pb in all rice samples were
0.35± 0.71 and 0.06± 0.29 mg/kg, respectively, while 70% (48/69) of the samples exceeded
the national maximum allowable Cd standard (0.2 mg/kg) and 14% (10/69) of the samples
exceeded the national maximum allowable Pb standard (0.2 mg/kg). The heavy metals con-
centrations in rice from different sites were shown in Table S3, and significant differences
in Zn, Cd and Pb were found among three sites (p < 0.01). Significant differences in Cd and
Pb concentrations were found between local rice and market rice (p < 0.01) (Figure 2). Local
rice contained significantly higher Cd and Pb concentrations than market rice. The Cd
concentrations in local rice ranged from 0.132–3.35 mg/kg, with an average of 0.913 mg/kg,
while the Cd concentrations in market rice ranged from 0.003–1.29 mg/kg, with an average
of 0.160 mg/kg. The portions exceeding the national limit of Cd (0.2 mg/kg) were 97%
(30/31) in local rice and 47% (18/38) in market rice, respectively. The Pb concentrations
in local rice ranged from 0.03–0.32 mg/kg, with an average of 0.10 mg/kg, while the Pb
concentrations in market rice ranged from 0.01–2.40 mg/kg, with an average of 0.05 mg/kg.
The portions exceeding the national limit (0.2 mg/kg) were 23% (7/31) in local rice and
8% (3/38) in market rice, respectively. Results in this study indicated that the rice grains
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grown near the smelter were seriously impacted by smelting activities and the ability of
rice to enrich Cd is greater than that of Pb.
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Figure 2. Box plots of heavy metal concentrations in rice (dry weight). Middle band, box and
whiskers represent the median, 25th and 75th percentile and 5th and 95th percentile, respectively.
Squares represent means, whereas “*” represent extreme values.

The Cu, Zn, Cd and Pb concentrations in vegetable samples varied from 0.42–3.05,
7.66–89.4, 0.01–1.22 and 0.01–0.98 mg/kg, respectively. Heavy metal concentrations in
leafy and non-leafy vegetables are shown in Figure 3. Significant differences in Zn, Cd and
Pb concentrations were found between these two groups (p < 0.01), while there was no
significant difference for Cu concentrations (p > 0.05). Geomeans of Cu, Zn, Cd and Pb
concentrations in leafy vegetables were 0.92 (0.42–3.05 mg/kg), 25.4 (7.88–89.4 mg/kg),
0.54 (0.13–1.22 mg/kg) and 0.42 mg/kg (0.03–0.98 mg/kg), respectively. Geomeans of Cu,
Zn, Cd and Pb concentrations in non-leafy vegetables were 0.84 (0.48–1.63 mg/kg), 9.20
(7.66–13.0 mg/kg), 0.03 (0.01–0.11 mg/kg) and 0.03 mg/kg (0.01–0.09 mg/kg), respectively.
The national limits for Cd and Pb in leafy vegetables were 0.2 and 0.3 mg/kg in China [38],
respectively, and the limits for Cu and Zn in leafy vegetables were 40 and 60 mg/kg
as determined by the World Health Organization and Food/Agricultural Organization,
respectively [41]. The national limits for Cd and Pb in non-leafy vegetables were 0.1 and
0.2 mg/kg in China [38], respectively, and the limits for Cu and Zn in non-leafy vegetables
were 40 and 60 mg/kg as determined by the World Health Organization/Food and Agri-
cultural Organization, respectively [41]. Only one sample (1/6) of non-leafy vegetables
exceeded the national limit for Cd concentration. However, for the leafy vegetables, the
portions of Zn, Cd and Pb concentrations exceeding national limits were 11 (2/18), 94
(17/18) and 78% (14/18), respectively. Among the vegetable samples, the Zn, Cd and Pb
concentrations in leafy vegetables were obviously higher than those in non-leafy vegetables,
indicating that the Zn, Cd and Pb elements became enriched in leafy vegetables.
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3.2. Factors Impacting Heavy Metals in Hair

