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ABSTRACT 

We aimed to identify circRNAs associated with Parkinson’s disease (PD) by leveraging 1,848 

participants and 1,789 circRNA from two of the largest publicly available studies with longitudinal 

clinical and blood transcriptomic data. To comprehensively understand changes in circRNAs we 

performed a cross-sectional study utilizing the last visit of each participant, and a longitudinal (mix 

model) analysis that included 1,166 participants with at least two time points. We identified 192 

circRNAs differentially expressed in PD participants compared to healthy controls, with effects 

that were consistent in the mixed models, mutation carriers, and diverse ancestry. Finally, we 

included the 149 circRNA in a model with a ROC AUC of 0.825, showing that have the potential 

to aid the diagnosis of PD. Overall, we demonstrated that circRNAs play an important role in PD 

and can be leveraged as biomarkers. 

 
BACKGROUND 

Parkinson's disease (PD) affects more than six million people worldwide, with a prevalence 

projected to double in the next decades.1 It is a neurodegenerative disease clinically defined by 

resting tremor, rigidity, bradykinesia, and postural instability.2 Pathologically, it is characterized 

by Lewy bodies (LB) and neurites that are composed by aggregated and phosphorylated alpha-

synuclein (α-Syn) and the degeneration of substantia nigra. Its cause is not fully understood yet. It 

is known that there are both genetic and environmental risk factors, but the complete causal 

pathway, or pathways, still remain elusive.  

Circular RNAs (circRNAs) are non-coding RNAs that are the result of backsplicing events that 

take place during the maturation of linear RNA and lead to the creation of a covalently closed loop 

and an increase in their stability.3–6 They are highly expressed in the nervous system, especially in 

synapses7 and have a role in neuronal development and aging.5 Even though their exact function 

is still to be deciphered, many functions have been already attributed to circRNAs. They have been 

found to act as miRNA sponges to regulate gene expression, interact with proteins, and to generate 

protein products among many others.3,4,7–12 Additionally, they are differentially accumulated in 

several pathological states, including that of the central nervous system diseases3,4,7–12, such as PD. 

In healthy conditions, the substantia nigra accumulates circRNA in an age-related manner. That 

accumulation is lost in PD, with a reduction on the overall number of circRNAs.11 The same study 

by Hanan et al. identified 23 circRNA differentially expressed in not only substantia nigra, but 

also medial temporal gyrus and amygdala from PD affected brains compared to controls.11 In 

blood, a study comparing four PD cases and four controls described 129 circRNAs up-regulated, 

and 282 down-regulated13 in PD participants compared to controls. The circRNA host genes of the 

identified circRNAs were enriched in PD terms according to the Kyoto Encyclopedia of Genes 

and Genomes (KEGG). More recently, a high throughput study found three circRNAs 

downregulated in PD blood. Unfortunately, they were unable to replicate the results in an 

independent cohort.14 A study analyzing 87 circRNA from Peripheral Blood Mononuclear Cells 

(PBMCs)  in 60 PD participants and 60 controls identified six circRNA downregulated in PD.10 

Finally, they used four of them to build a classifier that showed an Area Under the ROC curve 

(AUC) of 0.86, which adds evidence to the potential leverage of circular RNAs as biomarkers for 

neurodegenerative diseases. 
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Currently, PD is diagnosed based on clinical and neuroimaging criteria, and then monitored using 

clinical tests that assess the motor and non-motor symptoms of the disease. However, there are no 

molecular diagnostic or prognostic biomarkers available for PD, or in general, for most of the 

neurodegenerative diseases.15 Circular RNA are highly stable and very abundant in the brain, 

which means they can potentially leak to the CSF or blood via blood brain barrier breakdown.16 If 

informative, circRNA can be measured by real-time PCR, are stable due to being circular, and can 

be measured in blood, qualities highly desired in biomarker development.6,15  

To date, there is one high-throughput screening of circRNAs in blood of PD individuals, which 

focused on early-stage PD.14 Outside of the high-throughput realm, there are targeted analyses 

using PBMC with promising results.100   In here, we have quantified circRNAs in blood from the 

two largest longitudinal studies, the national Institute of Neurological Disorders and Parkinson’s 

Disease Biomarkers Program (PDBP)17, and the Parkinson’s Progression Markers Initiative 

(PPMI)18, to describe the landscape of circRNAs in blood of PD participants compared to controls 

and evaluate their value as diagnostic and prognostic biomarkers. 

 

MATERIAL & METHODS 

Study Design 

We accessed the largest PD blood RNAseq datasets publicly available to date from the PDBP and 

PPMI studies. After raw data processing and stringent quality control, we compared the circular 

transcriptome between European Ancestry PD participants and controls to identify differentially 

abundant circRNAs. We leveraged the PDBP dataset (N=1,177) for discovery and PPMI (N=671) 

for replication, followed by meta-analyses. We used gene-collapsed circRNA counts in the 

analyses and corrected all p-values using Benjamini-Hochberg (FDR) correction. Then, we 

investigated if the identified circRNAs were also associated with disease progression by 

performing longitudinal analyses of the RNAseq data collected across five visits. To confirm that 

the findings were not due to differences in cell proportions, or originated from the linear 

transcriptome, we performed the same analyses including cell proportions calculated using digital 

deconvolution, and on the linear transcriptome. Then we investigated if the same circRNAs were 

differentially abundant in the African Ancestry individuals available in PDBP and PPMI. To assess 

if changes in circRNA accumulation can be observed prior to symptom onset, and thus if circRNA 

had a potential to be used as early stage biomarkers, we evaluated the trajectory of the identified 

circRNAs in individuals at high risk of PD (known PD-related mutation carriers and participants 

with REM sleep Behavior Disorder (RBD) or hyposmia). We evaluated if the most promising 

circRNAs, whose accumulation wasn’t affected by cellular composition or medication, associated 

with disease severity. To do so, we tested their association with the Unified Parkinson’s Disease 

