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Introduction: Alzheimer’s disease (AD) is the most common form of dementia

worldwide. The biological mechanisms underlying the pathogenesis of AD

aren’t completely clear. Studies have shown that the gut microbiota could be

associated with AD pathogenesis; however, the pathways involved still need

to be investigated.

Aims: To explore the possible pathways of the involvement of gut microbiota

in AD pathogenesis through metabolites and to identify new AD biomarkers.

Methods: Seven-month-old APP/PS1 mice were used as AD models. The

Morris water maze test was used to examine learning and memory

ability. 16S rRNA gene sequencing and widely targeted metabolomics

were used to identify the gut microbiota composition and fecal metabolic

profile, respectively, followed by a combined analysis of microbiomics

and metabolomics.

Results: Impaired learning abilities were observed in APP/PS1 mice.

Statistically significant changes in the gut microbiota were detected,

including a reduction in β-diversity, a higher ratio of Firmicutes/Bacteroidota,

and multiple differential bacteria. Statistically significant changes in fecal

metabolism were also detected, with 40 differential fecal metabolites

and perturbations in the pyrimidine metabolism. Approximately 40% of

the differential fecal metabolites were markedly associated with the gut

microbiota, and the top two bacteria associated with the most differential

metabolites were Bacillus firmus and Rikenella. Deoxycytidine, which causes

changes in the pyrimidine metabolic pathway, was significantly correlated

with Clostridium sp. Culture-27.
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Conclusions: Gut microbiota may be involved in the pathological processes

associated with cognitive impairment in AD by dysregulating pyrimidine

metabolism. B. firmus, Rikenella, Clostridium sp. Culture-27, and deoxyuridine

may be important biological markers for AD. Our findings provide new insights

into the host-microbe crosstalk in AD pathology and contribute to the

discovery of diagnostic markers and therapeutic targets for AD.

KEYWORDS

Alzheimer’s disease, cognitive impairment, gut microbiota, fecal metabolism,
16S rRNA gene sequencing, widely targeted metabolomics, correlation analysis,
pyrimidine metabolism

Introduction

Alzheimer’s disease (AD) is the most common
neurodegenerative illness in the world, causing cognitive
impairment and posing a huge social burden (Elahi and
Miller, 2017). There is currently no effective treatment
for this condition. Accumulation of β-amyloid plaques
and hyperphosphorylation of tau protein in the brain
are considered two typical neuropathological hallmarks
of AD. However, drugs targeting β-amyloid have failed
to show clinical benefits (Vaz and Silvestre, 2020),
suggesting that multiple factors are involved in disease
onset and progression.

Recent studies have shown that gut bacteria also
participate in AD pathogenesis. Researchers have observed
gut bacterial alterations in both AD mice and human
patients. In APP/PS1 mice, gut bacterial dysbiosis precedes
cerebral amyloidosis (Chen et al., 2020). Furthermore,
AD-like pathogenesis in APP/PS1 mice can be alleviated
by fecal transplantation (Sun et al., 2019), and altering
the gut microbiota could provide benefits for patients
with AD (Wu L. et al., 2021). These findings imply that
gut microbiota alterations may be independent of other
known AD biomarkers.

Microorganisms affect the host mainly through
their metabolites (Saji et al., 2019). Evidence suggests
that small molecule metabolites play an important
role in AD development, including microbiome-related
metabolites (Ticinesi et al., 2019). Metabolomics provides
an excellent tool to investigate the interplay of the host-
gut microbiota, and the fecal metabolome is certainly
a valuable source for understanding how microbiome-
related metabolites are involved in the disease. Widely
targeted metabolomics technology offers the advantages
of breadth, precision, and high-throughput characteristics,
enabling rapid and accurate detection of a wider range
of metabolites (Tian et al., 2020), and contributes to the
discovery of a new metabolic spectrum. Consequently,

it is superior in studying the pathogenesis of multi-
etiological diseases, such as AD (González-Domínguez
et al., 2018). However, this new technique has not been used
to study the host metabolic phenotypic changes induced by
gut microbes in AD.

The combined analysis of two core technologies in
colon research, microbiomics and metabolomics, can
elucidate the co-occurrence of microbes and metabolites
and explore the association between microbes and human
diseases more comprehensively (Knight et al., 2018). In
this study, we first employed 16S rRNA gene sequencing
and ultra-high performance liquid chromatography-
tandem mass spectrometry (UPLC-MS/MS)-based widely
targeted metabolomics to characterize gut bacterial
communities and fecal metabolic profiles of APP/PS1
double-transgenic mice. Secondly, we performed a
correlation analysis of microbiota and metabolites to
explore pathways by which gut microbiota are involved
in AD pathogenesis through its metabolites and to probe
novel AD markers.

Materials and methods

Animals

Eight male APP/PS1 double-transgenic mice aged 7 months
were used as animal models of AD (group A). As controls,
eight sex-and age-matched wild-type C57BL/6J mice were
employed (group C). SPF grade mice were purchased from
Zhishan Institute of Health Medicine Co., Ltd. [Beijing,
China; license number: SCXK (Su) 2016-0010]. Two mice
were housed per cage in standard conditions (21 ± 2◦,
50 ± 5% humidity, and 12 h light/dark cycle) with free
access to food and water. Animal experimental procedures
and designs were approved by the Ethics Committee of
Hunan University of Medicine (No. 2019A03001) and
were performed in accordance with the National Institutes
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of Health Guide for the Care and Use of Laboratory
Animals.

