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A novel prognostic model based
on urea cycle-related gene
signature for colorectal cancer
Haiyang Guo1†, Yuanbiao Wang2†, Lei Gou1, Xiaobo Wang1,
Yong Tang1 and Xianfei Wang1*
1Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong,
China, 2Department of Yunnan Tumor Research Institute, The Third Affiliated Hospital of Kunming
Medical University, Yunnan Cancer Hospital, Kunming, China

Background: Colorectal cancer (CRC) is the second leading cause of cancer-
related deaths in the world. This study aimed to develop a urea cycle (UC)-
related gene signature that provides a theoretical foundation for the
prognosis and treatment of patients with CRC.
Methods: Differentially expressed UC-related genes in CRC were confirmed
using differential analysis and Venn diagrams. Univariate Cox and least
absolute shrinkage and selection operator regression analyses were
performed to identify UC-related prognostic genes. A UC-related signature
was created and confirmed using distinct datasets. Independent prognostic
predictors were authenticated using Cox analysis. The Cell-type Identification
by Estimating Relative Subsets of RNA Transcripts algorithm and Spearman
method were applied to probe the linkage between UC-related prognostic
genes and tumor immune-infiltrating cells. The Human Protein Atlas
database was used to determine the protein expression levels of prognostic
genes in CRC and normal tissues. Verification of the expression levels of UC-
related prognostic genes in clinical tissue samples was performed using real-
time quantitative polymerase chain reaction (qPCR).
Results: A total of 49 DEUCRGs in CRC were mined. Eight prognostic genes
(TIMP1, FABP4, MMP3, MMP1, CD177, CA2, S100P, and SPP1) were identified
to construct a UC-related gene signature. The signature was then affirmed
using an external validation set. The risk score was demonstrated to be a
credible independent prognostic predictor using Cox regression analysis.
Functional enrichment analysis revealed that focal adhesion, ECM-receptor
interaction, IL-17 signaling pathway, and nitrogen metabolism were
associated with the UC-related gene signature. Immune infiltration and
correlation analyses revealed a significant correlation between UC-related
prognostic genes and differential immune cells between the two risk
subgroups. Finally, the qPCR results of clinical samples further confirmed the
results of the public database.
Conclusion: Taken together, this study authenticated UC-related prognostic
genes and developed a gene signature for the prognosis of CRC, which will
be of great significance in the identification of prognostic molecular
biomarkers, clinical prognosis prediction, and development of treatment
strategies for patients with CRC.
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TABLE 1 Sample size and usage of the datasets.

Dataset Normal
samples

CRC
samples

Usage

TCGA-
CRC

51 622 DEGs analysis and training set
for prognosis

GSE41258 54 185 DEGs analysis

GSE110223 13 13 DEGs analysis

GSE110224 17 17 DEGs analysis

GSE113513 14 14 DEGs analysis

GSE17538 232 Validation set for prognosis

GSE39582 19 566 Validation of gene expression

GSE44076 50 98 Validation of gene expression
Introduction

According to global cancer data, colorectal cancer (CRC)

ranks third in incidence and second in mortality rate

worldwide. GLOBOCAN estimated more than 1.9 million new

CRC cases and 935,000 deaths in 2020 (1, 2). The prognosis

and survival status of patients with CRC have not improved

significantly over the years (3). The prognosis of CRC is

predicted using the tumor–node–metastasis (TNM) staging

system, histopathologic criteria, and tumor markers, but it

cannot accurately predict the clinical prognosis (4). The etiology

of CRC is complex, with approximately 10% patients having

susceptibility to germline mutations that lead to familial cases.

However, the majority of patients with CRC have sporadic

cancer caused by a combination of environmental and genetic

risk factors (5), although the specific molecular mechanisms

remain unknown. Therefore, the molecular mechanisms

underlying the development of CRC should be explored further,

and novel biomarkers for prognostic assessment should be

identified to improve the clinical prognosis of patients. It is

challenging to predict the prognosis of CRC owing to its rapid

progression and highly heterogeneous nature (6). This

necessitates the development of new prognostic models.