Rating Scale (UPDRS) Part III or motor examination (UPDRS-III), and cognitive status measured 

by The Montreal Cognitive Assessment (MoCA). Additionally, and to understand the biology of 

the identified circRNAs, we performed data integration with microRNA quantification (miRNA) 

and in-silico functional analyses. And finally, to assess their diagnostic capacity in early stages of 

the disease, we developed machine learning models to identify those circRNAs more relevant in 

the prediction task. A summary of the study design can be found in Figure 1. 
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Dataset Description 

The present study includes two independent and publicly available datasets with longitudinal 

clinical and transcriptomic data available: PDBP17 and PPMI18. Both are observational and multi-

center studies aimed at identifying biomarkers of PD progression and improving the understanding 

of PD pathobiology. Participants (N=1,848; Table 1) are followed longitudinally with clinical 

assessments, imaging, and biospecimen collection every six months. To assess the accumulation 

of circRNA, we maximized our dataset and clinical differences by selecting the last assessment of 

each participant. We have included a total of 717 cases and 460 control participants of European 

descent with RNAseq data available from the PDBP study (Table 1) as discovery, and 528 cases 

and 143 control participants of European descent form the PPMI study (Table 1) to identify 

circRNA differentially accumulated in the blood of cases compared to controls. Unsurprisingly, 

both datasets had slightly higher proportion of male participants (>60%), with the exception of 

healthy control participants in PDBP, with more than 50% of females. Further, PDBP and PPMI 

participants are similar in terms of symptom severity as measured by UPDRS-III and MoCA. 

Regarding UPDRS-III scale, 75% of healthy controls present scores between 0-2, whereas 75% of 

symptomatic participants score between 16-33 as expected. MoCA scores vary less between 

healthy controls and symptomatic participants, with a narrow range of means between 25-27 

(Table1). This is probably due to the enrolment of recently diagnosed individuals in both studies, 

in other words, individuals at the beginning of the disease which may or may not develop dementia 

in the future. We have leveraged the participants with African descent (N=68) from the PDBP 

(N=50) and PPMI (N=18) studies to investigate if the findings are ancestry independent 

(Supplemental Table 1). 

Longitudinal RNAseq data was available for 1,846 unique participants across five visits in both 

PDBP and PPMI studies (Table 2). Visits in PDBP were six months apart, while PPMI participants 

were followed every 6 months during the first year, and every twelve months thereafter. Mean age 

of PDBP participants with more than one visit is greater than that of PPMI participants. PDBP 

cohort is more evenly distributed between sexes, with 40-50% of female participant across visits, 

while PPMI consists of 30-40% female participants. PPMI dataset also consisted of participants 

with PD-associated mutations and participants with risk-related PD syndromes, RBD (N= 25) or 

hyposmia (N=18) (Supplemental Table 2). LRRK2 mutations were the most prevalent in both 

symptomatic (N=125) and at risk (N=150) participants; more than 50% were female, with mean 

age >60, similar to sporadic PD participants (Supplemental Table 2). In contrast, SNCA mutation 

carriers were the least prevalent (N=11 symptomatic and N=3 at risk participants) with mean age 

<55, notably lower than other participants (Supplemental Table 2). 

Data Processing and Quality Control 

We accessed raw transcriptomic data from a total of 6,362 ribodepleted blood RNA samples from 

1,848 unique participants from the PDBP and PPMI studies.  Data generation, processing, and 

quality control for these datasets have been described elsewhere (REF). Due to the lack of 

availability of circular counts, we re-processed the raw files using our inhouse pipelines to obtain 

linear and circular counts (REF). For linear counts, we followed the TOPMed pipline using the 

GRCh38 genome reference and the GENCODE 33 annotation7,19 

(https://github.com/broadinstitute/gtex-pipeline/blob/master/TOPMed_RNAseq_pipeline.md).  

Briefly, the raw reads were aligned to the human reference genome using STAR (v.2.7.1a)20 and 

alignment quality was evaluated using sequencing metrics calculated using Picard tools (v.2.8.2).21 
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Gene expression was quantified using Salmon (v.1.2.0).22 All transcripts or genes with less than 

ten reads in more than 90% of the individuals were removed from the analyses. All transcripts 

were collapsed to gene level for analysis. 

