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During the last few years, interest has been growing to mechatronic and robotic

technologies utilized in wearable powered exoskeletons that assist standing and walking.

The available literature includes single-case reports, clinical studies conducted in small

groups of subjects, and several recent systematic reviews. These publications have

fulfilled promotional and marketing objectives but have not yet resulted in a fully

optimized, practical wearable exoskeleton. Here we evaluate the progress and future

directions in this field from a joint perspective of health professionals, manufacturers, and

consumers. We describe the taxonomy of existing technologies and highlight the main

improvements needed for the development and functional optimization of the practical

exoskeletons.
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HUMAN POSTURE AND WALKING, AND THEIR RESTORATION
TO THE DISABLED

Vertical posture and bipedal gait are two hallmarks of human biomechanics and motor physiology,
which emerged over the millions of years of evolution. While our body size and overall physical
performance are not particularly impressive compared to other animal species, having our hands
relieved from body support against gravity gives us a number of advantages, dexterity being one
of the most important ones. In addition to motor physiology, virtually any human physiological
function is adapted to the bipedal posture and walking, for example breathing, digestion, and
excretion (Uebelhart et al., 2000)1. Moreover, human bipedalism has had a great influence on our
daily social interactions and the manmade habitat.

While the surrounding objects and structure of the buildings all fit the needs of healthy humans,
the conditions are quite different for disabled, wheelchair bound people. No matter how many
facilities would be made in order to overcome their numberless structural barriers, new hurdles are
always to be expected. Wheelchair users will never be able to completely adapt to the habitat built
for the people who walk bipedally and stand upright. By contrast, the cartoon of a person in the
wheelchair is the worldwide used symbol for handicap.

1http://www.sci-info-pages.com/other_issues.html#Osteoporosis
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Although there is no cure for many lesions of the spinal cord
and the brain (Talley Watts et al., 2015)—the major causes of
paralysis—essential improvements can be made to the quality
of life of handicapped people using devices that assist vertical
stance and bipedal walking (Louie et al., 2015). These assistive
technologies are based on mechatronic, robotic, and bionic
exoskeletons (Chen et al., 2013). Such devices clearly represent
one of the most important developments in rehabilitation
of paralysis, even though they are currently not expected to
deliver a truly spectacular, translational progress. Rather, they
are considered as viable intermediary solutions, which bring us
closer to the long-awaited recovery of posture and gait to the
paralyzed patients. While much work is still needed to improve
these external aids, they already have shown effective daily use
capabilities.

ASSISTIVE TECHNOLOGIES:
MANUFACTURER AND CONSUMER
PERSPECTIVES

In the last decade and mostly in its second half, a series of
exoskeletons have been designed, built, clinically tested in small
groups of subjects, and reviewed in the literature2−9. These
previous publications have fulfilled the promotional and
marketing objectives of the manufacturers, and several
exoskeletons are currently commercially available. Yet, an
optimal, fully functional assistive device has not yet emerged
from this research and development10,11 (Chen et al., 2013;
Arazpour et al., 2015b; Lajeunesse et al., 2015; Louie et al.,
2015).

An optimal, practical exoskeleton should fulfill the following
requirements:

• The system should be safe.
• It should be effectively wearable11 in the common sense of the
term, mainly regarding don and doff issues. Additionally, it
should be psychologically acceptable in terms of self-esteem,
miniaturization, and esthetics. Ideally, the exo-suit should be
thin and wearable like clothes or underwear.

• The exoskeleton should be appropriate for long time
performance, including the performance in community (Louie
et al., 2015).

