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Abstract
Targeted therapy aiming at the metastatic signal pathway, such as that triggered by 
receptor tyrosine kinase (RTK), for the prevention of tumor progression is promising. 
However, RTK-based targeted therapy frequently suffered from drug resistance due to the 
co-expression of multiple growth factor receptors that may raise compensatory secondary 
signaling and acquired mutations after treatment. One alternative strategy is to manipulate 
the common negative regulators of the RTK signaling. Among them, Raf kinase inhibitory 
protein (RKIP) is highlighted and focused on this review. RKIP can associate with Raf-1, 
thus suppressing the downstream mitogen-activated protein kinase (MAPK) cascade. RKIP 
also negatively regulates other metastatic signal molecules including NF-κB, STAT3, and 
NOTCH1. In general, RKIP achieves this task via associating and blocking the activity 
of the critical molecules on upstream of the aforementioned pathways. One novel 
RKIP-related signaling involves reactive oxygen species (ROS). In our recent report, we 
found that PKCδ-mediated ROS generation may interfere with the association of RKIP 
with heat shock protein 60 (HSP60)/MAPK complex via oxidation of HSP60 triggered 
by the tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate. The departure of RKIP 
may impact the downstream MAPK in two aspects. One is to trigger the Mt→cytosol 
translocation of HSP60 coupled with MAPKs. The other is to change the conformation of 
HSP60, favoring more efficient activation of the associated MAPK by upstream kinases in 
cytosol. It is worthy of investigating whether various RTKs capable of generating ROS can 
drive metastatic signaling via affecting RKIP in the same manner.
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inhibitory protein, Reactive oxygen species

growth factor receptor-alpha [10,11] were frequently 
found to be overexpressed or mutated that activate various 
signaling cascades such as mitogen-activated protein 
kinase (MAPK) [4,12-15], NF-κB [16], AKT [17,18], 
STAT3 [19,20], NOTCH1 [21], and G protein-coupled receptor 
kinase 2 [22] leading to tumor progression. In the past decades, 
targeted therapy aiming at RTK and its downstream pathway 
for the prevention of tumor progression has been intensively 
studied. One unresolved issue for RTK signaling-based targeted 
therapy is drug resistance [7,23-26] due to the co-expression 
of multiple growth factors that may raise compensatory 

Introduction

T he poor prognosis of tumor is due to the high recurrence 
rate caused by metastasis after surgical removal. 

Metastasis is a complicated pathological process begining 
with epithelial-mesenchymal transition (EMT) of the primary 
tumor cells which then migrate and invade into surrounding 
tissue followed by entering into (intravasate) and moving 
out (extravasate) blood circulation and finally proliferating 
in the secondary loci. The tumor microenvironment contains 
a lot of growth factors and cytokine such as hepatocyte 
growth factor (HGF) [1] and transforming growth factor 
β (TGFβ) [2] collectively called metastatic factors, capable 
of triggering tumor progression via a lot of molecular 
pathways [3-5]. Moreover, deregulation of the receptors of 
these metastatic factors was closely associated with tumor 
progression. Among them, receptor tyrosine kinase (RTK) 
including c-Met [6-8], EGFR [7,9] and platelet-derived 
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secondary signaling after treatment with specific tyrosine 
kinase inhibitors (TKIs) [27]. For example, EGFR and HER3 
overexpression might be responsible for acquired resistance to 
a specific inhibitor of HER2, trastuzumab [28]. In addition, 
c-Met amplification leads to gefitinib resistance in lung cancer 
by activating ERBB3 signaling [29]. In addition, resistance 
to TKIs was frequently observed due to acquired mutation 
of RTKs after long-term treatment. For example, a secondary 
EGFRT790M mutation was responsible for clinically acquired 
resistance to the first- and second-generation EGFR-TKIs 
drugs such as gefitinib, erlotinib, and afatinib [30]. In addition, 
a secondary mutation in the activation loop (Y1230) of MET, 
the receptor of HGF, can contribute to acquired resistance to 
MET inhibitors PHA-665752 and PF-2341066 [31]. Therefore, 
an alternative cancer-targeted therapy that effectively blocks 
signaling from multiple RTKs without resistance needs to 
be developed. One promising strategy is to manipulate the 
common negative regulators of the RTK signaling. Especially, 
tumor metastasis suppressors, which directly interact with 
various critical signaling molecules downstream of RTKs, 
can be employed as more efficient antagonists of metastatic 
signaling. Among them, Raf kinase inhibitory protein (RKIP) 
is highlighted [32-34] and will be focused on this review.