Morris water maze test

The Morris water maze (MWM) test was conducted in
a pool with an 80 cm diameter (Techman, Chengdu, China)
(Wang et al., 2019) to evaluate the spatial learning and memory
abilities of the mice. A mix of skimmed milk powder and
water was added until it rose to 1 cm above the height of the
platform, which had a diameter of 10 cm. The temperature of
the mixture was maintained at 20 ± 1◦C. The water maze was
divided into four equal quadrants, and four starting locations
were selected. A blue curtain with four fixed signs of different
shapes surrounded it. The test consisted of three procedures:
cued learning, a place navigation test, and a spatial probe test.
Cued learning consisting of four trials was performed the day
before the place navigation test to detect the ability of the mice
to learn to swim to a cued target and adapt to the environment.
In cued learning, the hidden platform was marked by a “flag”
above the water surface (Vorhees and Williams, 2006). The place
navigation test was carried out over the next 5 days, with four
trials per day. The mice were placed in the water to start from
four different locations, and the time taken to locate and climb
to the hidden platform within 90 s was recorded as the escape
latency. Mice that failed to locate the platform within 90 s were
guided to the platform and left to remain there for 10 s with
an escape latency recorded as 90 s. 24 h after the last trial of
the place navigation test, a spatial probe test was carried out, in
which the platform was removed. Mice were placed in the water
from the starting location opposite to the original platform
quadrant, and they were given 60 s to swim. The number of
platform-site crossovers and effective area crossovers, percent
time and percent distance in the target quadrant, and latency
to first target-site crossover within 60 s were recorded.

Sample collection

Fresh fecal samples (n = 8/group) were collected into
individual sterile EP tubes on two consecutive mornings (Wang
et al., 2019) after the MWM test and immediately frozen at
−80◦C until analysis (Giridharan et al., 2022).

Gut microbiome analysis

16S rRNA gene sequencing
Total genomic DNA (gDNA) was collected from each

fecal sample using the CTAB method (Li et al., 2020).
Approximate DNA concentration and purity were monitored
using 1% agarose gel electrophoresis. DNA was diluted to

1 ng/µL with sterile water depending on the concentration.
The V4 regions of the bacterial 16S rRNA gene were
PCR-amplified as 515F (5′-GTGCCAGCMGCCGCGGTAA-
3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′) from
gDNA. The same volume of 1× loading buffer (containing
SYB green) was mixed with PCR products and detected
by electrophoresis on a 2% agarose gel. The Qiagen Gel
Extraction Kit (Qiagen, Germany) was used for the purification
after the PCR products were mixed in equidensity ratios.
A TruSeq R© DNA PCR-Free Sample Preparation Kit (Illumina,
United States) was used for generating sequencing libraries.
A Qubit@ 2.0 Fluorometer (Thermo Scientific) and Agilent
Bioanalyzer 2100 system were used to evaluate the quality
of the library. Finally, the library was sequenced using
an Illumina NovaSeq platform, and paired-end reads of
250 bp were produced.

Data analysis
Uparse software (Uparse v7.0.1001) was used for sequencing

data analysis. Sequences with ≥97% similarity were assigned
to the same operational taxonomic unit (OTUs). For each
representative sequence, the Silva database was used based
on the Mothur algorithm to annotate taxonomic information.
To investigate the phylogenetic relationship of different
OTUs and the differences in the dominant bacteria in
different groups, multiple sequence alignments were carried
out with the MUSCLE software (version 3.8.31). A standard
sequence number corresponding to the sample with the
least number of sequences was used to normalize the
OTUs abundance information. α and β diversity analyses
were carried out, based on the normalized data. The
Chao1, Shannon, and ACE indices were used to measure
α diversity. These indices were computed with QIIME
(version 1.7.0) and shown with R software (version 2.15.3).
With QIIME (version 1.9.1), β diversity was determined for
both weighted and unweighted UniFrac. Principal coordinate
analysis (PCoA) was carried out to obtain the principal
coordinates and visualize complex multidimensional data. The
WGCNA package, stat packages, and ggplot2 package in R
software (version 2.15.3) were used for PCoA analysis. Linear
discriminant analysis (LDA) effect sizes (LEfSe) were used
for supervised comparisons of microbiota between groups.
Important taxonomic differences between the two groups
were determined by Log LDA score > 4.0 and P < 0.05.
Function prediction was performed using Tax4Fun (Gresse
et al., 2019).

Fecal metabolomics analysis

Sample preparation and extraction
Fecal samples were thawed on ice. One sample of

50 mg (±1 mg) was homogenized with 500 µL ice-cold
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methanol/water (70%, v/v) with internal standard as a reference
for quantification. The sample was vortexed for 3 min, sonicated
in an ice-water bath for 10 min, vortexed again for 1 min, and
centrifuged at 12,000 rpm for 10 min at 4◦C. Then, 250 µL
of the supernatant was taken in a tube and centrifuged at
12,000 rpm for another 5 min at 4◦C. Subsequently, 150 µL
of the supernatant was added to the liner of the corresponding
injection vial for further analysis.

Ultra-high performance liquid chromatography
conditions

The LC-ESI-MS/MS system (UPLC, ExionLC AD;
MS, QTRAP R© System) was used to analyze the sample
extracts. The following were the parameters of the
analysis: the UPLC column was a Waters ACQUITY
UPLC HSS T3 C18 (1.8 µm, 2.1 mm∗100 mm); column
temperature was 40◦C; flow rate was 0.4 mL/min;
injection volume was 2 or 5 µL; solvent system was water
(0.1% formic acid) and acetonitrile (0.1% formic acid);
gradient program was 95:5 V/V at 0 min, 10:90 V/V at
10.0 min, 10:90 V/V at 11.0 min, 95:5 V/V at 11.1 min,
95:5 V/V at 14.0 min.

