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National-scale 1-km maps of 
hospital travel time and hospital 
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Ensuring equitable access to health services is crucial for public welfare and social equity, and is a key 
objective of the United Nations’ Sustainable Development Goals (SDGs). However, existing datasets 
often define hospital accessibility using travel time to hospitals in geographic dimension only, without 
considering the supply (hospital capacity) and demand (population distribution) dynamics. To overcome 
this limitation, we developed and validated a national-scale 1 km map of both hospital travel time 
and hospital accessibility in China. We used the Gaussian two-step floating catchment area (Ga2SFCA) 
model to calculate hospital accessibility, incorporating hospital capacity and service population. 
Various file types and statistical indicators are provided, making the dataset highly accessible for non-
specialists. The dataset fills the gap in publicly available nationwide hospital accessibility data for China 
and can serve as a critical tool in optimizing resource allocation and developing targeted strategies to 
improve healthcare equity.

Background & Summary
Health is a fundamental requirement for human survival. Healthy individuals form the cornerstone of pros-
perous economies and stable societies. Access to healthcare is recognized as an important facilitator of human 
health and well-being1. Enhancing access to health services and healthcare, bridging the gap between prosperous 
and vulnerable population groups and achieving universal health coverage have been designated as key objec-
tives under the United Nations’ Sustainable Development Goals (SDGs) for 20302.

Healthcare accessibility pertains to the eas Ensuring equitable access to health e with which health services 
can be obtained. This is intrinsically linked to the local population (demand), the distribution, number, and 
capacity of hospitals (supply), and the development of transportation infrastructure3,4. Extensive research has 
demonstrated that poor hospital accessibility, such as longer travel time to hospitals, is correlated with adverse 
health outcomes, including higher morbidity and mortality rates5–8. There is a significant disparity in the ease of 
accessing healthcare services between developed and underdeveloped regions. Areas with lower levels of eco-
nomic development often face a scarcity of medical resources. This unequal distribution of healthcare resources 
results in inequitable access to health services, imposing substantial costs on both individuals and society9,10. 
Therefore, it is crucial to comprehensively understand the situation of health service access within a country.

Existing datasets often define healthcare accessibility using travel time to hospitals, as it is straightforward 
to interpret and easy to compute on a large scale. In 2020, Weiss et al. published a global dataset of travel time 
to hospitals at a resolution of 1 kilometer (km)11. Similar datasets have been developed for Australia12 and 
Nigeria13, mapping hospital travel times. However, defining healthcare accessibility with travel time does not 
consider the supply and demand dynamics in hospital allocations, such as the hospital capacity and serviced 
population. This can result in an assessment of accessibility limited to the geographic dimension, rather than 
reflecting the actual availability of medical resources for each individual.

Targeting on the limitation of travel time measurement, various accessibility methods like the gravity model, 
the kernel density method, and the two-step floating catchment area (2SFCA) method were developed. Among 
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these, the 2SFCA method is one of the most commonly used in the measurement of healthcare accessibil-
ity10,14–18. However, due to the diversity of required data (e.g., population, hospital locations and capacities, road 
networks) and the complexity of large-scale computations, previous studies have been limited to small-scale 
accessibility case analyses focused on specific cities or regions19–21.

Moreover, previous applications of the 2SFCA method have not adequately addressed the differentiation of 
catchment area sizes for hospitals at different levels22. Healthcare services are stratified by medical technology, 
quality, and service capacity. Therefore, hospitals at different levels should exhibit distinct service ranges and 
patient attraction capabilities. For instance, tertiary hospitals, which provide specialized and advanced medical 
services, typically draw patients from larger catchment areas than primary hospitals, which mainly manage 
common illnesses. Treating all hospital levels as having the same catchment area size may result in inaccurate 
assessments of actual healthcare accessibility23.