Circular RNA detection, annotation and quantification was performed using Detect CircRNA from 

Chimeric Reads (DCC v.0.4.8)23 using the software developer guidelines and as described 

previously.24 Shortly, the raw reads were aligned a second time to the human reference genome 

(GRCh38) using STAR20 in chimeric alignment mode. Similar to linear RNA, circRNAs were 

collapsed by host gene prior to analyses. CircRNAs with missing counts in more than 75% of the 

samples were removed from the analyses. We processed the samples from each visit and study 

separately.  Finally, we integrated the circRNA counts for each study (Supplementary Figure 1A 

and 1B). For each study separately, we calculated Principal Component Analysis (PCA) using the 

500 most variable circular transcripts and removed samples that were more than three-standard 

deviations from the mean of PC1 or PC2 (Supplemental Figure1C and 1D). To normalize the 

counts, we used DESeq225 to adjust for library complexity and variance stabilizing transformation 

(vst) to obtain the final count matrix. As an additional QC step, we calculated count ratios between 

circRNAs and linear RNAs and kept only those circRNAs that had circRNA:linear RNA ratio of 

at least 0.1 in three or more samples.
7 Only circular transcripts that passed QC in both PDBP and 

PPMI datasets were included in the analyses (N=1,789). 

Cross-Sectional Differential Abundance Analysis 

We performed cross-sectional differential abundance analyses using DESeq2.25 To maximize the 

detection of differentially abundant circular transcripts due to PD and taking into consideration the 

longitudinal nature of PDBP and PPMI, we included one sample per individual, corresponding to 

the most recent visit, regardless of mutation status. No at-risk individuals were included in this 

analysis. All analyses were adjusted by sex and age at draw. Following discovery in the PDBP and 

replication in the PPMI dataset, we meta-analyzed the results using the R package metaRNAseq.26 

Only circRNAs with same direction of effect in both PDBP and PPMI datasets were considered 

for meta-analyses. All p-values were multiple test corrected using the FDR correction. FDR p-

values below 0.05 were considered significant. 

To ensure the robustness of the results, and that they were not driven by differences in cellular 

composition, EPIC27 was used to obtain the cell proportions, and those included in the model. 

Similarly, to evaluate if the findings could be driven by changes on the linear forms of the host 

genes, we performed the same analyses described above including the linear counts. Medication 

can be another confounding factor, thus we wanted to understand if PD medication (L-Dopa or 

Dopamine Agonist) had any impact on the differential accumulation. In consequence, and similar 

to what we did for cellular composition and linear counts, we adjusted the analyses by the 

participants medication status (yes or no) and evaluated if the association was still significant. 

Medication information is difficult to obtain and harmonize. We had access to individual data for 

the PPMI study only, that we curated manually.  

Cross-Sectional Sensitivity Analyses 

To better understand the role of the identified circRNA in the disease, we assessed whether the 

counts of the circular transcripts identified in the cross-sectional analyses were correlated with 

UPDRS III or MoCA for those participants with the data available. Finally, to investigate if there 

was any difference between sporadic PD and mutation carriers in regard to circRNA abundance, 

we performed sensitivity analyses by dividing the population is smaller groups (LRRK2, GBA, or 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 23, 2024. ; https://doi.org/10.1101/2024.01.22.24301623doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.22.24301623
http://creativecommons.org/licenses/by-nc/4.0/


6 
 

SNCA mutation carriers) and compared the circRNA counts to those of healthy controls or non-

mutation carriers. Additionally, we leveraged data from at risk participants (PPMI participants that 

carry a known PD mutation but have not been diagnosed with PD or that suffer from RBD or 

hyposmia) to test if the significant circRNAs were differentially accumulated in early stages of the 

disease compared to healthy controls.  

To leverage the diversity that these datasets include, we performed circRNA differential 

expression analyses, focusing on the findings from the cross-sectional differential abundance 

analysis, in participants of African ancestry following the methodology described above. Given 

the limited participants available, and to maximize our statistical power, we combined participant 

data that passed QC from both PDBP and PPMI datasets (N=14 PD participants and N=17 healthy 

controls). 

Longitudinal Differential Abundance Analysis 

To harness the longitudinal characteristics of the two studies included in this manuscript we use 

mixed models to perform differential abundance analyses. We included participants from PDBP 

(N=547) and PPMI (N=619) datasets with at least two clinical visits and RNAseq available after 

QC regardless of mutation status. We modeled the trajectories using linear mixed model with 

counts×time as the interaction term. All analyses were adjusted by circular transcript counts at first 

visit, sex, and age at draw. Participant ID was used as random effect. The overall approach was 

similar to the one described above but focusing on the circular transcripts that were found 

significant in the cross-sectional analyses. Briefly, PDBP and PPMI were tested separately to 

perform a subsequent meta-analysis using only European ancestry cases and controls. Then, we 

explored if the linear transcripts, the cell proportion, or medication had an influence on the results. 

We investigated if the longitudinal circRNA counts for each of the transcripts was correlated with 

disease severity progression measured by UPDRS III and MoCA. Unfortunately, the number of 

African ancestry individuals with at least two visits was very limited (N=16), thus no testing on 

diverse ancestry was performed. All p-values were FDR adjusted based on the number of circular 

transcripts identified in the cross-sectional.  