2http://www.cyberdyne.jp/company/download/20160212_financialresultssummary.

pdf
3http://www.digitaltrends.com/cool-tech/rewalk-6-0-exoskeleton/
4http://www.rexbionics.com/investors/
5http://www.engadget.com/2011/05/02/new-zealand-paralympian-buys-first-

rex-bionics-exoskeleton-take/
6http://www.fastcompany.com/1822791/eksos-exoskeletons-let-paraplegics-

walk-will-anyone-actually-wear-one
7http://world.honda.com/news/2015/p150721eng.html
8http://www.indego.com/indego/en/Product
9http://www.fastcodesign.com/3056049/a-budget-exoskeleton-allows-

parapalegics-to-walk-for-the-price-of-a-car7
10http://www.b-temia.com/category/press_releases/
11https://www.cadth.ca/sites/default/files/pdf/htis/july-2015/RA0784

%20Powered%20Wearable%20Walking%20Assistive%20Devices%20Final.

pdf

• It should produce very low, practically imperceptible noise
when functioning.

• The assistive device should be truly affordable and cost
effective.

We believe that achieving these requirements should be the main
goal of the field, so we focus on these practical, consumer-
oriented objectives in this article. We start with proposing a
taxonomy of exoskeletons. We then discuss the improvements
of these assistive devices that need to be achieved in near-term
and long-term. Our views reflect both the professional, multi-
disciplinary expertise of the authors and consumer perspective.
The first author (Figure 1) sees both sides of the coin:
he is an academic physician in Physical and Rehabilitation
Medicine (with special focus on Neurorehabilitation) and in
Gerontology and Geriatrics, and also a chronic, complete
paraplegic, dependent on the wheelchair.

Our multidisciplinary approach intends—without
underestimating the legitimate competition between different
technical solutions and producers—to foster the optimization of
assistive and rehabilitation devices, so that they could eventually
become suitable and available to as many people in need as
possible. Being one of the consumers too, the first author is
looking forward to welcome this long awaited accomplishment,
no matter which exoskeleton model meets the expectations
first.

MAIN INDICATIONS

The currently available wearable powered exoskeletons serve two
main functions. The first function is medical: providing assistive
and rehabilitation technology for disabled people12. The second
function is non-medical: augmenting normal human physical
capabilities.

As to the non-medical domain, we are covering it here
only briefly. Noteworthy, non-medical exoskeletons have indirect
linkages to medical issues, such as contributions to technology
development and prevention of occupational injuries. The
other uses encompass military devices for enhancement of
soldier speed, power, and interactions with the equipment13−15;
exoskeletons for people professionally involved in critical
rescue situations, such transportation of wounded individuals
to safety from the war or civil disaster areas13−16; civil
applications for lifting and carrying heavy objects and patients17;
and exoskeletons that augment human gait by assisting leg
muscles and supporting a comfortable orthostatic posture. The
target population for these applications includes the elderly
with weak legs, personnel engaged in long-distance walking
and/or performing flexion and extension movements with their
lower limbs, and people utilizing exoskeleton appliances for
entertainment18.

12http://www.keeogo.com/biomechatronics/
13http://bleex.me.berkeley.edu/research/exoskeleton/bleex/
14http://bleex.me.berkeley.edu/research/exoskeleton/exohiker/
15http://bleex.me.berkeley.edu/research/exoskeleton/hulc/
16http://www.b-temia.com/defense-security-soldier-protection/
17http://www.cyberdyne.jp/english/products/Lumbar_LaborSupport.html
18http://asimo.honda.com/innovations/feature/body-weight-support-assist/
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FIGURE 1 | The picture of the first author Prof. Dr. Gelu Onose in wheelchair visiting patients in the NeuroRehabilitation Clinic Division of the

‘Bagdasar-Arseni’ Teaching Emergency Hospital, Bucharest, Romania. Reproduced with permission of the TV producer, Romanian Television.

The medical domain includes wearable devices utilized for
prophylactic, rehabilitation, and assistance to disabled people.
Taxonomy of these devices reflects the needs of different types
of patients. A complete paraplegic would need a device that
performs a set of sophisticated tasks, and there is currently
no device with these capabilities. Such a device would require
no effort from the paralyzed patient, and would do almost
everything for the patient.

The device for a complete paraplegic would have to
ensure:

• Complete assistance to orthostatic posture and walking,
including the very difficult task of maintaining balance in
order to avoid falls with severe consequences (Kannape and
Lenggenhager, 2016).

• Prevention of spasticity and contractures (Arazpour et al.,
2013) and related articular stiffness and pain.