The process by which ammonia produced during the

metabolism of amino acids in the body is converted into urea

via ornithine constitutes the urea cycle (UC). UC eliminates the

excess nitrogen and ammonia produced by the breakdown of

proteins or the synthesis of nitrogenous compounds in the

body. UC enzymes also manipulate nucleotide metabolism in

certain types of tumors. UC-related genes (UCRGs) are

overexpressed or silenced in different types of cancers, and

altered UC gene expression is actively involved in tumorigenesis

(7). UC dysregulation (UCD) is observed in various cancer

types and is associated with a poor prognosis, but is responsive

to immunotherapy (8). Tumor cells reprogram their metabolism

to maximize the use of nitrogen and carbon to obtain sufficient

energy for tumor proliferation and rapid growth (9, 10). p53

inhibits tumor growth by regulating ammonia metabolism via

UC, thereby controlling polyamine synthesis in tumor cells (11).

UC enzymes play a critical role in killing cancer cells and

suppressing cancer growth. In the human hepatoblastoma cell

line, HepG2, deficiency of arginase 1 and ornithine

carbamoyltransferase (OTC) results in high ammonia levels and

diminished UC function (12). OTC and argininosuccinate

synthase (ASS) levels are deficient in acute lymphoblastic

leukemia (13). The UC enzyme, carbamoyl-phosphate synthase

1 (CPS1), maintains the pyrimidine pool in non-small cell lung

cancer by activating CAD, and silencing CPS1 in KL cells

induces cell death and inhibits tumor growth in vivo due to the

depletion of pyrimidines (14). ASS1 expression promotes CRC

cell proliferation and tumor formation in vitro (15). Whether

UCRGs are associated with the prognosis of patients with CRC

remains unclear; therefore, systematic studies of prognosis-related
Frontiers in Surgery 02
UC genes can help to understand their role in CRC

development and progression and aid in guiding clinical decisions.

This study aimed to determine the prognostic value of UCRGs

in patients with CRC. RNA-sequencing (seq) data for CRC and the

corresponding clinical data were extracted from public databases.

UC-associated differentially expressed genes (DEGs) closely

associated with prognosis were identified to construct a predictive

model for CRC prognosis in The Cancer Genome Atlas (TCGA)

cohort. We then validated it in the Gene Expression Omnibus

(GEO) cohort, determined the expression levels of eight genes in

colon cancer tissues using quantitative reverse transcription-

polymerase chain reaction (qRT-PCR), and obtained results

consistent with our initial prediction.
Methods

Gene and dataset collection

We integrated the transcriptomic data of 673 CRC and 51

normal tissue samples using TCGA database (https://portal.

gdc.cancer.gov/repository). Seven CRC datasets were mined

from the GEO database (https://www.ncbi.nlm.nih.gov/geo/)

(GSE41258, GSE110223, GSE110224, GSE113513, GSE17538,

GSE39582, and GSE44076) and used in this study. The number

of tissue samples and their usage in each dataset are listed in

Table 1. A total of 2,857 UCRGs were derived from the

GeneCard database (https://www.genecards.org/) by searching

“UC” and are listed in Supplementary Table S1. A flow chart

of the present study is shown in Supplementary Figure S1.
Identification of differentially expressed
UCRGs (DEUCRGs) in CRC

On the basis of p value < 0.05 and |log2FoldChange(FC)| > 1,

we first identified the DEGs (CRC samples vs. normal samples)

in the TCGA-CRC, GSE41258, GSE110223, GSE110224, and

GSE113513 datasets using the limma package (16). We
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separately crossed the upregulated and downregulated genes in

the five datasets to identify the shared DEGs, which were further

intersected with UCRGs to identify DEUCRGs for subsequent

prognostic analysis.
Functional annotation analysis

We used the R package clusterProfiler (17) for Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analyses. GO was categorized as cellular component

(CC), molecular function (MF), and biological process (BP). The

significance criterion was adjusted p value≤ 0.05.
Establishment of UC-related gene
signature in CRC

The 590 patients with CRC with survival information in

TCGA-CRC dataset served as the training set and 232 patients

with survival information from the GSE17538 dataset were used

as the external validation set to create and verify the UC-related

gene signature for predicting the survival of patients with CRC.

Univariate Cox and least absolute shrinkage and selection

operator (LASSO) regression analyses were used to select the UC-

related prognostic genes in the training set. Depending on the risk

score formula (Riskscore =
Pn

1 coefðgeneiÞ � exp ressionðgeneiÞ,
coef represents the coefficient obtained by LASSO), and cut-off

value calculated using the surv_cutpoint function in the cutoff

package, patients were classified into two risk subgroups: high-

and low-risk groups. Kaplan–Meier curves, receiver operating

characteristic (ROC) analysis, and risk curves were used to

demonstrate the predictive efficiency of the gene signature.
Relevance analysis of UC-related gene
signature and clinical parameters

Risk scores for different clinical factor subgroups were

compared using the Wilcoxon or Kruskal–Wallis test.