QTOF-MS/MS
In order to collect MS/MS spectra on an information-

dependent basis (IDA), a triple TOF mass spectrometer was
employed. In this mode, the acquisition software (TripleTOF
6600, AB SCIEX) performs a continuous evaluation of the MS
data obtained from the full-scan survey during the acquisition
process. Based on preselected criteria, the program then
activates the acquisition of MS/MS spectra. In each cycle, 12
precursor ions with intensities greater than 100 were selected for
fragmentation using a collision energy of 30 V. The following
were the ESI source conditions: ion source gas 1, 50 psi; ion
source gas 2, 50 psi; curtain gas, 25 psi; source temperature,
500◦C; and ion spray voltage floating at 5,500 V in positive and
−4,500 V in negative mode.

ESI-Q TRAP-MS/MS
On a triple quadrupole linear ion trap mass spectrometer

(QTRAP), LIT and triple quadrupole (QQQ) scans were
obtained. The QTRAP R© LC-MS/MS system was equipped with
an ESI turbo Ion-Spray interface operating in positive and
negative ion mode, and controlled by Analyst software 1.6.3
(Sciex). The following were the ESI source operating parameters:
the source temperature was 500◦C; the ion spray voltage was
5,500 V (positive) and −4,500 V (negative); the ion source
gas I, gas II, and curtain gas were set at 50, 50, and 25 psi,
respectively; the collision gas was high. Instrument tuning and
mass calibration were carried out using solutions containing 10
and 100 µmol/L of polypropylene glycol, respectively. A specific
set of MRM transitions was monitored based on the metabolites
eluted during each period.

Metabolite identification and Kyoto
Encyclopedia of Genes and Genomes
pathway analysis

Metabolite data were unit variance scaled and then
an unsupervised principal component analysis (PCA) was
performed using the statistics function prcomp within
R (version 3.5.0, base package). Using the R package
ComplexHeatmap, a hierarchical cluster analysis (HCA)
was carried out, and the results are presented as heatmaps with
dendrograms. The color spectrum represented the normalized
signal intensities (unit variance scaling) of the metabolites.
Variable importance in projection (VIP) values were obtained
from the OPLS-DA results and the score plots were created by
the R package MetaboAnalystR. Before OPLS-DA, the data were
log-transformed (log2) and mean-centered. In order to prevent
overfitting, a test consisting of 200 permutations was carried
out. VIP ≥ 1, fold-change value ≥ 2 or ≤0.5, and P < 0.05 were
used to identify differential metabolites between the groups.
The differential metabolites were annotated using the Kyoto
Encyclopedia of Genes and Genomes (KEGG) compound
database and mapped to the KEGG pathway database. For a
given list of metabolites, p-values from hypergeometric tests
were used to determine the degree of significant pathway
enrichment.

Statistical analysis

Data analysis was carried out with SPSS 17.0. Data obtained
from the place navigation test were analyzed using repeated-
measures analysis of variance (ANOVA), the process of the
general linear model in SPSS. The independent samples
t-test or Wilcoxon’s test were used to compare the data
between the two groups. Spearman’s correlation test was used
to investigate the correlations between gut microbes and
metabolites. GraphPad Prism 5 software (GraphPad Software,
San Diego, CA, United States) was used to create graphical
representations. Data are expressed as mean± standard error of
the mean (SEM), unless stated otherwise. Statistical significance
was set at P < 0.05.

Results

Morris water maze

The spatial learning ability of the mice was evaluated by
escape latency. There was no significant difference in escape
latency between APP/PS1 and WT mice during cued learning
(P = 0.543, Figure 1A), indicating that all mice could complete
the test with normal motor and visual function. In contrast,
in the place navigation test, escape latencies of APP/PS1 mice
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FIGURE 1

Spatial learning and memory abilities of APP/PS1 and wild-type mice in the MWM test. Escape latency in cued learning (A) and place navigation
test (mean ± standard deviation) (B), the number of platform-site crossovers and effective area crossovers (C), percent time and percent
distance in the target quadrant (D), and latency to first target-site crossover (E) in the spatial probe test. Groups: A, APP/PS1 double-transgenic
mice; C, wild-type control group of C57BL/6J mice; n = 8/group. **P < 0.01.

were significantly longer (P = 0.004, Figure 1B). The number
of platform-site crossovers and effective area crossovers was
used to assess the spatial memory abilities of the mice. These
two parameters did not differ significantly between the groups
(P = 0.324, P = 0.933, Figure 1C). Furthermore, no significant
differences were observed in other parameters of the spatial
probe test, including percent time and distance in the target
quadrant (P = 0.240, P = 0.235, Figure 1D), and latency to first
target-site crossover (P = 0.203, Figure 1E).

Gut microbiome

Community richness and diversity of the gut
microbiota

16S rRNA gene sequencing performed on the fecal samples
was used to assess the gut microbiota of mice. As shown in the
Venn diagram, 1,440 OTUs were identified, of which 257 unique
OTUs belonged to APP/PS1 mice (Figure 2A). α diversity
was applied to analyze the complexity of the gut microbiota

diversity in a sample. The Chao1 and ACE indices were selected
to identify community richness, and the Shannon index was
used to identify community diversity. There were no apparent
differences in these indices between the two groups (data not
shown). β-diversity was applied to analyze differences in the
gut microbiota with respect to species complexity. The results
of both unweighted and weighted UniFrac distance analysis
showed a significant decrease in β-diversity in APP/PS1 mice
(P = 0.004, P = 0.00, Figures 2B,C).