In-Silico Functional Study 

We explored the biological implications of the identified circRNA accessing the Circular RNA 

Interactome website28 (accessed July 2023, last database update January 30th 2020) to predict 

which miRNAs have the potential to be targeted by each of the circRNA species identified in the 

present study. To reduce the number of miRNA, and since miRNA sequence data is available for 

the PPMI dataset, we explored if the counts of any of the predicted miRNA were correlated with 

the circRNA counts to identify the ones that are more likely to have biological consequences. After 

accessing the available miRNA count data from the PPMI study and filtering the low count miRNA 

data (standard quality control parameter of at least five counts in 90% of the sample). The miRNA 

counts were normalized using DESeq225 and the vst function (similar to what was described for 

the circular and the linear RNAs). We used Pearson correlation to assess which of the predictions 

hold true at biological level. With the list of most significant miRNAs correlated with each 

circRNA, we performed pathway analyses, grouped by circRNA, using the microT-CDS algorithm 

and the Kyoto Encyclopedia of Genes and Genomes (KEGG) form the DIANA mirPath software 

version 329, to identify pathways regulated by the miRNAs and, consequently, the circRNAs 

targeting them. 
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Predictive model development and evaluation 

We tested whether circRNA levels can be used to differentiate between early-stage PD and healthy 

controls. To do so, we focused on samples from the first visit in PDBP (N= 528) and PPMI 

(N=617) datasets, and 2,849 circRNAs shared between the two datasets in the first visit. We 

employed several linear and non-linear machine learning approaches: L1 and L2 regularization as 

implemented in the glmnet R package30,31, random forests from the Ranger R package32, and the 

MiniPatch learning algorithm.33 Since L1 regularization, Ranger and MiniPatch algorithms have a 

built-in feature selection, the whole set of 2,849 circRNAs was used as input for all these methods. 

L2 regularization does not perform any internal feature selection, so we supplied it with counts for 

the best performing L1 regularization, Ranger and MiniPatch models. Hyperparameters of Ranger 

and MiniPatch were optimized by using a grid search over a subset of possible hyperparameter 

values. The best model was selected based on the best ROC-AUC and testing balanced accuracy 

out of 10 repeated 10-fold cross-validation experiments. 

 

RESULTS 

CircRNA are differentially accumulated in blood of PD cases compared to controls. 

To identify circRNA differentially accumulated in the blood of PD cases compared to controls, we 

used a cross-sectional approach, selecting the most recent blood sample available per individual. 

We included 1,177 PDBP participants as discovery (Ncases=717; Ncontrols=460) and 671 from PPMI 

as replication (Ncases=528; Ncontrols=143; Table1, Figure1). Meta-analyses revealed 192 circRNAs 

to be differentially accumulated when comparing cases and controls after multiple test correction 

(Figure 2A, Supplemental Table 3). Of those, 71 were nominally significant in both the discovery 

and the replication dataset. Moreover, nine were significant after multiple test correction in both 

datasets (Figure 2B), on which we focused for downstream analyses.  

Since we are analyzing whole blood trasncriptome, we repeated the analysis including cell 

proportions. Only circCCDC91 (log2FC=0.263, p=0.253; Supplemental Table 4), was associated 

with differences in cellular composition. This association was driven by neutrophils (p<2×10-16), 

CD4+ T-cells (1.76×10-10) and monocytes (p=9.54×10-7). Medication is another key component 

that might be affecting the transcriptomic landscape. Even though medication is collected in both 

datasets, detailed and comprehensive medication information was only available for PPMI. The 

association of three circRNAs, circITGAX (log2FC=0.062, p=0.515), circPADI4 (log2FC=0.177, 

p=0.231), and circNCF1 (log2FC=0.183, p=0.095) (Supplemental Figure 2; Supplemental Table 

4) seem to be driven by the presence of medication and not the disease per se. Finally, this resulted 

in a total of five high-confidence circRNAs, circAFF2, circETFA, circFAM13B, circSPI1 and 

circSUZ12 (Figure 2, Supplemental Table 4), that were followed up in further analyses. 

Next, we verified that linear RNA counts might be driving our results by evaluating their 

differential accumulation using the same model. None of them was significant, except for 

FAM13B. We observed decreased levels of circFAM13B in PD (log2FC=-0.212, p=3.97×10-4), but 

as previously described13, we found that the linear form of FAM13B (log2FC=0.036, p=3.99×10-

5) was also differentially accumulated in PD cases compared to controls. To understand if the 

signal was driven by the linear form of FAM13B, we included in the analyses both the linear and 

the circular RNA counts in addition to other covariates. Both forms of FAM13B, linear 
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(log2FC=0.043, p=5.73×10-6) and circular (log2FC=-0.201, p=4.35×10-7), remained significant, 

suggesting that both participate in the association. The remaining linear RNA were not 

significantly associated with PD in their linear forms (Supplemental Table 5). 

Finally, we explored the effect that diverse ancestry has on circRNA accumulation and found that 

none of the five circRNAs were statistically significant in the comparison. However, given the 

limited sample size, the analysis is probably lacking statistical power. Thus, we evaluated if the 

direction of effects was consistent. Four of the five identified circRNAs, circAFF2, circETFA, 

circSPI1 and circSUZ12, were consistent in their effect direction, which suggests that the findings 

are not ancestry dependent (Supplemental Table 4). 

CircRNA accumulation corelates with symptom severity 

We evaluated if any of the identified circRNA were correlated with PD severity measured by 

UPDRS-III, or neurocognitive decline measured by MoCA (Table 1). We considered correlations 

significant if nominal p-value was lower than 0.05. CircSPI1 showed a significant correlation with 

UPDRS-III (p=1.4510-7; r2=0.015), along with circAFF2 following closely (p=1.1410-6; 

r2=0.013). Interestingly, circITGAX (p=2.8110-8; r2=0.017), circNCF1 (p=3.5310-9; r2=0.019) 

and circPADI4 (p=1.1410-8; r2=0.018), which were found to be associated with medication, also 

showed significant correlation with UPDRS-III. Regarding cognitive measurements, we found that 

circAFF2 was significantly correlated with MoCA (r2=0.003; p=0.031), again, with a moderate 

correlation value (Supplemental Table 6). 