Stratified survival analysis for different clinical subgroups was

also performed by developing K–M curves.
Independent prognostic analysis and
nomogram creation

The risk score, age, sex, race, stage, pathologic_M,

pathologic_N, and pathologic_T were included in Cox

analyses (univariate Cox and multivariate Cox) to

authenticate independent prognostic predictors. The

nomogram comprising the independent prognostic predictors

was drawn using R language “rms” to predict survival at 1, 3,
Frontiers in Surgery 03
and 5 years in patients with CRC. The corresponding

calibration and DCA curves were plotted to appraise the

precision and reliability of the nomogram model predictions.
Relevance analysis of UC-related
prognostic genes and immune infiltration

Discrepancies in 22 types of immune infiltrating cells were

assessed and compared between the two risk groups using the

Cell-type Identification by Estimating Relative Subsets of RNA

Transcripts (CIBERSORT) algorithm (18) and Wilcoxon test.

We calculated the correlation between UC-related prognostic

genes and differential immune cells using the Spearman’s

method.
Analysis and validation of the expression
levels of UC-related prognostic genes

We first verified the discrepancy in the expression levels of

UC-related prognostic genes in CRC and normal samples in the

external datasets, GSE39582 and GSE44076. Corresponding

box-line plots were obtained using the ggplot2 package. We

used immunohistochemistry images from the Human Protein

Atlas (HPA) database (https://www.proteinatlas.org/) to

further determine the protein expression levels of UC-related

prognostic genes in normal and CRC tissues. To further

confirm the results of the public database analysis, we

collected six normal tissue samples and six CRC tissue

samples from the Affiliated Hospital of North Sichuan

Medical College in June and performed RNA isolation and

qRT-PCR. This study was approved by the Affiliated Hospital

of North Sichuan Medical College (Nanchong, China)

(Ethical Application Ref: 2022ER237-1). Total RNA from 12

samples was separated using TRIzol (Ambion, USA),

according to the manufacturer’s instructions. The inverse

transcription of total RNA into cDNA was implemented

using the First-strand cDNA synthesis kit (Servicebio, China),

according to the manufacturer’s instructions. Then, qPCR was

carried out using the 2xUniversal Blue SYBR Green qPCR

Master Mix (Servicebio, China), according to the

manufacturer’s instructions. The primer sequences used for

PCR are listed in Supplementary Table S2. Expression was

normalized to the internal reference glyceraldehyde

3-phosphate dehydrogenase and computed using the 2−ΔΔCq
method (19).
Statistical analysis

All bioinformatics analyses were performed using the R

language. Wilcoxon test or Kruskal–Wallis test was used to
frontiersin.org
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compare data from different groups. Student’s t-test was used to

compare the discrepancies in qRT-PCR.
Results

DEUCRGs in CRC

Based on |log2FC| > 1 and p value < 0.05, we first identified the

DEGs (CRC samples vs. normal samples) in TCGA-CRC,

GSE41258, GSE110223, GSE110224, and GSE113513 datasets.

Volcano plots of DEGs for each dataset are shown separately in

Figures 1A–E. The specific numbers of DEGs per dataset are

presented in Table 2. We intersected the upregulated and

downregulated genes in the CRC samples from each of the

above five datasets, resulting in 39 crossed upregulated genes

and 102 crossed downregulated genes (Figures 1F–G;

Supplementary Table S3). We then intersected the 141 crossed

differential genes mentioned above with the 2,857 UCRGs

derived from the GeneCard database, resulting in 49 crossed

genes, namely DEUCRGs in CRC (Figure 1H; Supplementary

Table S3). To further probe the function of the DEUCRGs in

CRC, functional enrichment analysis was performed. As shown

in Supplementary Table S4, 149 GO items (92 BP, 20 CC, and

37 MF items) and 17 KEGG pathways were identified. The top

10 items under each classification are shown in the bubble

diagram (Figures 1I–J). These genes were mainly linked to

immune-, extracellular matrix-, hormone metabolism-, and

nitrogen metabolism-related biological processes. Furthermore,

these genes were implicated in “Bile secretion,” “Nitrogen

metabolism,” “IL-17 signaling pathway,” “Proximal tubule

bicarbonate reclamation,” “PPAR signaling pathway,” “Pyruvate

metabolism,” “NF-kappa B signaling pathway,” and “Chemokine

signaling pathway.”
UC-related gene signature to assess the
prognosis of patients with CRC