Composition of the gut microbiota
Overall microbial composition was evaluated at different

taxonomic levels. Firmicutes and Bacteroidota were the
predominant phyla in the mouse gut microbiome, with
percentages of approximately 40 (Figure 3A). However,
in APP/PS1 mice, the Firmicutes/Bacteroidota ratio was
notably higher compared with WT mice (0.935 vs. 0.850,
P = 0.000, Figure 3B). As shown in Figure 3C, the
two groups were successfully separated in the PCoA
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FIGURE 2

Gut microbiota diversity in APP/PS1 and wild-type mice. The Venn diagram illustrates the overlap of the OTUs identified in gut microbiota
between the two groups (A). β-diversity of the gut microbiota between the two groups according to t-test of unweighted (B) and weighted
(C) UniFrac distance. Groups: A, APP/PS1 double-transgenic mice; C, wild-type control group of C57BL/6J mice; n = 8/group. **P < 0.01.

FIGURE 3

Gut microbiota composition in APP/PS1 and wild-type mice. Relative abundance stacked barplots at the phylum level (A) and the
Firmicutes/Bacteroidota ratios (B). PCoA based on the weighted UniFrac phylogenetic distance is compared between APP/PS1 and wild-type
mice (adonis P < 0.01) (C). Comparison of the representative taxonomic abundance between the two groups identified by LEfSe (D). Cladogram
of the taxa enriched in the gut microbiota (E). The central point represents the root of the tree (bacteria), and the ring represents the taxonomic
level (phylum to genus). The diameter of the ring represents the relative abundance of that taxon. Groups: A, APP/PS1 double-transgenic mice;
C, wild-type control group of C57BL/6J mice; n = 8/group. **P < 0.01.
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FIGURE 4

Principal component analysis (PCA) plot of microbial community function prediction at level 2 in APP/PS1 and wild-type mice (A) and
comparative plots of significantly different pathways (B). Groups: A, APP/PS1 double-transgenic mice; C, wild-type control group of C57BL/6J
mice; n = 8/group.

score plot, with the PC1 and PC2 principal components
explaining 39.08 and 27.07% of the variation, respectively.
Furthermore, the permutational MANOVA p-value
(calculated by the adonis function in the vegan R
package) was 0.001.

Metastatic analysis was performed to determine the
differences in the microorganisms between the groups. The
results showed that 4, 6, 22, 37, 67, and 35 microbes
were markedly altered in APP/PS1 mice at the phylum,
class, order, family, genus, and species levels, respectively.
A log LDA score > 4.0, P < 0.05, was used to identify
important taxonomic differences between the groups, and
a representative cladogram was used to show the variant
taxa at different taxonomic levels. Figure 3D shows the top
17 taxonomic differences, with the relative abundance of 7
bacteria significantly lower and 10 bacteria significantly higher
in APP/PS1 mice. The cladogram showed the phylogenetic
distribution of the gut microbiota associated with the two
groups (Figure 3E).

Prediction of microbial community function
Tax4Fun was used to predict the functional genes of the

gut microbiota based on the 16S rRNA gene sequencing
results. From level 1 to level 3, extensive changes in
microbiota function were observed in APP/PS1 mice. For
instance, at level 2, the predicted functions of the two groups
were partly separated in the PCA plot (Figure 4A), and
multiple pathways were significantly different between the
two groups (Figure 4B), including amino acid metabolism,
nucleotide metabolism, energy metabolism, metabolism of

cofactors and vitamins, aging, nervous system, and immune
system.

Fecal metabolome

Fecal metabolic profiles
Fecal metabolic profiles were acquired using UPLC-

MS/MS. As shown in the PCA plot, the fecal metabolites
of the two groups were not well-separated, and no visible
clustering trend was observed between the groups (Figure 5A).
The OPLS-DA model was used to analyze the compounds
that led to the differences between the groups. The OPLS-
DA scores showed that the two groups were scattered
in two different regions, with R2 (Y), R2 (X), and Q2

values of 0.995, 0.502, and 0.293, respectively (Figure 5B).
A small Q2 value indicates low predictive power of the
model. Therefore, VIP values combined with fold-change
values and p-values were used for identification. Forty
differential metabolites were screened (Figures 5C,D).
Among them, four differential metabolites belonged
to nucleotides and their metabolomics. Additionally,
two of each oxidized lipids, amines, coenzymes, and
vitamins were identified. Lastly, one of each hormone
and hormone-related compound, amino acid derivative,
hydrocarbon derivative, DG, aldehyde, and MG were
identified. In APP/PS1 mice, 31 metabolite concentrations
were downregulated and 9 were upregulated. The top
10 differential metabolites according to the absolute
value of log2FC were 9(S)-HpOTrE, acetoxy-8-gingerol,
(8E,10S,12Z,15Z)-10-hydroperoxyoctadeca-8,12,15-trienoate,
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(-)-neplanocin A, 12-oxo-9(Z)-dodecenoic acid, terpenoid
EA-I, excoecariatoxin;22,23,24,25-tetradehydro-simplexin,
MG(22:5), forskolin, 2′-deoxyuridine, and 11-cis-retinol, as
presented in Table 1.