• Prevention of venous and lymphatic stasis in the lower limbs,
which could result in lower extremity edema and related
complications due to prolonged standing (Louie et al., 2015).

• Partial compensation of the body weight to avoid injuries, such
as fracture of the talus (Louie et al., 2015).

The complete paraplegia is classified by the scales of American
Spinal Injury Association (ASIA) and International Spinal Cord
Society (ISCoS) (“Standard Neurological Classification of Spinal
Cord Injury”19, Frankel et al., 1969). Mechatronic wearable
exoskeletons can be very useful as assistive devices in these cases
because in complete chronic lesions of the spinal cord, as a
rule, there are not enough remaining neural-muscular units to
be trained. The possibility that exoskeletons could be used for
rehabilitation in such cases, for example for rehabilitation of
muscle activity, is still unclear (Arazpour et al., 2015b). The use

19http://www.scribd.com/doc/37064936/2006-Classif-Worksheet

of exoskeletons still can induce neuroplasticity (Muresanu et al.,
2012; Bryce et al., 2015; Louie et al., 2015) that improved patient
interaction with the device20. Additionally, a supplementary
input from the patient’s collected and decoded cortical activity
might improve the man-machine interaction and the overall
functional outcome.

The indications are different for incomplete paraplegics
classified as AIS/ Frankel B-D, tetraplegics with low cervical
spinal cord lesions classified as AIS/ Frankel C, and for
hemiplegics and hemiparetics with fully preserved functionality
of the non-affected hemi-body and limbs, and no sensorial,
cognitive and balance serious impairments. The other
potential beneficiaries of such exoskeletons are patients with
neuromuscular and somatic impairments, including patients
with polyneuropathia in lower limbs (Zeilig et al., 2012), multiple
sclerosis, Parkinson’s disease, hip or knee osteoarthritis21, limb
fractures, and amputated limbs (Chen et al., 2013).

In hemiplegia cases, an H2 (Technaid S.L., Spain) robotic
exoskeleton is more appropriate for gait rehabilitation (Bortole
et al., 2015)—an exoskeleton based on two control strategies: (i)
adaptive trajectory control for guiding the patient’s limb within a
desired path, the strategy that facilitates patient interaction with
the device, and (ii) admittance control strategy that captures the
user’s movements during assistive training phase and reproduces
it during active training phase (Bortole et al., 2013). The main
feature of the wearable exoskeletons indicated to approach these
kinds of patients is usually not an assistive control of the trunk.
An essential feature of using such devices is training induced
rehabilitation, where the exercise outcomes are compared to the
time spent exercising (Louie et al., 2015).

20http://who.int/disabilities/policies/actionplan/disability_action_plan_en.docx
21http://www.keeogo.com/keeogo-in-action/
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The choice of the exoskeleton system and training regime
critically depend on the extent of neurological impairment, the
affected neural site (central, peripheral, or both), and the state
of muscles (which can change with training). Additionally, it
is important to take into account and correct by training such
conditions as pain, contracture, osteoporosis, bed sores, and
edema (Arazpour et al., 2013).

In the disabled elderly, the degree and characteristics of
multimorbidity should be considered (Salive, 2013), particularly
balance disorders, cardio-respiratory impairments, and para-
physiological sarcopenia (Morley, 2012). The assistive and
rehabilitation devices should be adjusted to these conditions.
For instance, if an older adult has preserved, although altered,
ability to stand-up and walk, extended trunk stabilization
may not be needed. However, if the senior beneficiary has
marked sensory and/or balance impairment, a maximally
assistive devices might be more appropriate, in order to avoid
frequent falls in the older population22. The frequency of
falls is variable (6–34%) in different countries and regions:
(Kalache et al., 2007). Falls represent some of the most
serious negative events with considerable pathological
consequences, including disabilities and life threatening
conditions. Such negative events result in economic burden
for the patients, their families, and the society22 (Kalache
et al., 2007). These considerations will become progressively
more important in the future, as the global process of
demographic ageing intensifiers22 (Kalache et al., 2007; Chen
et al., 2013).