CircRNA accumulation does not reflect disease-associated changes over time in individuals with 

Parkinson’s Disease 

Given the longitudinal design of both the PDBP and PPMI studies, we have also investigated 

circRNAs using mixed models to identify circular transcripts that change over time. We included 

547 PDBP participants (Ncasses=376, Ncontrols=171) and 617 PPMI participants (Ncasses=474, 

Ncontrols=143) with at least two visits available for each participant (Table 2) and then performed 

the meta-analysis. When evaluating the intercepts of the mixed model, they were correlated with 

what we identified in the cross-sectional analysis (Supplemental Figure 3, Supplemental Table 7), 

supporting our findings that there are changes in circRNA landscape associated with the presence 

of the disease. When evaluating significance for the five circRNAs identified in the cross-sectional 

study, none of them remained significant in their interaction with time. However, all five were 

consistent in the direction of effect in the interaction term compared to cross-sectional results 

(Figure 1B, Supplemental Table7). Overall, given the fact that the intercepts were found 

significant, it suggests that the levels of the five circRNAs do not change over time but due to the 

presence of the disease. In the meta-analysis, we identified 170 circRNAs with significantly 

different trajectories between PD and cases. The three most significant findings in the interaction 

term were circGPBP1L1 (beta=0.059, p= 1.35110-4), circLAMP1 (beta=0.020, p= 5.46710-4) 

and circC1GALT1 (beta=-0.099, p= 6.85910-4) (Supplemental Table 7). 

Mutations in LRRK2, GBA, and SNCA influence the circRNA landscape 

We investigated if there were differences between mutation carriers and sporadic PD cases in the 

accumulation of the five circRNAs identified in the cross-sectional analysis, in other words, if 

mutations were contributing to the association. We found that three of the five circRNAs, 

circAFF2, circSUZ12, and circSPI1, were differentially accumulated in both sporadic PD and 

mutation carriers (Supplemental Table 4), though their expression was significantly impacted by 
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mutation status (circAFF2 log2FC=0.286, p=1.752×10-6; circSUZ12 log2FC=-0.258, p= 7.106×10-

3; circSPI1 log2FC=0.309, p=6.699×10-7). In contrast, circFAM13B was differentially accumulated 

in mutation carriers (log2FC=-0.577, p=6.238×10-11) but not in sporadic PD, suggesting that the 

signal identified in our previous analysis was driven by the familial form of the disease. The 

opposite was true of circETFA which was significant in sporadic PD (log2FC=-0.190, p=0.002) 

and not in mutation carriers (Supplemental Table 4). When broken down by mutation, 

circFAM13B was differentially accumulated in both LRRK2+ (log2FC=0.252, p=0.003) and GBA+ 

(log2FC=−0.749, p=4.370×10-8), whereas circAFF2 (log2FC=0.776, p=1.467×10-4) was 

differentially accumulated in SNCA+ carriers only (Supplemental Table 4). Altogether, suggesting 

the presence of heterogeneity in the circular transcriptome in relation to PD genetic background.  

We followed the same approach using the longitudinal data. None of the five circRNAs were 

significant in the interaction term between disease status and time in sporadic PD participants, but 

one, cirAFF2 (beta=0.085, p=6.955×10-3), was significant (Supplemental Table 8) in mutation 

carriers. Direction of effect was largely consistent with previous observations in both sporadic and 

familial cases, with the exception of circETFA which had opposite effect in mutation carriers 

(beta=0.030, p=0.411; Supplemental Table 8). Divided by gene, two out of five circRNAs, 

circAFF2 (beta=0.072, p=0.036) and circFAM13B (beta=−0.106, p=0.028) were associated with 

the interaction term in LRRK2+ mutation carriers, and circAFF2 (beta=0.341, p=0.015) in GBA+ 

carriers (Supplemental Table 8), suggesting that the circAFF2 association might be driven by the 

GBA+ carriers. Longitudinal analyses were not possible for SNCA+ carriers due to very limited 

sample size (N=8).  

circRNA accumulation starts before symptom onset 

We examined whether changes in circRNA accumulation can be observed in participants who are 

at high risk of developing PD, namely carriers of known PD-related mutations that have not been 

diagnosed, or those who show known PD associated syndromes like, RBD or hyposmia. These 

analyses were done in the PPMI dataset exclusively due to prodromal participant availability, and 

included 150 LRRK2+, 87 GBA+, and three SNCA+ mutation carriers, along with 25 participants 

exhibiting RBD, and 18 participants with hyposmia. Similar to symptomatic participants, we found 

that circAFF2, circFAM13B, circSUZ12 and circSPI1, were differentially expressed in LRRK2+ 

(circAFF2, log2FC=0.294, p=1.42×10-4; circFAM13B, log2FC=-0.389, p=3.80×10-5; circSUZ12, 

log2FC=-0.476, p=7.09×10-5; circSPI1, log2FC=0.348, p=5.01×10-5) and GBA+ (circAFF2, 

log2FC=0.270, p=0.002; circFAM13B, log2FC=-0.548, p=4.38×10-7; circSUZ12, log2FC=-0.714, 

p=1.73×10-6; circSPI1, log2FC=0.321, p=0.001) carriers compared to healthy controls 

(Supplemental Table 9). Additionally, circETFA (log2FC=−0.177, p=0.045) was associated with 

GBA+ carriers (Supplemental Table9). Further, we found four circRNAs, circAFF2 (log2FC=0.507, 

p=4.030×10-4), circFAM13B (log2FC=-0.477, p=0.006), circSPI1 (log2FC=0.562, p=5.260×10-4) 

and circSUZ12 (log2FC=-0.469, p=0.048), differentially expressed in participants with RBD, and 

three circRNAs, circAFF2 (log2FC=0.317, p=0.046), circFAM13B (log2FC=-0.406, p=0.026) and 

circSPI1 (log2FC=0.428, p=0.023), differentially accumulated in participants with hyposmia. 