Pathway analysis of differential metabolites
To further identify the relevant metabolic pathways

involved in AD, differential metabolites were entered into
the KEGG database for annotation, classification, and
pathway enrichment analysis. The results showed that
57.14% of the differential metabolites were classified into
metabolism (Figure 6A), containing 11 metabolic pathways
in which pyrimidine metabolism was significantly perturbed
(P = 0.044, Figures 6A,B). Three differential metabolites
were enriched in the pyrimidine metabolic pathway,
including deoxycytidine, 2′-deoxyuridine, and thymidine,
all of which were depleted in APP/PS1 mice (Figure 6C).
In the pyrimidine metabolic pathway, deoxycytidine is
located upstream of 2′-deoxyuridine and thymidine, and
they shared two common hydrolases, namely, 5′-nucleotidase
and 5′-deoxynucleotidase (Figure 6D). ABC transporters
contained four differential metabolites, but the differences
between the groups were not significant (P = 0.109,
Figures 6A,B).

Correlation analysis of gut microbiota
and fecal metabolites

Based on the differences in gut microbiota and metabolites
between the two groups, the functional correlation between
them was investigated by calculating Spearman’s correlation
coefficients. Associations between fecal metabolites and
gut microbes were found at all bacterial taxonomic levels,
and Figure 7A shows the correlations at the species
level. A significant correlation was determined when
P < 0.05, and | r| ≥ 0.8. Fourteen of the 40 differential
metabolites were significantly correlated with the gut
microbes (Table 2). Bacillus firmus and Rikenella were
the top two bacteria related to most of the metabolites.
B. firmus was negatively associated with five differential
metabolites, while Rikenella was positively associated with four
differential metabolites.

Some microbiota-related metabolites were involved
in specific KEGG pathways, including pyrimidine
metabolism, ABC transporters, retinol metabolism,
thiamine metabolism, folding, sulfur relay system, vitamin
digestion and absorption, chemical carcinogenesis-
receptor activation, and alpha-linolenic acid metabolism
(Tables 1, 2). Notably, deoxycytidine, an important
differential metabolite that causes alterations in pyrimidine
metabolism, was positively correlated with Clostridium sp.
Culture-27 (Figure 7B).

Discussion

In this study, a combination of 16S rRNA gene sequencing
and widely targeted metabolomics was utilized. To our
knowledge, this is the first time the widely targeted
metabolomics approach has been used in this field. We noted
significant changes in gut microbiota and fecal metabolism
of APP/PS1 mice compared with WT mice and a remarkable
correlation between them. In particular, pyrimidine metabolism
was found to be potentially involved in the pathology of AD,
and the gut microbiota may contribute to this.

Cognitive deficit is a defining characteristic of AD. APP/PS1
mice are widely used in AD research (Wang M. et al., 2021)
because they model well the pathological changes of AD
such as senile plaque, neuronal deletion, amyloid-associated
inflammation and cognitive decline. It was shown that APP/PS1
mice developed learning and memory deficits at 6 months of
age (Webster et al., 2014), which is now considered to be the
early stage of AD in this model. In the present study, APP/PS1
mice showed longer escape latencies in the place navigation test,
indicating impaired learning abilities; however, the parameters
in the spatial probe test did not vary significantly. In fact, the
results are not entirely consistent across studies (Zheng et al.,
2018; Luo et al., 2020), which may be related to different testing
conditions and procedures. For example, the size of the pool
can greatly affect the difficulty of the water maze task, and the
swimming time in the probe test is also a factor in the outcome,
as studies have shown that mice quadrant preference decreases
within 30 s (Vorhees and Williams, 2006). The smaller pool used
in this study (80 cm diameter vs. 120 cm diameter) and the
longer swimming time (60 s vs. 30 s) of the probe test may mask
mild memory impairment in mice.

Growing evidence links changes in gut microbiota to
the etiology of AD (Chen et al., 2020) and suggests that
microbiota-related metabolites play a vital role in microbiota-
host interactions (Wu S. et al., 2021). In this study, we confirmed
the lower β-diversity and increased Firmicutes/Bacteroidota
ratio in AD, which is considered a marker of cognitive aging
(Ticinesi et al., 2019). Multiple differential gut microbiota and
fecal metabolites were identified. In agreement with other
studies, beneficial bacteria such as Candidatus saccharimonas
(Chen et al., 2017) and Rikenellaceae (Sun et al., 2020; Lee
et al., 2021) decreased in APP/PS1 mice. Also, inflammatory
or Aβ-associated bacteria such as Erysipelotrichaceae (Bäuerl
et al., 2018; Ticinesi et al., 2019) and Proteobacteria (Nagpal
et al., 2019; Ticinesi et al., 2019; Nagu et al., 2021) increased
in APP/PS1 mice, which play key roles in the pathogenesis of
AD. Similarly, some differential metabolites have been reported
to be AD-related, such as 8-hydroxy-2-deoxyguanosine, a
marker of nucleic acid oxidation (Mecocci et al., 2018; Cioffi
et al., 2021), and beneficial substances, including 15-oxoETE
(Snyder et al., 2015), 12-oxo-9(Z)-dodecenoic acid (Yang et al.,
2021), arbutin (Dastan et al., 2019), 18β-glycyrrhetinic acid
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TABLE 1 Differential metabolites and the relevant KEGG pathways.