Human hair, a useful biomonitoring tool, has been used to evaluate the extent of heavy
metal exposure in residents in contaminated industrial areas [20,42,43]. The Cu, Zn, Cd and
Pb concentrations in hair samples averaged 13.1 (5.86–141 mg/kg), 202 (42.8–2180 mg/kg),
0.63 (0.05–31.4 mg/kg) and 13.6 mg/kg (1.12–260 mg/kg), respectively. The portions of
Cu, Zn, Cd and Pb concentrations exceeding the TERCC reference values were 13 (15/115),
36 (41/115), 50% (58/115) and 57% (66/115), respectively, revealing health risks of heavy
metals exposure for the local residents.

The comparison of heavy metal concentrations in hair with those in other studies is
shown in Table S4. Hair Cu concentrations in this study were significantly higher than
those in general industrial areas [22], mining areas [23], an urban area in Spain [44] and a
surgical instrument manufacturing industry area in Pakistan [45], but were much lower
than those from an e-waste recycling area [22], an urban area in Sweden, a non-industrial
area in Italy [46] and a tailings dump area in Zambia [47]. Hair Zn concentrations in this
study were much higher than those in other studies. Hair Cd concentrations in this study
were comparable with those from the e-waste recycling area in China [22] and urban area
in Spain [39] but were much lower than those from the surgical instrument manufacturing
industry area in Pakistan [45]. Hair Cd concentrations in this study were much higher than
those in general industrial areas [22], mining areas [23] in China, a tailings dump area in
Zambia [47], an urban area in Sweden [48] and a non-industrial area in Italy [46]. Hair
Pb concentrations in this study were higher than those in most of the above comparison
areas but were lower than those in the e-waste recycling area [22] and the urban area in
Spain [44]. Overall, the population surrounding the Zn smelter was subject to health risks
associated with heavy metal exposure, and the exposure levels were equivalent to those in
typical industrial areas.

Previous studies showed that food consumption was the major pathway of heavy
metals exposure for human in polluted areas except occupational exposure [10]. Since rice
is the staple food in south China, rice intake is the main source of human heavy metal
exposure, especially for Cd. Hair heavy metals concentrations in the population with
different rice consumptions are shown in Figure 4a. Significant differences in hair Zn and
Cd concentrations were found between local residents who had eaten local rice and those
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who had consumed market rice (p < 0.05), while there was no significant difference for hair
Cu and Pb concentrations between the two groups (p > 0.05). This was consistent with the
characteristics of heavy metal concentrations in rice. Although the rice Pb concentration
showed significant differences between two sources (p < 0.01), no significant difference
in hair Pb concentrations was observed between local residents who had eaten local rice
and those who had consumed market rice, due to the relatively low Pb concentrations in
most rice samples. These results demonstrated that dietary habits could influence levels of
heavy metal exposure.
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Factors including gender, age and distance away from smelter that may affect the heavy
metal concentrations in hair have been addressed in previous studies [22,23,49]. These factors
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were also considered when investigating the characteristics of human health risks in this study.
Cu, Zn, Cd and Pb concentrations in hair samples from three sampling sites around the smelter
are shown in Figure 4b. No significant difference in heavy metals concentrations in hair was
found among the sampling sites (p > 0.05). Previous studies revealed significant differences in
hair Cd concentrations between the mining area and the control areas (20 km to the mining
area) [23]. In this study, however, the three sampling sites were located within 3 km of the
smelter, indicating no differences in hair heavy metals concentrations. Concentrations of Cu,
Zn, Cd and Pb in hair samples between different genders are shown in Figure 4c. No significant
differences in Cu, Cd and Pb concentrations in hair were found between the two genders
(p > 0.05), while significant differences in hair Zn were found between the genders (p < 0.01).
The hair Zn concentrations were much higher in women than men and this was consistent
with the previous results that showed that diet was the principal source of Zn and hair Zn
concentrations were gender related [49].