In this study, we present a 1-kilometer resolution map of hospital accessibility in China. We retain the calcu-
lation of travel time to nearest hospitals, as it is a simple, intuitive, and readily interpretable accessibility indica-
tor. More importantly, we employ the Gaussian 2SFCA (Ga2SFCA) method to construct a hospital accessibility 
dataset that accounts for the actual supply and demand dynamics of medical resources. Compared to previous 
hospital accessibility datasets11–13,24,25, our dataset exhibits several distinctive features: it covers all regions of 
China with unprecedented 1 km resolution, constructs supply-demand relationships based on actual hospital 
capacity and population data, accounts for variations in service ranges across different hospital levels, and cal-
culates travel times to the nearest hospitals using real road networks. Additionally, all input data for this dataset 
are open-access, and the code is openly available.

To accommodate different application scenarios and facilitate use by non-specialists, we offer datasets and 
visual maps at grid, county, city and province levels. Furthermore, to better understand the disparities in hospital 
accessibility across regions, we calculated and released healthcare equity metrics measured by the Gini index. 
We believe that the datasets can serve as critical tools for government health departments in optimizing resource 
allocation, identifying underserved areas and developing targeted strategies. Our datasets and accompanying 
case study demonstrate the potential for data-driven approaches to support precise healthcare planning and 
policy development, ultimately contributing to improved public health outcomes and reduced healthcare dis-
parities in China.

Methods
In this study, we calculated the travel time between settlements (grids) and the nearest hospitals across the 
country using OpenStreetMap data and the Contraction Hierarchies pathfinding algorithm. Based on the travel 
time calculations, WorldPop data, and medical facility capacity, the Ga2SFCA model was employed to assess the 
accessibility of hospitals nationwide. Additionally, the Gini index was utilized to evaluate the equity and balance 
of the spatial distribution of accessibility at different scales.

Travel time to hospitals. Before calculating the accessibility of hospitals based on supply and demand, 
it is essential to comprehensively understand the travel time for Chinese residents to reach hospitals. In China, 
residents may travel to hospitals by walking, public transportation, or driving. According to the design of China’s 
healthcare system, primary healthcare institutions serve the local population with basic health services within 
walking distance, while hospitals are planned with a service scope and capacity based on vehicular traffic. Given 
the difficulty of obtaining nationwide public transportation data, including transit routes and schedules, we chose 
driving travel time as a standard measure of accessibility, consistent with most large-scale studies both in China25 
and internationally11–13.

Classic algorithms such as Floyd26 and Dijkstra27 can address pathfinding problems in small areas and simple 
road networks. However, directly applying these algorithms to China’s vast territory and dense road network is 
impractical. Therefore, we employed the Contraction Hierarchies28 (CH) algorithm to optimize and accelerate 
distance calculations within the road network. This algorithm preprocesses the network by adding shortcuts 
through contracting nodes in a sophisticated order, allowing these shortcuts to bypass “less important” nodes 
during shortest path queries, thus reducing both spatial overhead and time complexity. The CH algorithm has 
been widely applied in the processing of large-scale road networks29,30.

We used the Contraction Hierarchies (CH) algorithm and OpenStreetMap (OSM, www.openstreetmap.org) 
road network data to calculate the travel times from each settlement to the nearest hospital. Considering the 
hierarchical diagnosis and treatment system in China, we provided four datasets: travel times to the nearest 
hospitals (all levels), as well as travel times to the nearest primary, secondary, and tertiary hospitals. Given that 
the population data was get from the WorldPop project (https://www.worldpop.org) at a resolution of 30 arc 
(approximately 1 km at the equator), the center point of each grid was considered a settlement. The relevant 
information of medical institutions, such as the number of beds and addresses, was collected from a medical 
big data platform “YAOZH” (https://db.yaozh.com/). It is noteworthy that YAOZH, a leading open medical 
database in China, integrates comprehensive medical information from both authoritative domestic and inter-
national institutions and has been cited in numerous prestigious medical journals31–33. Geographic coordinates 
of hospitals were converted from hospital addresses using the geocoding API provided by Baidu Maps (https://
lbsyun.baidu.com/). A total number of 13776 hospitals with capacity information were obtained, including 3034 
tertiary hospitals, 6876 secondary hospitals, 1728 primary hospitals, and 2138 unclassified hospitals. Driving 
speeds on the road network were determined based on the ‘maxspeed’ tags from OSM.