Metabolites Class II KEGG pathway A/C VIP Fold change Log2FC P

2′-deoxyuridine Nucleotide and its metabolomics Pyrimidine metabolism, metabolic
pathways, ABC transporters

↓ 2.34 3.65 1.87 0.01

Deoxyguanosine Nucleotide and its metabolomics Purine metabolism, metabolic pathways,
ABC transporters

↓ 2.18 2.83 1.50 0.03

Thymidine Nucleotide and its metabolomics Pyrimidine metabolism, metabolic
pathways

↓ 2.17 2.44 1.29 0.02

Deoxycytidine Nucleotide and its metabolomics Pyrimidine metabolism, metabolic
pathways, ABC transporters

↓ 2.32 2.80 1.48 0.02

8-hydroxy-2-
deoxyguanosine

Nucleotide and its metabolomics ↓ 2.43 2.73 1.45 0.02

15-oxoETE
[15-oxo-5Z,8Z,11Z,13E-
eicosatetraenoic
acid]

Oxidized lipids Arachidonic acid metabolism ↑ 2.52 0.28 −1.81 0.03

9(S)-HpOTrE Oxidized lipids ↑ 2.37 0.11 −3.21 0.05

Acetaminophen
glucuronide

Amines ↓ 2.14 2.58 1.37 0.02

Octadecyl monoenamide Amines ↓ 3.49 2.71 1.44 0.00

11-cis-retinol Coenzyme and vitamins Retinol metabolism ↓ 2.09 3.64 1.86 0.02

Thiamine Coenzyme and vitamins Thiamine metabolism, metabolic
pathways, ABC transporters, folding,
sulfur relay system, vitamin digestion and
absorption

↑ 2.61 0.41 −1.27 0.00

18-
hydroxycorticosterone

Hormones and hormone-related
compounds

Steroid hormone biosynthesis, metabolic
pathways, aldosterone synthesis and
secretion

↓ 2.21 2.35 1.23 0.00

N-acetylphenylalanine Amino acid derivatives Phenylalanine metabolism, metabolic
pathways

↑ 1.59 0.39 −1.34 0.05

18β-glycyrrhetinic acid Hydrocarbon derivatives ↓ 2.58 2.19 1.13 0.01

1-single palm essence DG ↓ 2.39 3.03 1.60 0.02

9-octadecenal Aldehydes ↓ 1.28 2.13 1.09 0.00

MG(22:5) MG ↓ 2.97 4.00 2.00 0.00

Bis(2-ethylhexyl)
phthalate

Chemical carcinogenesis – receptor
activation

↓ 3.37 2.22 1.15 0.00

4a-carboxy-4b-methyl-
5a-cholesta-8,24-dien-
3b-ol

Steroid biosynthesis, metabolic pathways ↓ 2.24 2.05 1.04 0.02

4alpha-formyl-4beta-
methyl-5alpha-cholesta-
8,24-dien-3beta-ol

↓ 1.95 2.08 1.06 0.05

Arbutin Glycolysis/gluconeogenesis ↓ 2.21 3.30 1.72 0.02

Forskolin ↓ 1.91 3.85 1.95 0.02

(–)-Neplanocin A ↓ 2.16 5.34 2.42 0.03

Pro Phe Lys ↓ 1.79 3.57 1.83 0.04

N-oleoylethanolamine cAMP signaling pathway ↓ 2.46 2.04 1.03 0.01

(8E,10S,12Z,15Z)-10-
hydroperoxyoctadeca-
8,12,15-trienoate

↑ 2.21 0.15 −2.71 0.05

12-oxo-9(Z)-dodecenoic
acid

Alpha-linolenic acid metabolism ↑ 2.18 0.21 −2.25 0.04

Acetoxy-8-gingerol ↑ 2.84 0.12 −3.01 0.03

Ala Ser Asn Asp Leu ↓ 1.30 3.57 1.84 0.03

Arg Ile Glu Asp ↓ 1.70 2.03 1.02 0.04

Arg Leu Glu ↓ 2.70 2.04 1.03 0.00

(Continued)
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TABLE 1 (Continued)

Metabolites Class II KEGG pathway A/C VIP Fold change Log2FC P

Arg Ser Tyr ↓ 3.47 2.00 1.00 0.00

Dihydro Isorescinnamine ↓ 2.95 3.20 1.68 0.00

Glu Glu Leu Ile Thr ↓ 2.26 2.27 1.18 0.02

Ile Lys Ala Arg ↑ 1.70 0.41 −1.30 0.03

Pro Leu Ala ↓ 2.28 2.64 1.40 0.01

Terpenoid EA-I; excoecariatoxin;
22,23,24,25-tetradehydro-
simplexin

↑ 1.53 0.25 −2.01 0.05

Tyr Ser Asn Arg ↓ 2.63 3.51 1.81 0.02

(1E,3R,10R,11S)-14-
(hydroxymethyl)-3,10-dimethyl-
6-propan-2-
yltricyclo[9.3.0.03,7]tetradeca-
1,6-dien-9-ol

↓ 1.91 2.04 1.03 0.02

2-[(E,7R,11R)-3,7,11,15-
tetramethylhexadec-2-
enyl]naphthalene-1,4-diol

↓ 2.13 2.36 1.24 0.03

Differential metabolites were determined by VIP ≥ 1, fold-change ≥ 2 or ≤0.5, and P < 0.05. A/C, APP/PS1 mice compared with WT mice; ↑, upregulated; ↓, downregulated.