CURRENT TECHNOLOGIES

Currently popular wearable powered exoskeletons include
Isocentric Reciprocating Gait Orthosis (IRGO), Hybrid Assistive
Leg/Limb (HAL), ReWalk, Ekso, Mina, Wearable Power-Assist
Locomotor (WPAL), Rex, Indego, Keeogo, Kickstart, Stride
Management Assist, and ExoAtlet23. These devices have been
recently reviewed11 (Arazpour et al., 2013, 2015a,b; Chen et al.,
2013; Lajeunesse et al., 2015; Louie et al., 2015). These review
articles documented the following characteristics of the existing
systems:

• Benefits, including compared to the robotic exoskeletons fixed
to treadmills (Chen et al., 2013; Louie et al., 2015).

• Safety (Lajeunesse et al., 2015).
• Efficacy in restoring walking11 (Louie et al., 2015), including
the performense in community settings (Lajeunesse et al.,
2015).

• Clinical effectiveness outcomes, imcluding such parameters as
stair climbing performance, speed, mobility, quaility of life,
and independence11 (Chen et al., 2013; Lajeunesse et al., 2015;
Louie et al., 2015; Arazpour et al., 2015a,b; Lajeunesse et al.,
2015).

• Walking distance (Benson et al., 2016).
• Vertical ground reaction force (vGRF) that quantifies
the pattern and magnitude of mechanical loading

22http://www.cdc.gov/Features/OlderAmericans/
23http://www.exoatlet.com/

(Fineberg et al., 2013). This characteristic is particularly
important for exoskeletons used by completely paralyzed
persons.

• Training protocols (Lajeunesse et al., 2015; Louie et al., 2015).
• User satisfaction and secondary benefits and skills achieved
with the exoskeleton (Lajeunesse et al., 2015).

• Level of scientific evidence (Lajeunesse et al., 2015).
• Cost-effectiveness outcomes11.

Overall, the current literature reports both successes of
exoskeleton technology and remaining problems. One important
achievement is that wearable exoskeletons enable patients with
complete paralysis of the lower part of the body to stand and
walk. The speed of walking is modest; it varies with the level of
injury and training duration (Louie et al., 2015). In addition to
paraplegics, wearable exoskeletons can be used by patients with
post-stroke hemiparesis (Bortole et al., 2015), as well as non-
stroke neurological pathologies24 (Esquenazi et al., 2012), such
as cerebral palsy, myelome-ningocele, traumatic brain injury and
Guillain Barré syndrome (Zeilig et al., 2012).

Wearable exoskeletons have advantages compared to Hip-
Knee-Ankle-Foot-Orthoses (KHAFO). For example, powered
gait orthosis (PGO) and the IRGO outperform HKAFO,
as evident from the improvements in physiological cost
index (PCI), distance walked, and walking speed (Arazpour
et al., 2013). Additionally, wearable exoskeletons have
certain advantages compared to the treadmill-based ones.
With wearable exoskeletons, patients get much greater
autonomy. The autonomy in turn facilitates rehabilitative
training because the device can be used at home in addition
to specialized facilities (Chen et al., 2013; Louie et al.,
2015). Yet, autonomous use of wearable exoskeletons in
community settings still has to be demonstrated (Lajeunesse
et al., 2015). Overall, there is still a discrepancy between
the consumer high expectations of autonomy and versatility
and the actual effectiveness of using wearable exoskeletons
(Benson et al., 2016).

A critical analysis of the assessments of exoskeletons as
health technology11 indicates the need for more research,
particularly regarding long-term performance (Lajeunesse et al.,
2015), assessment of training (Louie et al., 2015), randomized
controlled trials, and economic analysis11. Overall, the level of
scientific evidence remains low in clinical trials of exoskeletons
(Lajeunesse et al., 2015). Prevention and detection of medical
complications in the exoskeleton users is yet another area that
needs more research (Benson et al., 2016). A unified framework
is needed for assessment of exoskeleton performance (Bryce
et al., 2015). Such a framework is needed to make different
clinical trials comparable. The framework should include at
least six modules: functional applications, personal factors,
device factors, external factors, activities, and health outcomes
(Bryce et al., 2015).