The negative regulatory role Raf kinase 
inhibitory protein in preventing tumor 
metastasis

RKIP was initially identified to be a cytosolic 
protein isolated from the bovine brain and called 
phosphatidylethanolamine-binding protein 1 (PEBP1) 
ascribed to its phospholipid-binding potential [35]. However, 
in 2000, PEBP1 was found to suppress the Raf1-MAPK 
pathway [36-38] and was renamed as RKIP. This further 
triggered numerous studies extending RKIP’s negatively 
regulatory function to other signaling cascades downstream 
of various cell surface receptors including RTKs (see below 
section). Meanwhile, RKIP was found to be a critical player 
regulating a lot of pathophysiological systems including tumor 
progression. In the past decades, RKIP was emerging to be 
a negative regulator in metastasis of a lot of tumors such as 
lung cancer (for review, lung cancer [32]); hepatocellular 
carcinoma (HCC) [39], gastric cancer [40,41], colon 
cancer [42], and breast cancer [43]. Reduced expression of 
RKIP was found to be associated with malignancy and poor 
prognosis in several tumor types (for review [44]) such as 
breast cancer [34], prostate cancer [45], colorectal cancer [46], 
HCC [47], melanoma [48], gastric cancer [49], pancreatic 
ductal adenocarcinoma [50], thyroid carcinomas [51], 
esophageal cancer [52], and acute myeloid leukemia [53]. 
Furthermore, downregulation of RKIP was responsible for 
sorafenib resistance via reactivation of the Raf/MEK/ERK 
pathway in HCC cell lines [54]. Moreover, downregulation 
of RKIP in the advanced stages of gastric cancer facilitated 
the development of gastric cancer stem cells with increased 
expression of CD44 and peroxiredoxin 2, two of the cancer 
stem cell markers [55]. On the other hand, RKIP overexpression 
can reverse tumor chemo/immune/radi-resistance and support 
anticancer host immunosurveillance [56]. Furthermore, 

ectopic RKIP expression or upregulation of RKIP by chemo/
immune-modulatory agents increased tumor chemo- and 
radiosensitivity by suppressing PI3K activation [54,57].

The mechanism for raf kinase inhibitory 
protein to suppress tumor progression: 
Regulation on metastatic signaling

As mentioned above, RKIP exerts its suppressive effect on 
tumor metastasis via its impact on critical signal molecules. In 
addition to the Raf-MAPK cascade, RKIP negatively regulates 
a lot of other signal molecules involved in tumor progression 
including NF-κB [58,59], STAT3 [60], NOTCH1 [61], and G 
protein-coupled receptor kinase 2 (GRK2) [62,63]. On the other 
hand, RKIP can sustain the expression of GSK3, a suppressor 
of multiple oncogenic pathways including Wnt [64]. The 
inhibitory effect of RKIP on the aforementioned metastatic 
pathways can impact the expression and/or activation of a lot 
of downstream transcription and posttranscription machineries. 
For example, RKIP may indirectly regulate Snail [65,66] and 
Yin Yang 1 [67,68], a well-known metastatic transcriptional 
factor, via NF-κB inhibition. Moreover, RKIP may inhibit 
local breast cancer invasion by antagonizing the transcriptional 
activation of MMP-13, mediated by the ERK2 signaling 
pathway [69].