Heavy metals concentrations in human hair among different age groups are shown in
Figure 4d. Age had significant impacts on hair Cu, Zn, Cd and Pb concentrations. Hair Cu,
Cd and Pb concentrations in groups of <12 years and 45–64 years were much higher than
those in other age groups. Groups of 19–44 years and 45–64 years showed higher levels of hair
Zn than those in other groups. These results suggested that children and older people were
more sensitive to environmental Cu, Cd and Pb exposure than people of other ages and the
metabolism of heavy metals in the human body differed among the various age groups.

3.3. Pb Isotope Tracing

Ratios of Pb isotopes in the rice, vegetables and human hair were determined to
identify and trace the sources of Pb exposure in the local population. Ratios of 206Pb/207Pb
and 208Pb/206Pb are shown in Figure 5 and Table S5. The 206Pb/207Pb ratios ranged from
1.162–1.172 in rice samples, 1.169–1.172 in vegetables samples and 1.164–1.170 in human
hair samples, respectively. The 208Pb/206Pb ratios ranged from 2.098–2.114 in rice samples,
2.109–2.111 in vegetable samples and 2.102–2.110 in human hair samples, respectively.
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Smelting activity was an important source of heavy metals in the soil surrounding the
smelter and the isotopic ratios of Pb in the soils (1.169–1.186 for 206Pb/207Pb and 2.097–2.114
for 208Pb/206Pb) were close to those of ores (1.142–1.183 for 206Pb/207Pb and 2.088–2.154 for
208Pb/206Pb), confirming that smelting activity was the principal contributor to Pb in the
surface soils [50]. The ratios of 206Pb/207Pb and 208Pb/206Pb for rice and vegetables were
comparable to those of contaminated surface soil and Pb–Zn ores, and different from those
in background soil (1.191–1.196 for 206Pb/207Pb and 2.087–2.092 for 208Pb/206Pb) [50]. This
suggests the clear anthropogenic influence of Pb and Zn smelting activities on these rice and
vegetables. Moreover, the two main sources of Pb in edible parts of Chinese cabbage were
derived from atmospheric absorption through leaf stomata and soil absorption by plant
roots [51]. The isotopic ratios of Pb in rice samples in this study were close to the Pb isotopic
value released by fuel (diesel and gasoline) combustion (1.147–1.164 for 206Pb/207Pb and
2.110–2.123 for 208Pb/206Pb) [26], indicating that the use of fuels may affect the Pb isotopes
in plants through atmospheric absorption.

In this study, results showed that Pb in vegetables mainly originated from root uptake
from the soil and Pb in rice could have originated from the mixtures of leaf atmospheric
absorption and root absorption from soil. Pb isotopes in human hair were comparable
to those in the rice and were slightly lower than those of the vegetables, indicating that
human Pb exposure likely mainly originated from the daily intake of rice.