(Wagle et al., 2018), and n-oleoylethanolamine (Xu et al., 2016).
Here, several previously unidentified differential bacteria and
fecal metabolites were discovered, and their roles in AD need
to be explored in further studies. It is worth mentioning that
some bacteria showed opposite trends compared to those in
other studies, including Lactobacillus reuteri (Mu et al., 2018),
Alistipes (Ticinesi et al., 2019; Xu et al., 2020), Eryslpelotrichales
(Kim et al., 2020), Gammaproteobacteria (Liu et al., 2019), and
Burkholderiales (Ticinesi et al., 2019). These results suggest
that other environmental and host factors are involved in the
association between gut microbiota and AD (Köhler et al., 2016).
The discovery of stable and specific microbial markers for AD
requires additional studies and approaches.

Functional predictions of the differential microbiota and
pathway analysis of differential metabolites can provide
information on their function in disease pathology. Functional
predictions revealed disturbances in AD-related pathways,
including endocrine and metabolic diseases, aging, amino acid
and nucleotide metabolism, energy, lipids, and vitamins. These
results suggest that disturbances in certain metabolic pathways
in APP/PS1 mice were probably driven by microbial alterations.
Pathway analysis of differential fecal metabolites revealed a
pyrimidine metabolism disorder in APP/PS1 mice. Pyrimidine
biosynthesis is necessary for the maintenance of fundamental
cellular functions and occurs in the mitochondria (Wang W.
et al., 2021). Recently, researchers found pyrimidine metabolism
disorder both in the cerebral cortex of Tg2576 mice (Dejakaisaya
et al., 2021) and in the urine of demented rats (Huang et al.,
2022), which, together with our findings, strongly suggests an
association between pyrimidine metabolism and AD. In the
present study, three differential metabolites were enriched in
this pathway. Notably, deoxycytidine was located upstream

of the other two metabolites, and all three metabolites were
substrates of two hydrolases, namely, 5′-ribonuclease and 5′-
deoxyribonuclease. Based on these results, we speculate that
deoxyuridine may be the initiating link in the disorder of
pyrimidine metabolism in APP/PS1 mice and that these two
hydrolases may be the key substances involved. 5′-nucleotidases
are catabolic members of the substrate cycle (Gazziola et al.,
2001) and protect mitochondrial DNA replication from excess
dTTP (Gallinaro et al., 2002). The simultaneous reduction of
these three substrates suggests a possible decrease in the content
or activity of hydrolases, including 5′-nucleotidases, which then
leads to mitochondrial dysfunction, an early cellular change that
plays a central role in AD pathology (Pradeepkiran and Reddy,
2020). Evidence suggests that defects in pyrimidine metabolism
may translate into functional deficits during brain development
(Fumagalli et al., 2017). Accordingly, we propose that affecting
mitochondrial function is a way in which abnormal pyrimidine
metabolism is involved in AD pathology and eventually leads to
cognitive impairment.

Correlation analysis of gut microbiota and metabolites
can provide broader ideas and additional information for
AD marker screening and is superior to single-omics in
understanding the role of gut microbiota in AD pathogenesis.
The results showed that 40% of the fecal differential metabolites
were significantly correlated with gut microbes. Furthermore,
these microbiota-related metabolites are involved in pathways,
such as vitamin or lipid metabolism, membrane transport,
and genetic information processing, which are thought to
participate in AD pathogenesis (Bai et al., 2020). B. firmus
and Rikenella are related with most metabolites. These results
strongly suggest an association between gut microbiota and
fecal metabolites and that B. firmus and Rikenella may be
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TABLE 2 Significant correlations between fecal metabolites and gut microbes.

Gut microbes Differential metabolites Index r P

Bacillus firmus Arg Ser Tyr MW00145772 −0.86 0.00

Bis(2-ethylhexyl) phthalate MW00006380 −0.82 0.00

MG(22:5) MEDP1452 −0.80 0.00

Octadecyl monoenamide MEDP1447 −0.89 0.00

Thiamine MEDP0514 0.81 0.00

Rikenella 11-cis-retinol MEDP0408 0.81 0.00

Bis(2-ethylhexyl) phthalate MW00006380 0.83 0.00

MG(22:5) MEDP1452 0.86 0.00

Octadecyl monoenamide MEDP1447 0.83 0.00

Erysipelotrichales 18β-glycyrrhetinic acid MEDP0759 −0.81 0.00

Arg Ser Tyr MW00145772 −0.81 0.00

Acetitomaculum Acetoxy-8-gingerol MW00144510 −0.89 0.00

MG(22:5) MEDP1452 0.80 0.00

Alcaligenes faecalis 15-oxoETE [15-oxo-5Z,8Z,11Z,13E-eicosatetraenoic acid] MEDN0771 0.80 0.00

Arg Ser Tyr MW00145772 −0.82 0.00

Alcaligenes sp. Arg Ser Tyr MW00145772 −0.88 0.00

Bis(2-ethylhexyl) phthalate MW00006380 −0.83 0.00

Burkholderia pseudomallei Bis(2-ethylhexyl) phthalate MW00006380 −0.85 0.00

MG(22:5) MEDP1452 −0.81 0.00

Firmicutes bacterium CAG 194_44_15 Acetoxy-8-gingerol MW00144510 −0.89 0.00

MG(22:5) MEDP1452 0.80 0.00

Erysipelotrichaceae 18β-glycyrrhetinic acid MEDP0759 −0.81 0.00

Arg Ser Tyr MW00145772 −0.82 0.00

Coriobacteriia 9-octadecenal MEDP1170 0.86 0.00

Coriobacteriales 9-octadecenal MEDP1170 0.86 0.00

Eggerthellaceae 9-octadecenal MEDP1170 0.86 0.00

Enterorhabdus 9-octadecenal MEDP1170 0.82 0.00

Alistipes MG(22:5) MEDP1452 0.81 0.00

Parabacteroides_goldsteinii 2-[(E,7R,11R)-3,7,11,15-tetramethylhexadec-2-enyl]naphthalene-1,4-diol MW00166520 0.89 0.00