A total of 590 patients with CRC with survival information in

TCGA-CRC dataset served as the training set. To mine the

UCRGs relevant to the overall survival (OS) of patients with

CRC, we incorporated the 49 DEUCRGs obtained above into a

univariate Cox analysis in the training set. Fourteen genes

associated with OS of patients with CRC were selected (p <

0.1), with tissue inhibitor of metalloproteinase-1 (TIMP1), fatty

acid-binding protein 4 (FABP4), secreted phosphoprotein 1

(SPP1), and butyrylcholinesterase as risk factors for CRC

prognosis [hazard ratio (HR) > 1], and matrix metallopeptidase

(MMP)-3, MMP1, C-X-C motif chemokine ligand (CXCL)-1,

CXCL3, CD177, carbonic anhydrase (CA)-2, S100 calcium-

binding protein P (S100P), CA4, nuclear receptor subfamily 3

group C member 2, and CXCL8 as protective factors for CRC
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prognosis (HR < 1) (Table 3). The above fourteen genes were

further integrated into LASSO analysis with a 20-fold cross-

validation. As shown in Figure 2A, when lambda min was

0.0140, the corresponding number of genes was eight.

Therefore, eight genes (TIMP1, FABP4, MMP3, MMP1,

CD177, CA2, S100P, and SPP1) and their corresponding

coefficients were determined as UC-related prognostic genes for

signature establishment (Table 4). Next, we developed a risk

signature based on the following formula: RiskScore = (–

0.02030967)×expression (MMP3) + (–0.099075148)×expression

(MMP1) + (–0.041645445)×expression (CD177) + (–

0.019591304)×expression (CA2) + (–0.074156971)× expression

(S100P) + 0.356587004×expression (TIMP1) + 0.0670

8291×expression (FABP4) + 0.00844555 × expression (SPP1).

Based on this formula, we calculated the risk score for each

patient with CRC in the training set and classified them into

high- and low-risk groups based on the cutoff value. The K–M

curve illustrated that patients with higher risk had significantly

poorer survival than those with lower risk (Figure 2B). We

plotted the ROC curves to check the predictive efficiency of the

signature. The area under the curve values for OS in the

training set were 0.624 (1 year), 0.658 (3 years), and 0.735 (5

years), indicating decent accuracy (Figure 2C), the cut-off

values of the ROC curves were shown in Supplementary

Figures S2A–C. Figure 2D shows the distribution of the

ranked risk score and survival status for each patient in the

training set. Survival status showed that, as the risk score

increased, patients had a relatively high risk of death. The

expression heatmap showed that FABP4, TIMP1, and SPP1

were highly expressed in patients with high risk scores, whereas

S100P, MMP3, MMP1, CD177, and CA2 were highly expressed

in patients with low risk scores (Figure 2E). To further prove

the applicability and reliability of the risk signature, the above

analysis was carried out in the external validation set

(GSE17538 dataset). A comparable trend was observed in the

external validation set (Figures 2F–I), the cut-off values of the

ROC curves were shown in Supplementary Figures S2D–F.

The above results confirmed that the UC-related gene signature

is a valid survival predictor for patients with CRC.
Relevance analysis of clinical parameters
and UC-related gene signature

To explore the relationship between the UC-related gene

signature and clinical factors, we compared the risk scores of

different clinical subgroups of patients. As shown in

Figures 3A–C, UC-related risk scores were independent of sex

and age and correlated with race. Additionally, we found that

the UC-related risk scores were notably correlated with stage,

pathologic_M, pathologic_N, and pathologic_T stage, and the

risk scores tended to increase as the malignancy of the tumor

(Figures 3D–G). We further explored the application of the risk
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FIGURE 1

Identification of colorectal cancer (CRC)-associated differentially expressed UC-related genes (DEUCRGs) in the cancer genome atlas (TCGA) and
gene expression omnibus (GEO) cohorts. Volcano plots of DEGs in (A) TCGA-CRC, (B) GSE110223, (C) GSE41258, (D) GSE110224, and (E)
GSE113513 datasets. (F) Venn diagram of upregulated genes in five datasets. (G) Venn diagram of downregulated genes in five datasets. (H) Venn
diagram for identifying DEUCRGs. (I) Top 10 Gene Ontology (GO) terms enriched by DEUCRGs under cellular component (CC), molecular
function (MF), and biological process (BP) subcategories. (J) Top 10 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched by
DEUCRGs.

Guo et al. 10.3389/fsurg.2022.1027655
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TABLE 2 The number of DEGs in each dataset.