The underlying mechanisms for RKIP to suppress cancer 
signaling are diverse and complicated. In general, RKIP 
achieves this task via blockade of the activity of the critical 
molecules on upstream of the aforementioned metastatic 
signaling cascades. As its name suggested, RKIP was initially 
found to compete with MEK for association with Raf-1, 
thus interrupting MEK phosphorylation and suppressing 
downstream MAPK. Further studies demonstrated that RKIP 
inhibits the activity of NF-κB via interaction with IkappaB 
kinase (IKK) complex, IKKα and IKKβ, or with upstream 
IKK activators, including TGFβ-activated kinase 1 (TAK1) 
and NF-κB-inducing kinase (NIK) [58]. In addition, RKIP 
was found to associate with melanoma differentiation 
antigen-9/syntenin, which disturbs the assembly of stable 
c-Src/focal adhesion kinase (FAK) signaling complexes, 
required for the activation of NF-κB and melanoma 
progression. RKIP can also block the activation of STAT3 by 
suppressing its interaction with upstream kinases including 
cellular Src (c-Src), interleukin 6 (IL-6), Janus kinase 
1/2 (JAK1/2), and Raf [60]. In addition, RKIP directly 
interacts with the full length of NOTCH1, preventing its 
proteolytic cleavage and NICD release and decreasing 
mesenchymal markers such as N-cadherin and Snail in 
H1299 cells [61].

Involvement of reactive oxygen species in 
raf kinase inhibitory protein regulated 
signaling

One potential mechanism for RKIP to regulate downstream 
signaling involves the reactive oxygen species (ROS). Initially, 
ROS was well known to be a defending molecule against 
pathogenic microorganisms. Later, it was found to be essential 
for mediating major signal pathways to trigger a lot of 



Hu, et al. / Tzu Chi Medical Journal 2021; 33(4): 332‑338

334 

pathophysiological processes including tumor progression (for 
review: [70-72]). Conventionally, ROS was known to enhance 
signal transduction via oxidative activation of a signal 
kinase or inactivation of negative regulatory molecules (for 
reviews, [73,74]). For example, oxidative activation of 
c-Src may lead to anoikis resistance by activating the PI3K/
PKBα and ERK to trigger pro-survival pathways [75]. On 
the other hand, oxidative inactivation of negative signaling 
regulators such as protein tyrosine phosphatases (PTPs) 
and phosphatase and tensin homolog (PTEN) can indirectly 
elevate PI3K-AKT and MAPK signaling [74,76]. In addition, 
oxidation of a scavenger enzyme thioredoxin may disrupt its 
interaction with apoptosis signaling kinase 1 which is then 
activated, serving as the upstream kinases in the MAPK 
cascade [77]. Moreover, ROS generation can be induced by 
a lot of growth factors and cytokines including HGF [78,79], 
EGF [80,81], PDGF [82,83], TGFβ [84-86], and integrin 
engagement [87-89] for activation of similar downstream 
signalings including MAPK, PI3K-AKT, and NF-κB to 
trigger EMT, migration, invasion, and tumor progression (for 
review, [90]). It is worthy of noting that the signal pathways 
activated by ROS happen to be the same as those suppressed 
by RKIP described above. Interestingly, several reports 
described the negative relationship of RKIP with ROS status 
in several contexts. For example, in acute liver injury, reduced 
RKIP expression significantly enhanced the levels of ROS and 
the pro-inflammatory factors such as tumor necrosis factor-α 
as well as IL-6 [91]. On the other hand, RKIP together 
with the epithelial markers E-cadherin and ZO-1 can be 
downregulated by ROS leading to injury on proximal tubular 
epithelial cells [92]. However, the underlying mechanism for 
the negative correlation of RKIP with ROS is still obscure. 
One potential molecule involved in the negative regulation 
of ROS generation by RKIP is mitochondrial Mn-dependent 
superoxide dismutase (MnSOD also called SOD2) which 
is responsible for the conversion of O2

− to H2O2 in the 
mitochondria. MnSOD and the mitochondria H2O2 produced 
by it play critical roles in triggering cancer progression within 
the tumor microenvironment. For example, IL-6, an essential 
growth factor for multiple myeloma cells, induces myeloma 
therapy resistance via NF-κB-dependent MnSOD expression 
and mtROS production [93]. Furthermore, ROS-p38MAPK/
Akt signaling mediated the upregulation of MnSOD expression 
induced by heat shock [94]. Interestingly, MnSOD was found 
to negatively correlate with RKIP in renal cell carcinoma [95]. 
Since it was implicated that RKIP negatively regulates ROS 
generations as described above [91], RKIP may downregulate 
MnSOD via suppressing the ROS-MAPK signaling. On the 
other hand, previous studies also suggested that ROS can 
downregulate RKIP gene expression for triggering tumor 
progression. For example, RKIP can be decreased by a lot of 
transcriptional factors such as Snail and SP1 [96], well known 
to be induced by ROS signaling triggered by a lot of metastatic 
factors [71,87,89]. Taken together, the negative relationship 
between RKIP and ROS signal transduction is promising.