Bilophila 9(S)-HpOTrE MEDN1041 −0.82 0.00

Candidatus_Stoquefichus (–)-Neplanocin A MW00103388 0.89 0.00

Dubosiella Arg Ser Tyr MW00145772 −0.84 0.00

Dolosigranulum Arg Ser Tyr MW00145772 −0.81 0.00

Caulobacterales Arg Ser Tyr MW00145772 −0.81 0.00

Caulobacteraceae Arg Ser Tyr MW00145772 −0.81 0.00

Gammaproteobacteria Acetoxy-8-gingerol MW00144510 0.82 0.00

Burkholderiales Acetoxy-8-gingerol MW00144510 0.81 0.00

Alcaligenaceae Arg Ser Tyr MW00145772 −0.81 0.00

Alcaligenes Arg Ser Tyr MW00145772 −0.83 0.00

Burkholderiaceae Bis(2-ethylhexyl) phthalate MW00006380 −0.82 0.00

Burkholderia-Caballeronia-Paraburkholderia Bis(2-ethylhexyl) phthalate MW00006380 −0.82 0.00

Comamonadaceae Arg Ser Tyr MW00145772 −0.82 0.00

Burkholderiales bacterium YL45 Acetoxy-8-gingerol MW00144510 0.81 0.00

Clostridium sp. Culture-27 Deoxycytidine MEDP0403 0.81 0.00

Coriobacteriia 9-octadecenal MEDP1170 0.83 0.00

Coriobacteriales 9-octadecenal MEDP1170 0.83 0.00
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FIGURE 5

Variation characteristics of fecal metabolites and screening for differential metabolites in APP/PS1 and wild-type mice. PCA plot (A) and score
plot derived from the OPLS-DA model (B). Heatmap (C) and volcano plots (D) of differential metabolites between the groups (red, upregulated
in APP/PS1 mice; green, downregulated in APP/PS1 mice). Groups: A, APP/PS1 double-transgenic mice; C, wild-type control group of C57BL/6J
mice; n = 8/group.

important bacteria responsible for fecal metabolism alterations
in APP/PS1 mice. Interestingly, a recent study found that
Rikenella decreased in AD mice and was reversed in gut flora-
targeted photobiomodulation therapy, indicating that Rikenella
may be a potential therapeutic target for AD (Chen et al., 2021).
Notably, deoxycytidine, an important differential metabolite
that causes the pyrimidine metabolic alterations mentioned
above, was positively correlated with Clostridium sp. Culture-27.
A study identified the Na(+)-transporting NADH: ubiquinone
reductase (NQR) in Clostridium sp. and concluded that its
sequence could serve as a marker for monitoring AD risk, and
it could be a new target for AD therapy (Paley et al., 2018). The
present findings suggest that mutations in the gut Clostridium
sp. Culture-27 may trigger abnormal pyrimidine metabolism
in AD. These results indicate the involvement of gut dysbiosis
in the disturbance of pyrimidine metabolism in APP/PS1 mice
and highlight the interaction between host fecal metabolites
and gut microbes in the pathological processes involved in AD.

Metabolomic studies of serum and brain tissue or cerebrospinal
fluid should be conducted to obtain more definitive conclusions.

This study has some limitations. First, it was a prospective
study. The results were derived in part from bioinformatics
and statistical analyses and have not been biologically validated.
Second, this study was conducted using animal models, and the
results require further validation in clinical trials.

Conclusion

The gut microbiota may be involved in pathological
processes associated with AD cognitive impairment by
dysregulating pyrimidine metabolism. Several AD markers have
been identified, particularly B. firmus, Rikenella, Clostridium
sp. Culture-27, and deoxyuridine, which may play important
roles in AD pathology. Our findings provide new insights into
the host-microbe crosstalk in AD pathology and contribute
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FIGURE 6

Pathway analysis of differential metabolites between APP/PS1 and wild-type mice. KEGG classification between the two groups (A) and
significant KEGG enrichment of differential metabolites (B). A diagram of pyrimidine metabolism in the KEGG pathway of APP/PS1 mice (C) and
a detailed view of the three differential metabolites in it (D) (red, upregulated in APP/PS1 mice; green, downregulated in APP/PS1 mice; blue, the
detected metabolites with no significant change). The violin plot shows the changes in the metabolites. Groups: A, APP/PS1 double-transgenic
mice; C, wild-type control group of C57BL/6J mice; n = 8/group.

FIGURE 7

Correlation of gut microbiota and fecal metabolites. Heatmap summarizes the correlation between fecal metabolite alterations and gut
microbiota perturbations at the species level in APP/PS1 and wild-type mice (A) (pink: positive correlation, blue: negative correlation). Scatter
plot illustrates the statistical association between the relative abundance of Clostridium sp. Culture-27 and concentration of deoxycytidine (B).
Groups: A, APP/PS1 double-transgenic mice; C, wild-type control group of C57BL/6J mice; n = 8/group. *P < 0.05, **P < 0.01.
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to the discovery of diagnostic markers and therapeutic targets
for AD. In addition, the roles of 5′-ribonuclease and 5′-
deoxyribonuclease in pyrimidine metabolism perturbation in
AD deserve further investigation. Finally, validating these
findings in patients or postmortem studies is critical to translate
them into clinical benefits.
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