Hospital accessibility. Among the various methods for measuring spatial accessibility, the 2SFCA method 
is one of the most commonly used1,10. To address the limitations of the original 2SFCA method, which employs 
a binary classification in its distance-decay function, several studies have proposed modifications, resulting in 
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various model variants such as the Enhanced 2SFCA (E2SFCA)14, the Kernel Density 2SFCA (KD2SFCA)34, 
and the Gaussian 2SFCA (Ga2SFCA)15. Although these approaches differ in their handling of distance-decay 
functions, they can all be synthesized within the generalized 2SFCA (G2SFCA) framework proposed by Wang10.

The Gaussian function exhibits a gentler decline near the threshold starting point, which better aligns with 
patients’ preference for accessing healthcare services close to their residence10,35. As a result, the Ga2SFCA 
method has been widely applied in practical studies of healthcare accessibility15,35–37. Additionally, in a 
large-scale nationwide accessibility modeling, we aimed to minimize manual parameter settings to enhance 
the model’s generalization and adaptability. The Ga2SFCA method requires only one parameter (the maxi-
mum search radius), which helps reduce subjectivity and uncertainty associated with parameter settings15,23. 
Therefore, the study adopted the Ga2SFCA method to calculate hospital accessibility.

Another critical issue is determining the catchment area sizes (maximum search radius) in the Ga2SFCA 
method. Given the nationwide scope of our dataset, setting these parameters based on survey data of residents’ 
healthcare travel preferences38,39 or calculating patients’ actual travel times using map navigation Application 
Programming Interfaces (APIs)22,23 would be impractical and highly time-consuming. Therefore, we adopted 
a more standardized and widely accepted approach—establishing search radius thresholds based on hospital 
service ranges38,40,41. This method is highly applicable to our research, as hospital service ranges tend to be rel-
atively consistent across different regions in China. Referencing the “Golden Hour” rule42 and numerous stud-
ies18,20,23,40,41,43 for healthcare accessibility, we ultimately set the maximum search radius for primary, secondary, 
and tertiary hospitals at 30, 45, and 60 minutes, respectively. It is important to note that the primary hospitals in 
our database do not include primary healthcare institutions such as community health service centers or village 
clinics. If these institutions were included, we believe a 15-minute search radius would be appropriate for this 
category.

The Ga2SFCA method calculates hospital accessibility in two steps. In the first step, for each medical facility j, 
the capacity-to-population ratio Rj within a search radius T0 is calculated as follows:
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where tij is the travel time between settlement i and facility j, as addressed in the previous section; T0 is the travel 
time threshold, representing the maximum service radius for primary (30 minutes), secondary (45 minutes), and 
tertiary (60 minutes) hospitals. Exceeding T0 will be considered inaccessible (Ai = 0).

The second step is to obtain the hospital accessibility Ai for each settlement (grid) i:
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a larger value of Ai indicates better hospital accessibility at a settlement.

inequality measurement. The Gini index was employed to measure hospital accessibility inequality based 
on our dataset(details in Usage Notes). The Gini index was initially designed to measure income or wealth ine-
quality among populations, but it is now extensively utilized to assess the equity of healthcare resource distribu-
tion20,44,45. It ranges from 0 to 1, with 0 indicating perfect equality and 1 indicating perfect inequality. We 
calculated the Gini index (G) based on the accessibility rank of both individuals (assigning the same accessibility 
value to all individuals within a grid) and grids as follows:

G y y x x1 ( )( ) (4)i i i i1 1∑= − + +− −

where y is the cumulative proportion of accessibility, x is cumulative proportion of population, and i represent 
individual or grid. When i represents an individual, G is the Population-based Gini index. When i represents a 
grid, G is the Grid-level Gini index. The Gini index helps to understand the disparity in accessibility distribution, 
with higher values indicating greater inequality.