Potential mechanisms for raf kinase 
inhibitory protein to release raf kinase 
inhibitory protein from oncogenic 
signaling

Recently, we found that ROS may disturb the association 
of RKIP with an important ROS signal target, heat shock 
protein 60 (HSP60), which is one of the chaperones 
in mitochondria (Mt), which is mediated by PKCδ in 
HCCs (HepG2 and HCC340) and stimulated with the tumor 
promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA) [97]. 
In the resting state, RKIP was closely associated with 
HSP60-MAPK complex in both Mt and cytosol. Treatment of 
TPA can release RKIP upon oxidation of HSP60, leading to 
enhanced activation of MAPK in HCCs. The departure of RKIP 
from oxidized HSP60 may impact the downstream MAPK in 
two aspects. One is to trigger the Mt → cytosol translocation 
of HSP60 coupled with MAPKs, which may be easier to be 
activated by upstream kinases in the cytosol. The other is to 
change the conformation of HSP60 favoring more efficient 
activation of the associated MAPK [97]. Based on this finding, 
it is worthy of investigating whether the aforementioned 
metastatic factors capable of generating ROS, including HGF, 
EGF, PDGF, and TGFβ, can drive metastatic signaling via 
reversing the suppressive effect of RKIP in the same manner. 
Among them, we have found that HGF triggered-ROS 
signaling can oxidize HSP60 for activating ERK (MAPK) 
required for HCC progression [78]. Therefore, it is tempting 
to investigate whether HGF and the other metastatic factors 
may trigger ROS-dependent MAPK activation via oxidation of 
HSP60 and release of RKIP from HSP60/MAPK complex as 
that observed in HCC stimulated by TPA [96] [Figure 1].

Potential raf kinase inhibitory protein 
target signal molecules involved in 
regulation of raf kinase inhibitory 
protein

Since a lot of ROS-mediated signal pathways including 
PI3K-AKT, NF-κB, STATs, and Notch can also be negatively 
regulated by RKIP as described above, it is very probable 
that the ROS-generating metastatic factors may trigger 
the dissociation of RKIP from the redox-sensitive targets 
for activation of the downstream signaling, just like the 
dissociation of RKIP from HSP60 for activating MAPK 
pathway. For example, TGF-β was known to trigger oxidative 
activation of Src to activate FAK and downstream AKT 
and MAPK signaling [74], whereas RKIP can interact with 
c-Src to block the activation of STAT3 [60]. In addition, 
ROS can activate NF-κB signaling and induce EMT-related 
morphological changes via promoting IKK-mediated 
degradation of IκB and induce the nuclear translocation of 
NF-κB [74], whereas RKIP was known to inhibit the NF-κB 
activity via interaction with IKK, TAK, and NIK complex 
as described above[58]. Thus, it is tempting to investigate 
whether ROS signaling induced by the relevant metastatic 
factors can trigger the dissociation of RKIP from critical 
molecules such as c-Src, IKK, and Notch to activate STAT3, 
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NF-κB, and Notch signaling, respectively, leading to tumor 
progression [Figure 2].

Conclusion and perspective
RKIP was well established to be a negative regulator of tumor 

metastasis via its impact on critical signal cascade downstream 
of oncogenic receptors such as RTKs by binding to the signal 
module on upstream of RTKs. Since we found that RKIP can be 
released upon oxidation of HSP60 resulted from TPA-triggered 
PKC activation and ROS generation [Figure 1], it is worthy of 
investigating whether various factors capable of generating ROS 
can drive various oncogenic signaling via affecting RKIP in the 
same manner [Figure 2].
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