Current exoskeletons (Figure 2) provide several secondary
skills and benefits (Lajeunesse et al., 2015). Exoskeleton with
compact design and small backpacks are particularly useful

24http://www.parker.com/literature/Exoskeleton/Parker%20Indego%20Brochure.

pdf
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FIGURE 2 | Images of several types of exoskeletons. (A) Mindwalker mind-controlled exoskeleton could help the disabled walk again. With courtesy from

Professor van der Kooij at University of Twente, NL. (B) The KeeogoTM exoskeleton from B- TEMIA reveals the latest in an increase of the human systems (human

augmentation systems) designed to help people walk more and better. KeeogoTM eliminates several problems in patients with Parkinson’s disease. With courtesy

from Danielle Beaudoin at b-termia.com. (C,D) The ExoAtlet is a powered exoskeleton designed to assist patients during their rehabilitation after stroke, injury, or

unsuccessful operation. ExoAtlet automatically repeats the natural patterns of walking, has electrical stimulation system, and physiological sensors. The control

system of the ExoAtlet is unique: it collects data from body angles, allows to set the height and length of the step, which provides: (i) standing still; (ii) classic walking;

(iii) walking on angled surface; (iv) stepping over obstacles; and (v) comfortable walking up & down stairs. ExoAtlet can be used in rehabilitation centers and at

home24. ExoAtlet can be controlled with the app on tablet when used in clinics. Experienced user of ExoAtlet use “thinking” crutch for control. With courtesy from

Ekaterina Bereziy at exoatlet.ru.

in this respect (Chen et al., 2013) because they allow don,
doff and wearing an exoskeleton while sitting in a wheelchair.
These operations are possible using electrically actuated ReWalk
and ExoAtlet, hydraulically actuated Ekso, and Indego, which
combines electriaclly actuated hip and knee joints for both
legs (Chen et al., 2013) with functional electrical stimulation
(FES) of paralyzed, yet responsive muscles23 (Chen et al., 2013).
This combination of the exoskeleton action with FES training
improves rehabilitation results.

FUTURE DIRECTIONS

Notwithstanding significant technological advancements in
the field, the current exoskeleton systems still need much
improvement for them to become practically efficient. The areas
that need improvement remain almost the same as about one
decade ago. Accordingly, our assessment made 8 years ago

(Onose et al., 2008) remains of current interest: exoskeletons
need further miniaturization, optimization of actuators and
sensors. Ideally, exoskeletons should become robotic orthotic
suits wearable beneath the clothes.

In our perspectives from 2007 to 2008 (Figures 3, 5, 6), we
conceived a soft cable-driven exo-suit device that can apply forces
to the body to assist walking. Unlike traditional exoskeletons
which contain rigid framing elements, the soft exosuit is worn
like clothing and uses geared motors to pull on Bowden
cables connected to the suit near the ankle (Asbeck et al.,
2013).

Some of the authors of this article have been involved in
extensive scientific research on this topic for almost 15 years
(Onose et al., 2008, 2012a), and were awarded with the Gold
Medal at the Inventions Saloon, in Genève, Switzerland, in 2008
(Figure 4).

We have not finished all the necessary tests and improvements
of our prototype (Figure 5). Because of this delay, several
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mechatronic wearable powered exoskeletons are in overall
more advanced stage of development, including the clinical
trials.

We re-emphasize ichnographically two important
requirements to exoskeletons: (i) prevention of venous-
lymphatic stasis in the lower limbs, and (ii) skin protection at the
interface with the rigid structure of the exoskeleton.