Dataset DEGs Up-regulated
genes

Down-regulated
genes

TCGA-
CRC

1761 787 974

GSE41258 666 233 433

GSE110223 455 167 288

GSE110224 616 275 341

GSE113513 1361 525 836

TABLE 3 The genes identified by univariate Cox.

Gene ID HR HR.95L HR.95H p value

TIMP1 1.451755314 1.161333836 1.814804172 0.001062858

FABP4 1.187141941 1.059480001 1.330186494 0.003123349

MMP3 0.8747019 0.793471449 0.964248197 0.007100919

MMP1 0.890853127 0.815415718 0.973269556 0.010463281

CXCL1 0.850727309 0.750220785 0.964698617 0.011727482

CXCL3 0.848093355 0.733223093 0.980959747 0.026497115

CD177 0.874464632 0.768124005 0.995527268 0.042588229

CA2 0.896063276 0.80535475 0.996988464 0.043867832

S100P 0.876935588 0.769974692 0.998754937 0.047845726

SPP1 1.083364054 0.997208995 1.176962583 0.05824383

CA4 0.901704615 0.808107267 1.006142681 0.064249679

NR3C2 0.806037218 0.635387808 1.022518828 0.075651532

BCHE 1.337315354 0.963650024 1.855873307 0.082122733

CXCL8 0.915782801 0.827164463 1.013895274 0.090224387

Guo et al. 10.3389/fsurg.2022.1027655
score in patients with different clinicopathological characteristics.

The results of the stratified survival analysis uncovered

significant differences in the survival of the two groups for most

clinical subgroups, including age≤ 65 years, age > 65 years,

female sex, white ethnicity, M0, N0, N1/N2, T3/T4, stage I/II,

and stage III/IV subgroups (Figure 4).
UC-related gene signature is an
independent prognostic predictor

Using Cox analyses (univariate and multivariate Cox), we

determined that risk score, age, and pathologic_T were

independent prognosis predictors in patients with CRC

(Figures 5A,B; p value < 0.05). A nomogram containing

independent prognostic predictors was generated (Figure 5C),

and the calibration curves proved that the performance of the

nomogram in predicting the survival at 1, 3, and 5 years in

patients with CRC was satisfactory (Figure 5D), whereas the

DCA curves revealed that the nomogram had a higher

accuracy in predicting the survival of patients at 3 and 5 years

than the individual independent predictors (risk score, age,

and T) (Figures 5E–F).
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Association of UC-related gene signature
with immune infiltrating cells

To uncover potential mechanisms for the disparity in the

prognosis of the two risk groups, we performed the

authentication and functional enrichment analysis of DEGs

between the two groups. As shown in Figures 6A–B, a total

of 73 DEGs (high-risk vs. low-risk), containing 40 highly

expressed and 33 lowly expressed genes, were identified.

Accordingly, 24 BP items, 36 CC items, 24 MF items, and

seven KEGG pathways were identified (Supplementary

Table S5). The top 10 GO items for each classification are

shown in Figure 6C. We observed that the above genes were

principally linked to the humoral immune response,

antibacterial humoral response, and extracellular matrix

organization. Furthermore, these genes were implicated in

focal adhesion, ECM-receptor interaction, IL-17 signaling

pathway, and nitrogen metabolism (Figure 6D). As immune-

relevant biological processes and pathways were revealed to

be connected to the UC-related gene signature, we

investigated the changes in immune infiltration between the

two risk groups. Using the CIBERSORT algorithm, 124

samples in the high-risk group and 430 samples in the low-

risk group were incorporated to compute the fraction of each

immune infiltration cell after excluding samples with p value

> 0.05 (Figure 7A). As shown in the violin plot, the fraction

of B cell memory, T-regulatory cells, monocytes, and

macrophages M0 and M2 was elevated in patients with high

risk scores, while the fraction of T cells CD4 memory

resting, T cells CD4 memory activated, plasma cells,

activated dendritic cells, and neutrophils was higher in

patients with low risk scores (Figure 7B). We further

calculated the relevance of the UC-related prognostic genes

and the 10 differential immune cells mentioned above using

the Spearman method (Supplementary Table S6). Based on

the thresholds of |cor| > 0.3 and p < 0.05, we discovered that

SPP1 was positively correlated with macrophage M2 and

neutrophils and negatively correlated with plasma cells

(Figure 7C). MMP3 expression was significantly and

positively correlated with dendritic cell activation and

neutrophils (Figure 7C). MMP1 expression was significantly

positively correlated with neutrophil levels (Figure 7C).