Next, we compared circRNA expression between at risk and symptomatic participants and found 

that two circRNAs, circAFF2 (log2FC=0.178, p=0.022) and circSPI1 (log2FC=0.168, p=0.038), 

were associated with disease status in symptomatic compared to at risk LRRK2+ carriers and one, 

circAFF2 (log2FC=0.299, p=0.011), in GBA+ carriers (Supplemental Table  9), suggesting that the 

cirRNA changes occur prior to symptom onset.  
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Targeted miRNAs analysis suggests involvement of circRNA in known PD related pathways 

To better understand the biological implications of the five circRNAs identified in the previous 

analysis, we listed their predicted miRNA targets using CircInteractome web tool28. By doing so, 

we obtained a list of 282 miRNA targets for circAFF2, 96 for circETFA, 178 for circFAM13B, 26 

for circSPI1, and 313 for circSUZ12. To ensure the biological relevance of the analyses and reduce 

the number of miRNAs, we leveraged the miRNA counts available in the PPMI dataset. We 

performed correlation analyses between normalized circRNA and normalized miRNA counts to 

retain the miRNA binding sites with biological evidence (p<0.05 for the correlation between 

circRNA and miRNA) for downstream analyses. We reduced the miRNA targets to 27 miRNAs 

for circAFF2, 7 miRNAs for circETFA, 20 miRNAs for circFAM13B, two miRNAs for circSPI1, 

and 30 miRNAs for circSUZ12 (Supplemental Table10). We then performed pathway analyses 

with DIANA mirPath using the 61 miRNAs as input. We observed enrichment in several KEGG 

terms such as dopaminergic synapse34–36 (p=5.411×10-4) and long-term depression37 (p= 6.20×10-

5), both of them previously associated with PD, and enriched with miRNAs associated with four 

of the five circRNAs (Supplemental Table11). Another term that we found enriched in miRNAs 

correlated with all five circRNAs is the Hippo signaling pathway (p=7.68×10-8) (Supplemental 

Table 11), which has previously been described to play a role in ischemia-associated CNS diseases 

and PD38,39. Ubiquitin mediated proteolysis, suspected to be impaired in PD and contributing to 

Lewy body formation40–42, was also found enriched (p=6.32×10-3) for miRNAs targeted by three 

of the five circRNAs (Supplemental Table 11). Together, these findings add evidence to the 

potentially role of circRNAs in PD pathogenesis. 

CircRNAs are informative as biomarkers of early stages of Parkinson’s disease to potentially aid 

clinical diagnosis 

To test whether circRNA levels can be used to differentiate between early-stage PD and healthy 

controls, we developed and evaluated several predictive models. We included first visits from both 

PDBP (N= 528) and PPMI (N=617) datasets. We evaluated two linear, L1 and L2 regularization, 

and two non-linear, random forests and MiniPatch, machine learning approaches. MiniPatch 

model with 149 circRNAs performed best (AUC=0.825; Supplemental Figure 5), followed by L2 

regularization with 227 circRNAs (AUC=0.784; Supplemental Figure 5). Interestingly, 51 

circRNAs are shared between the two models.  

DISCUSSION 

In this study we leveraged publicly available longitudinal blood RNAseq data from two of the 

largest PD studies to date, PDBP and PPMI, to identify circRNAs that were differentially 

accumulated in relation to PD. Recent studies have also investigated circRNA differences in brain 

and blood of PD patients with interesting results, though limited in power.13,14 To our knowledge, 

the present study is the largest to date (N=1,848 subjects, and N=4,833 samples), consisting of two 

large studies, PDBP, and PPMI, with samples and data collected consistently for each of them. 

Additionally, the design of the cross-sectional analysis attempted to maximize differences between 

cases and controls by including the last visit of each individual instead of baseline as previous 

reports.14 By including the last visit, the disease is more advanced, and thus the differences are 

potentially more pronounced. Finally, and for the first time in PD, we have taken into consideration 

the longitudinal design of the study and included multiple observations per participant to not only 

identify circRNA that are potentially differentially accumulated but also find those that change 

with time and have the potential to be leveraged to follow the progression of the disease.  
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Overall, we identified five high-confidence circRNA transcripts, circAFF2, circETFA, circSPI1, 

circSUZ12, and circFAM13B, that were associated with PD at the time of the last visit whose 

association was not caused by cellular composition differences or medication use. Given the 

longitudinal nature of the data, we also evaluated how the five circRNAs related with the 

advancement of the disease. Despite the lack of statistically significant association between at the 

interaction term level, all direction of effects were consistent between cross-sectional and 