Both issues can cause serious hurdles, especially during
the long-time wearing of the assistive devices. Regarding the
former issue, because of an impaired venous-lymphatic outflow
in paralyzed persons (as well as patients with cardiovascular
problems) (Guyton and Hall, 2006), regaining vertical posture
with the aid of a wearable exoskeleton provokes regional
stasis. This may cause discomfort and edema, including
the risk of venous thrombosis, associated trophic somatic

FIGURE 3 | Concept design of a cross section through lower

limb(s)’module of the MOD. 1, Bony area; 2, Muscle area; 3, Skin and

sucutaneous soft tissues; 4, Textile material for contact with the skin; 5, Pulsed

air flow textile structure; 6, (Eeach) exoskeleton’s external part, made of

composite material; 7, Metallic insertion; 8, Tubular seating for pull and

respectively, electric cables; 9, Fasten system. Reproduced with permission

from the publisher (Onose et al., 2012a, pp. 1–99).

lesions, and secondary reactive heart conditions. As for the
latter, an improper interface between the exoskeleton and
the limb can result in mechanically generated lesions of
the heel, respectively of the skin and subjacent soft tissue,
which thus need for protection at the interface with the rigid
structure of such devices (compressive, friction and tensile
forces), as determined through performance metrics (van
der Kooij et al., 2006). Therefore, we have conceived—
for counteracting these problems—two components of
our MOD.

Furthermore, regarding the underwear exoskeleton,
we consider it ambitious and difficult, but worth trying
developmental direction. Such an underwear exoskeleton
would require a soft supporting structure actuated by
strengthening/relaxing device. Specifically, we have foreseen,
since 2006–2007 (Onose, 2007) the usage of electro-active
polymers (EAPs). EAP materials seem to be the most applicable
because of their large actuation forces and highest robustness
(Bar-Cohen, 2005). These materials could be improved to act as
artificial muscles (Bar-Cohen, 2005; Mirfakhrai et al., 2007).

The development of such a device would be a revolutionary
breakthrough, since the soft support structure in cadence with
the artificial muscle contraction could not only move the lower
limbs but also apply thrusts to the user’s calf and thighs, thus
mimicking a “muscle pump” and compensating for the returning,
venous-lymphatic circulation (Onose, 2007; Onose et al., 2012a).
However, during the last decade not enough progress has
been made in the development and subsequent translational
implementation of EAPs. We still need to improve the safety,
controllability and energy supply for EAPs25.

Another extremely challenging and still incompletely solved
item, as mentioned above, is the problem of balance maintenance
using advanced mechatronic wearable exoskeletons. Reliable
balance is needed for prevention of falls during exoskeleton
usage.

At least regarding the most difficult and demanding—in
need for total assistance from the apparatus—but, at the
same time, an essential category of potential beneficiaries, the
complete paraplegics, all current devices require supplementary
aids for securing the balance: walkers, crutches or—at

25http://sbdi.co.kr/cart/data/info/IDTechEx_Electroactive_Polymers_and_Devices

_2013-2018_Sample.pdf?ckattempt=1

FIGURE 4 | Mechatronic Orthotic Device (MOD) Left: some relevant images of exoskeletons. Right: Award Diploma by the Geneva International Inventions

Fair. Reproduced with permission from the publisher (Onose et al., 2012a, pp. 1–99).
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FIGURE 5 | General concept design of the MOD. 1, Back segment; 2,

Chest belt; 3, Pelvis segment; 4, Pelvis belt; 5, Programs command box; 6,

Thigh segment; 7, Hip actuator; 8, Knee actuator; 9, Ankle segment; 10, Foot

actuator; 11, Foot segment; 12, Connections box; 13, Pneumatic connect

fitting; 14, Bottom holder; 15, Drawer panty hose; 16, Pulsed air flow textile

structure; 17, Attachment belt; R, Angular transducers (B, lumbar sacral; S,

hip; G, knee; M, ankle); P, Pressure sensor; T, Temperature sensor; U,

Humidity sensor; A, Compressed air pressure sensor. Reproduced with

permission from the publisher (Onose et al., 2012a, pp. 1–99).

best—canes. In sum, the powered exoskeletons that assist
over-ground walking require the user to maintain balance
(Swinnen et al., 2014; Yoshimoto et al., 2015; Louie and Eng,
2016).