FABP4 was positively correlated with macrophage M2

(Figure 7C). CA2 expression was significantly negatively

correlated with macrophages M0 (Figure 7C).
Expression levels of UC-related
prognostic genes

As illustrated in Figure 8A, CA2, CD177, and FABP4 levels

were downregulated, while MMP1, MMP3, S100P, SPP1, and
frontiersin.org
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FIGURE 2

Establishment of a UC- relevant risk score model. (A) Least absolute shrinkage and selection operator (LASSO) regression analysis to establish an
eight-gene signature. (B) Kaplan–Meier curves of the high- and low-risk groups in TCGA-CRC dataset. (C) Receiver operating characteristic
(ROC) curves of 1, 3, and 5 years overall survival (OS) in TCGA-CRC dataset. (D) Signature-based distribution of risk scores and survival status in
TCGA-CRC dataset. (E) Differences in prognostic gene expression in different risk groups in TCGA-CRC dataset. (F) Kaplan–Meier Curve of the
high- and low-risk groups in GSE17538 dataset. (G) ROC curves of 1, 3, and 5 years OS in GSE17538 dataset. (H) Distribution of risk scores and
survival status in GSE17538 dataset. (I) Differences in prognostic gene expression in different risk groups in GSE17538 dataset.

TABLE 4 The gene coefficients obtained from LASSO analysis.

Gene Coef

TIMP1 0.356587004

FABP4 0.06708291

MMP3 −0.02030967

MMP1 −0.099075148

CD177 −0.041645445

CA2 −0.019591304

S100P −0.074156971

SPP1 0.00844555

Guo et al. 10.3389/fsurg.2022.1027655
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TIMP1 levels were elevated in CRC tissues compared to normal

tissues in TCGA-CRC dataset. We further confirmed the same

expression trend in the two external validation sets

(GSE39582 and GSE44076) (Figures 8C–D). To further

determine the changes in the expression of UC-related

prognostic genes at the protein level, we obtained the

corresponding immunohistochemistry images from HPA

database. We did not detect immunohistochemical result of

MMP1 CRC. As shown in Figure 9, we found that the

protein expression levels of CA2, CD177, and FABP4 were

reduced in CRC tissues than in normal tissues. SPP1 was
frontiersin.org
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FIGURE 3

Comparison of risk scores for different subgroups of clinical parameters. (A) Age > 65 vs. Age ≤ 65. (B) Female vs.Male. (C) Asian vs. Black vs.White. (D)
T1 vs. T2 vs. T3 vs. T4. (E) N0 vs. N1 vs. N2. (F) M0 vs. M1. (G) Stage I vs. II vs. III vs. IV.

Guo et al. 10.3389/fsurg.2022.1027655
largely unexpressed in normal and CRC tissues at the protein

level. Moreover, protein expression levels of MMP3, S100P,

and TIMP1 were increased in CRC tissues than in normal

tissues. We verified the protein expression in clinical tissue

samples via qRT-PCR. In agreement with the results of the

public database data analysis, CA2, CD177, and FABP4 were

expressed at low levels, while MMP1, MMP3, S100P, SPP1,

and TIMP1 were highly expressed in clinical CRC samples

compared to normal samples (Figure 10).
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Discussion

CRC is a molecularly heterogeneous malignancy with

limited therapeutic strategies for patients with advanced

disease. The molecular features of CRC are closely related to

its prognosis, and there are no reliable prognostic biomarkers

for risk prediction in clinical practice. Therefore, the

identification of key biomarkers and therapeutic targets
frontiersin.org

https://doi.org/10.3389/fsurg.2022.1027655
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


FIGURE 4

Stratified survival analysis of subgroups with different clinical parameters. (A) Age > 65. (B) Age ≤ 65. (C) Female. (D) Male. (E) White. (F) T1/T2. (G) T3/
T4. (H) N0. (I) N1–N2. (J) M0. (K) M1. (L) Stage I/II. (M) Stage III/IV.

Guo et al. 10.3389/fsurg.2022.1027655

Frontiers in Surgery 09 frontiersin.org

https://doi.org/10.3389/fsurg.2022.1027655
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


FIGURE 5

Nomogram predicting the OS of patients with CRC. (A) Univariate Cox regression analysis in TCGA cohort. (B) Multivariate Cox regression analysis in
TCGA cohort. (C) Nomogram predicting patient survival at 1, 3, and 5 years. (D) Calibration curves of nomogram. (E) DCA curve for predicting 3-year
survival of patients. (F) DCA curve for predicting 5-year survival of patients.
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affecting prognosis is essential for improving the clinical

outcomes in patients with CRC. As an important factor

involved in cellular metabolic reprogramming, UC is involved

in the genesis and development of various tumors, including

CRC (20), revealing its potential as a prognostic biomarker.