longitudinal suggesting that the mixed model might be underpowered, and the circRNAs might 

potentially change with disease. When contextualizing biologically he findings by predicting 

miRNA binding sites, we observed an enrichment in dopaminergic synapse term. It is well 

established that PD is caused by the death of dopaminergic neurons34–36, thus, it is plausible to 

think that circRNAs might be participating as regulatory molecules. Strikingly, the neuronal death 

happens in brain, but we are capturing the signal in blood, suggesting that those changes are being 

captured as the result of blood-brain barrier disruption.16 Additionally, we found Hippo 

pathway38,39, which has already been linked with PD, to be enriched in conjunction to all our 

circRNAs. Together with enrichment in other PD-associated pathways such as long-term 

depression and ubiquitin-mediated proteolysis, these results show that blood circRNAs reflect 

changes related to PD pathobiology, potentially leaking from the brain. Finally, the circRNA not 

only capture relevant biological events, but we have leveraging 149 of them to accurately 

differentiate PD from healthy controls, with an AUC of 0.825. 

We further evaluated our findings in diverse genetic backgrounds, finding that both ancestry and 

mutation carrier status contributed to PD circRNA landscape. Though our results point to shared 

circRNA expression patterns between participants of African and those of European ancestry, there 

is an urgent need to increase the diversity of the cohorts to not only validate our findings, and those 

from others, but also to understand better the pathobiology underlying PD.  

FAM13B was found to be differentially expressed in PD brains but not in blood.43 Interestingly, 

another study including eight participants did report the dysregulation of FAM13B in blood.13 In 

the present study with more than 1,800 subjects, we observed changes in FAM13B in blood of PD 

participants, confirming that FAM13B is indeed differentially accumulated in the blood. 

Additionally, we also report that the circular form of FAM13B is differentially accumulated in 

blood of PD participants compared to controls. Overall, these findings suggest that FAM13B is a 

key player in PD pathogenesis. The presence of circular forms suggests that there are tightly 

regulated processes associated with this gene. Looking at longitudinal data, circFAM13B was 

significant in the disease:time interaction term in LRRK2+ carriers, but not other participants with 

the familial form of PD. This could indicate that while circFAM13B does correlate with PD 

diagnosis in all mutation carriers, it does so via a different process in LRRK2+ which more closely 

reflects the advancement of the disease.  

SPI1, a transcription factor involved in myeloid cell development and function, is known for its 

role in Alzheimer’s disease (AD).44 Given its association with AD, and our findings, circSPI1 was 

found associated with PD independently of medication and cell counts, we investigated if the 

association with PD status might be driven by cognitive function measured by MoCA. 

Unfortunately, the correlation was not significant. Despite the negative results and given the close 

to normal values of MoCA in the population included in this study, it is plausible to think that this 

correlation might become significant once the disease advances. Alternatively, circSPI1 might 

influence PD differently than AD, or even have a different function than the linear form, thus 

explaining the lack of association.  
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Among the novel circRNA associations described in this paper, several of the host genes have not 

been previously linked to PD. For example, AFF2 hasn’t been previously reported in PD, but it 

has been reported to contribute to axonal degeneration and TDP-43 pathology in frontotemporal 

dementia (FTD) and amyotrophic lateral sclerosis (ALS).45 Given the involvement of AFF2 in 

neurodevelopment46,47 and neurodegeneration45, it would be reasonable to postulate that circAFF2 

is integral to proper functioning of the nervous system as well. This is further supported by our 

finding of circAFF2 being significantly differentially expressed, including across different genetic 

backgrounds, with consistent direction of effect. 

Regarding PD-related mutation, this study included participants with mutations in LRRK2, GBA 

and SNCA genes. The most common LRRK2 mutation, Gly2019Ser, leads to constitutive activation 

of LRRK2, which leads to activation of neuronal death pathway, and possibly upregulation of 

SNCA.48,49 On the other hand, the most common SNCA mutations are copy-number mutation, more 

specifically duplications.50 Altogether, it is not surprising to observe such heterogeneity in 

circRNA landscape, as regulatory pathways that are triggered by LRRK2 mutation to bring about 

PD, might not be affected in SNCA mutation carriers, given that SNCA is downstream from LRRK2. 

Our findings regarding circFAM13B, circSPI1, and circSUZ12 that are significantly associated 

with LRRK2 mutation carriers, but not SNCA seem to support this hypothesis. Differences in 

pathway regulation between LRRK2 and SNCA mutation carriers are further emphasized by 

opposing directions of effect of circETFA in the two. Mutations in GBA gene lead to decrease in 

GCase enzyme activity, resulting in lysosome malfunctioning. GCAse impairment has been 

suggested to promote alpha-synuclein accumulation in PD. This points to possible overlap between 

regulatory pathways, that involve circFAM13B, circSPI1, and circSUZ12, that are differentially 

accumulated in GBA and LRRK2 mutation carriers, potentially leading to increased alpha-

synuclein pathology in both. Further analyses in a larger sample would be required to verify these 

findings. 