3.4. Health Risk Assessment by Rice and Vegetables

Exposure of human to high concentrations of heavy metals such as Cu, Zn, Cd and Pb
would pose health risks. Non-carcinogenic risks for local residents were assessed through
the dietary pathway in this study. Generally, rice and vegetables are the most significant
sources of heavy metals exposure in daily human life, especially in south China [9,29,52].
We calculated the non-carcinogenic risks of selected heavy metals for local residents from
rice and vegetable ingestion among different age groups (Figure 6 and Table S6).
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In Figure 6, THQ values were calculated for different scenarios under the assumption
that residents only ingest one type of vegetables or rice. In Figure 6a, the THQ values for
leafy and non-leafy vegetables were in the same order: Cd > Pb > Zn > Cu. For non-leafy
vegetables, the THQ values of Cu, Zn, Cd and Pb were all <1 and this did not exceed the
guideline value. Moreover, the HI values of non-leafy vegetables were also <1 and the
health risks from non-leafy vegetable consumption were considered slight or negligible.
For leafy vegetables, although the THQ values of Cu, Zn and Pb were <1, the THQ values of
Cd were 1.42–3.46 times higher than the threshold value. This showed that the health risks
of heavy metal exposure for the local population mainly came from Cd and Pb exposure
through leafy vegetable consumption. In addition, significant differences of HI values
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among different age groups for vegetable ingestion were found. HI values for different
age groups followed the order: 19–44 > 45–64 > 65+ > 0–12 > 13–18 for both leafy and
non-leafy vegetables consumption. HI values of leafy vegetables consumption for all age
groups were >1, thereby posing health risks to local residents, while HI values of non-leafy
vegetables consumption for all age groups were less than one, which was considered
as safe.

In Figure 6b, the THQ values for local rice and market rice followed the following
order: Cd > Zn > Cu > Pb and Cd > Cu > Zn > Pb, respectively. For the five age groups,
regardless of the type of rice consumed, the THQs of Cu, Zn and Pb were all below
the threshold value of one. However, THQs of Cd in five age groups with local rice
consumption and age groups 0–12 and 13–18 with market rice consumption were higher
than the threshold value of one. Therefore, rice intake was considered the predominant
health risk of Cd exposure for local residents around the smelter. Although the THQ
values of Cu, Zn, Cd and Pb for the age groups of 19–44, 45–64 and 65+ with market rice
consumption were lower than one, the HI values in the three groups were higher than one.
Therefore, rice consumption from different sources would cause different levels of exposure
to heavy metals. The HI values of market rice were significantly lower than those of local
rice. Rice occupies a dominant position in the dietary structure of residents in south China
and heavy metal exposure through consumption of wheat products is much lower than that
through rice consumption [9]. To reduce the health risks of heavy metals exposure through
local rice, consumption of commercial rice and dietary structure adjustment are needed for
local residents. Control of anthropogenic heavy metal emissions and soil remediation are
also needed to reduce heavy metal bioaccumulation in agricultural crops and associated
health risks in the local population.

4. Conclusions

Heavy metal contaminations in rice and vegetables surrounding a Pb/Zn smelter were
evaluated and the health risk assessments using THQ and HI through rice and vegetables
intake were conducted in this study. Heavy metals concentrations in locally cultivated rice
and leafy vegetables were significantly elevated than those in market rice and non-leafy
vegetables. The sources of rice were an important factor affecting the distribution of Zn
and Cd in human hair. Children and the elderly were more sensitive to environmental Cu,
Cd and Pb exposure. Hair Zn was mainly originated from dietary intake and was gender
related. Pb isotopic compositions in rice, vegetable and hair samples demonstrated that rice
consumption was the main source of Pb exposure in local residents. Locally cultivated rice
and leafy vegetables posed higher non-carcinogenic risks to the local residents than market
rice and non-leafy vegetables. Therefore, control of the emission of heavy metals from
the smelter and implementation of soil remediation in the surrounding area are urgently
needed. Furthermore, based on the results from this study, adjustment of crop planting
structures and daily dietary structures of local residents are needed to reduce heavy metal
exposure risks through local rice and leafy vegetable ingestion in this area.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijerph182312631/s1, Table S1: Parameters of intake rate (IR) of rice and vegetable and
body weight (BW) among different age groups; Table S2: correlation coefficients between heavy
metal concentrations in rice, vegetables and hair; Table S3: heavy metal concentrations in rice from
difference sites (mg/kg, DW); Table S4: Comparison of heavy metals concentrations in hair from
different living areas (mg/kg); Table S5: Pb isotopic compositions in rice, vegetables, human hair,
soil, coals and fuels; Table S6: THQ and HI values of heavy metals for local residents via rice or
vegetable consumption.
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