For the first time, we constructed and externally validated a

novel prognostic model that integrated eight genes associated

with UC. The genes constituting the prognostic model were

TIMP1, FABP4, MMP3, MMP1, CD177, CA2, S100P, and

SPP1 (Table 4).

TIMP1 has been shown to promote the progression of

multiple tumors (21–24). Studies in CRC have indicated that

upregulation of TIMP1 was associated with poor prognosis

and confirmed that TIMP1 can promote tumor cell

proliferation and metastasis through the FAK/Akt signaling

pathway (22, 25). FABP4 is a mediator of lipid metabolism in

adipocytes and can provide fatty acids to tumor cells (26).

FABP4 has been found to promote the progression of ovarian

cancer, cervical cancer, breast cancer, prostate cancer cell
Frontiers in Surgery 10
carcinoma, and oral squamous cell carcinoma (26–30). In

colorectal cancer, high expression of FABP4 has been found

to be closely related to tumor recurrence (31). However, one

study showed that FABP4 can inhibit the proliferation and

metastasis of CRC cells (32). In this study, high expression of

FABP4 was associated with a poor prognosis for CRC

patients, so the mechanism of FABP4 in CRC needs further

study. The bone bridge protein, SPP1, is a key ECM protein

involved in tumor progression and metastasis (33) that is

highly expressed in non-small cell lung cancer tissues (34),

significantly upregulated in glioma and hepatocellular

carcinoma cell lines, and associated with poor prognosis (35,

36). SPP1 expression is upregulated in CRC tissues and is

associated with the short OS of patients (37), which is

consistent with our experimental and predictive modeling

results. MMP3 is a member of the metalloproteinase family

along with MMP1, which affects tissue integrity by degrading

ECM components (21). MMP3 is a member of the

metalloproteinase family along with MMP1, which affects
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FIGURE 6

Functional enrichment of DEGs between high- and low-risk groups. (A) Volcano map of DEGs between high- and low-risk groups. (B) Heat map of
DEGs between high- and low-risk groups (C) Top 10 GO terms enriched by DEGs between high- and low-risk groups under BP, CC, and MF
subcategories. (D) KEGG pathways enriched by DEGs between high- and low-risk groups.
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tissue integrity by degrading ECM components (21). Studies

have shown that MMP3 can promote the metastasis of CRC

(38), melanoma (39), and breast cancer (40). However, studies

in CRC also found that the expression of MMP3 in patients

without metastasis was significantly higher than that in

patients with distant metastasis (41, 42). Our study also found

a higher expression of MMP3 in low-risk patients. It is

possible that MMP3 triggers tumor metastasis and the

expression of MMP3 decreases after the tumor metastasizes.

Previous studies have shown that MMP1 has potential as a

diagnostic and prognostic marker for CRC (43, 44). Several

studies have also confirmed that in CRC, the expression of

MMP1 is lower in metastatic CRC than in primary CRC (45,

46). It indicates that MMP1 may have a similar role to

MMP3, acting only in the initial stage of tumor metastasis
Frontiers in Surgery 11
and appearing to be less important once metastasis occurs.

Therefore, the specific mechanism of action of MMP3 and

MMP1 in colorectal cancer needs to be further studied.

CD177 is a glycosylphosphatidylinositol-linked cell surface

protein that is heterogeneously expressed by neutrophils, and

its expression is associated with good prognosis in breast,

prostate, cervical, and lung cancers (47). Studies have shown

that CD177+ neutrophils inhibit epithelial tumorigenesis and

serve as independent predictors of prognosis in patients with

CRC (48). CA2 is a factor that inhibits metastasis and EMT

and is associated with good OS in patients with hepatocellular

carcinoma (49). CA2 is lowly expressed in ulcerative colitis

and CRC tissues (50), and low CA2 expression is associated

with a better prognosis. S100P is highly expressed in various

solid tumors and associated with poor prognosis in CRC
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FIGURE 7

Differences in immune infiltrating cells between the high- and low-risk patients with CRC. (A) Rrelative percent of immune infiltrating cells in each
CRC sample. (B) Violin plot of immune infiltrating cells between high- and low-risk groups. (C) Correlation between UC-related prognostic genes and
differential immune infiltrating cells.
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(51, 52), breast cancer (53), pancreatic cancer (54),

cholangiocarcinoma (55) lung cancer (56), and ovarian cancer

(57). Our qRT-PCR results also indicated that S100P was

highly expressed in cancer tissues.