This study had several limitations. While we had access to the two largest longitudinal datasets 

(4,833 samples, 1,789 circRNAs), longitudinal analyses are underpowered, and larger sample sizes 

are needed to appropriately power these analyses. Likewise, the number of African American 

participants, at-risk individuals, or mutation carriers was very limited, thus we did not perform de 

novo discovery in these groups, but rather leveraged them to validate the main findings. Further 

efforts are needed to actively recruit participants from diverse backgrounds. Furthermore, mutation 

and medication data were absent from the PDBP dataset, along with the recruitment of “at risk” 

individuals, which did not allow for a straight comparison of the two populations. Finally, we are 

repurposing traditional RNAseq data to identify and quantify circRNAs, rather than purifying and 

subsequently sequencing circRNAs. Despite the need for some additional analysis and validation 

in the future, we have successfully replicated findings from other groups, supporting the validity 

of this approach. 

In conclusion, this is the largest study to date describing and biologically contextualizing the 

circRNA landscape in blood in relation to PD. We identified and replicated five circRNAs 

differentially accumulated in PD compared to healthy controls and linked to biologically pathways 

relevant for the disease. Despite the limitations, we have performed several sensitivity analyses to 

account for ethnic and disease diversity demonstrating that circRNA not only have a biological 

role in PD but can also be leveraged as biomarkers to potentially aid in the clinical diagnosis. 
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Figures and Tables: 
 

 

Table1. Demographic characteristics corresponding to the European descent individuals included in the cross-

sectional analyses. 

 

Parkinson’s Disease Biomarker 

Program (PDBP) 

Parkinson’s Progression Markers 

Initiative (PPMI) 

  Healthy Controls Parkinson’s Disease Healthy Controls Parkinson’s Disease 

Participants (N) 460 717 143 528 

Mean age (IQR) 
62.83 

(56.00-71.00) 

65.85 

(60.00-72.00) 

63.93  

(59.00-71.00) 

64.33 

(57.75-71.00) 

Female (N, %) 
251 

(54.56%) 

269 

(37.52%) 

52 

(36.36%) 

203 

(38.45%) 

Mean UPDRS-III 

(IQR) 

2.13 

(0.00-2.00) 

25.88 

(16.00-33.00) 

1.46 

(0.00-2.00) 

24.95 

(15.75-33.25) 

Mean MOCA 

(IQR) 

26.61 

(25.00-28.50) 

25.15 

(23.00-28.00) 

27.34 

(26.00-29.00) 

26.32 

(25.00-29.00) 

N=Sample Size; IQR=Interquartile Range; UPDRS-III=Unified Parkinson’s Disease Rating Scale Part III; 

MoCA=Montreal Cognitive Assessment 
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Table 2. Demographic characterizing of the European descent participants included in the longitudinal analysis 

by time of sample collection. Each participant must have available data in at least two time-points. 

   
Parkinson’s Disease Biomarker 

Program (PDBP) 

Parkinson’s Progression Markers 

Initiative (PPMI) 

Sampling 

time 
Group 

Samples 

(N) 

Mean age Female Samples 

(N) 

Mean age Female 

(IQR) (N, %) (IQR) (N, %) 

Baseline 

HC 166 
63.95 

(56.00-71.00) 

80 

(48.19) 
143 

61.12 

(56.00-68.00) 

52 

(36.36) 

PD 362 
64.77 

(59.00-71.00) 

147 

(40.60) 
474 

61.54 

(55.00-69.00) 

183 

(38.60) 

Month 6 

HC 139 
64.59 

(56.50-71.00) 

66 

(47.48) 
129 

61.64 

(57.00-69.00) 

48 

(37.21) 

PD 337 
65.45 

(59.50-71.50) 

140 

(41.54) 
341 

62.41 

(55.00-69.00) 

139 

(40.76) 

Month 12 

HC 146 
64.89 

(57.00-71.75) 

68 

(46.57) 
130 

62.19 

(57.00-69.00) 

45 

(34.61) 

PD 333 
65.94 (60.00-

72.00) 

135 

(40.54) 
388 

62.34 

(56.00-69.00) 

150 

(38.66) 

Month 18 

HC 128 
64.48 

(57.50-70.50) 

64 

(50.00) 
- - - 

PD 299 
66.43 

(60.50-72.50) 

124 

(41.47) 
- - - 

Month 24 

HC 122 
66.01 

(59.00-72.00) 

60 

(49.18) 
129 

62.88 

(58.00-70.00) 

49 

(37.98) 

PD 280 
67.17 

(61.00-73.00) 

124 

(44.28) 
381 

63.74 

(57.00-71.00) 

142 

(37.27) 

Month 36 

PD - - - 127 
63.88 

(59.00-71.50) 

48 

(37.79) 

HC - - - 279 
64.54 

(58.00-72.00) 

94 

(33.69) 

N=Sample Size; IQR=Interquartile Range; HC= Healthy Control; PD=Parkinson’s Disease 
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Figure1. Study design  summary. We have followed a two-stage cross-sectional analysis with 
discovery (PDBP) and replication (PPMI) phases. Then we have performed sensitivity analysis for 
the top hits by approaching the analysis in a longitudinal manner (Mixed model), stratifying by 
mutation, exploring individuals from African Ancestry, and those at risk due to being a carrier of 
a PD -causing mutation, or suffering from RBD or hyposmia. Finally ,  we have performed 
functional annotation via circRNA -miRNA  integration and   leveraged th e circRNA to build 
predictive models. 
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Figure2. Results of the cross sectional  analysis; A. Volcano plot showing circRNAs that are differentially expressed in the PDBP dataset, with replicated circRNAs in PPMI labeled; 
B. Summary results of the main findings including sensitivity analyses   
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