As an illustration of the current state of this problem, it
is worth mentioning a study that reported loss of balance
(LOB) and falls as the primary safety outcomes (Kolakowsky-
Hayner et al., 2013). Additionally, the EU FP7 “BALANCE”
project (Veneman, 2014) made an observation that “none
of the devices available on the market use the exoskeleton
itself to support postural balance.” Therefore, the goal of
the BALANCE project is to research the possibility of
using the exoskeleton to maintain balance and prevent falls.
The project is organized as a 4 year Specific Targeted
Research Project (STREP)26 and has the practical objectives to
“create a human-cooperative robotic postural balance controller
framework,” in order to “implement the human-cooperative
postural balance controller on a real exoskeleton” and to

26http://balance-fp7.eu/project_structure.php

FIGURE 6 | MOD: plantar skin protection and pulsed air flow to mimic

the “muscles’ pump”—thus compensating the returning,

venous-lymphatic circulation, in the lower limbs—concepts.

Reproduced with permission from the publisher (Onose et al., 2012a,

pp. 1–99).

“evaluate the developed concepts in subjects walking with the
exoskeleton.”27

Lastly, one more direction to improve the performances
of a mechatronic wearable exoskeleton, is to empower it
with brain’s voluntary motor commands using a brain-
machine-interface (BMI) (Onose et al., 2012b; Lebedev, 2014).
The feasibility of such a BMI has been demonstrated in
an experiment conducted in rhesus monkeys (Fitzsimmons
et al., 2009). In this study, monkeys were implanted with
invasive multielectrode arrays in the leg representation of the
sensorimotor cortex. The animals were trained to walk bipedally
on a treadmill. Activity of several hundred cortical neurons
was recorded and converted into the kinematics of lower limb
movements. This BMI was able to extract lower limb kinematics
when monkeys walked both forward and backward on the
treadmill.

These results justified the foundation of the Walk Again
Project with the goal of the advancement of BMI-controlled
exoskeletons (Nicolelis and Lebedev, 2009). An European
project, called Mindwalker (Figure 2A), declared the goal of
controlling an exoskeleton with electroencephalographic (EEG)
and electromyographis (EMG) recordings (Cheron et al., 2012).
Decoding of leg movements from EEGs have been demonstrated
in humans walking on a treadmill (Presacco et al., 2012).
Moreover, a BMI that decoded steady-state visual evoked
potentials (SSVEP) from EEGs was employed to operate a
lower-limb exoskeleton by healthy human subjects (Kwak et al.,
2015).

The progress in BMIs for bipedal walking opens the
perspective of neural control of exoskeleton-assisted walking by
a completely paralyzed subject. While a slow control of walking
could be provided by EEG-based BMIs, invasive BMIs hold
promise to enable faster and more accurate control. However,
invasive recordings are risky, so there have been no studies
of invasive BMIs for walking control in humans. Additionally,
it is unclear whether patients could become proficient enough
to efficiently control an exoskeleton through an invasive or
noinvasive BMI (Onose et al., 2012b). In this respect, we are
satisfied of having deployed a clinical trial in the motor imagery
BMI domain, by enrolling nine chronic tetraplegics volunteers
(the largest lot for such type of trial, at that time), to control

27http://balance-fp7.eu/objectives.php
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wirelessly a robotic arm by EEG commands (Onose et al.,
2012b).

We have foreseen also the possibility of empowering MOD’s
actuating systems by voluntary commands extracted from
EEGs (Onose et al., 2008). From this point of view, we have
expressed our confidence in the success of the Walk Again28 and
Mindwalker projects29 (Figure 2).

CONCLUSION

We suggest that the joint perspective of health professionals,
manufacturers and consumers on the mechatronic wearable
exoskeletons should contribute to a comprehensive agenda
regarding the development of devices that assist and rehabilitate
bipedal posture and walking to severely impaired people. The
technological advances, together with collaborative endeavors of
multidisciplinary teams of researchers, could foster the progress
and pave the way to the long awaited optimized and practical
exoskeleton.

28http://virtualreality.duke.edu/project/walk-again-project/
29https://www.utwente.nl/ctw/bw/research/projects/MINDWALKER/
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