Our results showed that the risk score of the eight

DEUCRGs is an independent prognostic marker for CRC

patient survival. The survival rate of patients with CRC in the

high-risk group was significantly lower than that in the low-

risk group. The prognosis of the two risk groups differed in

subgroups based on age, sex, clinical stage, T-stage, lymph

node metastasis, distant metastasis, and race (Figure 4).

Univariate and multivariate Cox regression analyses were used

to further investigate the independent prognostic value of the

clinicopathological characteristics and risk score, and the

results showed that risk score, age, and T stage were

significant independent prognostic factors for CRC

(Figures 5A, B). An individualized prognostic prediction

model was then constructed using a nomogram to quantify

the individual risk in the clinical setting by integrating

multiple risk factors, including independent prognostic

factors, and calibration curves showed a high degree of

agreement between the actual and predicted OS rates. Based

on the above results, we suggest that our constructed

prognostic risk score model is a valid prognostic indicator for

patients with CRC.

GO and KEGG enrichment analyses of DEGs in different

risk groups were used to determine the roles of UC-related

biological processes and classical signaling pathways in
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different risk groups. As predicted, the results showed

significant enrichment of genes in biological processes, such

as muscle contraction, antimicrobial humoral response, and

muscle system processes (Figure 6C). Changes in ECM

components contribute to cancer progression, promote

tumor-associated angiogenesis and inflammation, and affect

the tumor microenvironment (58). Immune-related signaling

pathways and functions, such as the humoral immune

response and IL-17 signaling pathway, wernie also sigficantly

enriched (Figure 6D). One study showed that the UC is

associated with immunity (59). Single-sample GSEA scores

showed significant differences in immune cell infiltration

scores between the two risk groups. The proportions of B

memory cells, T regulatory cells, monocytes, and macrophages

M0 and M2 were elevated in the high-risk group, while the

proportions of CD4 memory resting and activated T cells,

plasma cells, activated dendritic cells, and neutrophils were

elevated in the low-risk group (Figure 7B). Different levels of

immune cell infiltration exist in different risk groups, and

these differences may be important factors affecting the

prognosis and treatment response of patients. These results

suggest that targeting UC-related genes can potentially

improve the immune status of CRC or promote

immunotherapy in CRC; however, further studies are needed

to confirm this.

Li et al. constructed a prognostic signature that included 25

long non-coding RNAs, but models incorporating too many

variables were difficult to implement, limiting their clinical
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FIGURE 8

Expression levels of UC-related prognostic genes in three datasets. Expression levels of risk model genes in (A) TCGA-CRC, (B) GSE39582, and (C)
GSE44076 datasets. **** p < 0.0001.
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application (60). In contrast, the predictive models that we

constructed may be easier to use in clinical practice. However,

this study also has some limitations. Firstly, the molecular
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mechanisms of how urea cycle-associated genes in prognostic

models affect the biological behaviour of colorectal cancer

cells require further experimental validation. In addition,
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FIGURE 9

Immunohistochemistry images of UC-related prognostic genes obtained from the human protein atlas (HPA) database.

FIGURE 10

Expression levels of eight UC-related prognostic genes in clinical tissues determined using quantitative reverse transcription-polymerase chain
reaction (qRT-PCR). (A) CD177 (B) carbonic anhydrase 2 (CA2), (C) fatty acid-binding protein 4 (FABP4), (D) tissue inhibitor of metalloproteinase-1
(TIMP1), (E) secreted phosphoprotein 1 (SPP1), (F) S100 calcium-binding protein P (S100P), (G) matrix metallopeptidase (MMP)-3, and (H) MMP1.
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

Guo et al. 10.3389/fsurg.2022.1027655
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although our prognostic model was confirmed using an external

dataset, further well-designed prospective studies are needed to

validate these findings. In future studies, we aim to focus on the

roles of these UCRGs in the prognosis of patients with CRC.
Conclusions

In conclusion, we developed and validated a novel

prognostic model based on the characteristics of eight UC-

related genes in CRC for the first time, which will be of great

significance in identifying prognostic molecular biomarkers,

clinical prognosis prediction, and treatment strategy decisions

for patients with CRC.
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