Multiscale spatial analysis. The travel time to hospitals and hospital accessibility were calculated at a 1 km 
resolution. Considering the scale effect in geospatial analysis, using different spatial unit sizes may yield vary-
ing information or characteristics. Furthermore, for non-GIS or non-computer science professionals, offering 
datasets at multiple scales allows them to select the most relevant data for their research themes or project needs. 
Therefore, the two data products we provided were at four spatial scales: 1 km grid, county/district, city, and 
province. Additionally, we computed the Gini index and statistical metrics for both datasets across multiscale for 
easy reference.
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Data records
The datasets are available in the figshare repository46 and are organized into four folders: Travel time to nearest 
hospitals, Hospital accessibility by Ga2SFCA, Hospital accessibility Gini index and Technical validation. Details 
regarding file format, spatial scale and size are provided in Table 1.

The Travel time to nearest hospitals and Hospital accessibility by Ga2SFCA folders contain travel time and 
accessibility data at four spatial scales. The Travel time to nearest hospitals folder provides travel times to the 

File Format Spatial scale File size [MB]

Travel time to nearest hospitals

 time_to_nearest_hospitals GeoTIFF, SHP, CSV Grid, County/district, City, Province 374 MB

 time_to_nearest_primary_hospitals GeoTIFF, SHP, CSV Grid, County/district, City, Province 375 MB

 time_to_nearest_secondary_hospitals GeoTIFF, SHP, CSV Grid, County/district, City, Province 375 MB

 time_to_nearest_tertiary_hospitals GeoTIFF, SHP, CSV Grid, County/district, City, Province 375 MB

Hospital accessibility by Ga2SFCA

 accessibility_grid GeoTIFF Grid 263 MB

 accessibility_county SHP, CSV County/district 73.6 MB

 accessibility_city SHP, CSV City 27.7 MB

 accessibility_province SHP, CSV Province 10.5 MB

Hospital accessibility Gini index

 accessibility_Gini SHP, CSV County/district, city, province 111 MB

Technical validation

 technical_validation CSV Province, city 18.5 MB

Table 1. Format, spatial scale and size of data records.
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Fig. 1 The travel time to the nearest hospitals at multiple spatial scales: (a) grid; (b) county; (c) city; (d) 
province. In each figure, the small plot in the lower-left corner illustrates the data distribution using a histogram 
and Kernel Density Estimate (KDE) plot. The X-axis represents travel time (mins) and the Y-axis represents the 
probability density.
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nearest hospitals (all levels), as well as to primary, secondary, and tertiary hospitals. These datasets feature a 
maximum resolution of 30 arc seconds (approximately 1 km at the equator) and are available for download in 
GeoTIFF format. The pixel values in the grids represent travel time (minutes) or accessibility. Aggregated results 
at county/district, city and province levels, including statistical characteristics (e.g., minimum, maximum, mean, 
quartiles, and standard deviation), are provided in both shapefile (SHP) and comma-separated values (CSV) 
formats. Shapefile (SHP) is a widely-used digital vector storage format for geographic information system (GIS) 
software, which stores location, shape, and attributes of geographic features. It can be read and manipulated 
using GIS software such as QGIS and ArcMap, as well as programming languages like R and Python. The sta-
tistical indicators provided in the CSV file will be particularly useful for non-professionals or those without 
mapping requirements.

Figures 1 and 2 illustrate travel time to hospitals and hospital accessibility at grid, county/district, city, and 
province levels. Median values are used for visualization at the aggregated scales. “NoData” indicates areas 
with no population data or a population of zero, primarily found in sparsely populated regions such as the 
Qinghai-Tibet Plateau and the Taklamakan Desert.

The Hospital accessibility Gini index folder contains Gini index calculations at county/district, city and prov-
ince levels. The Technical validation folder includes randomly generated origin-destination (OD) coordinate 
pairs and corresponding travel time estimates using the CH model and APIs, as discussed in the Technical 
Validation section.

Technical Validation
We used professional map service platforms as external data sources to validate travel time estimates, which is 
widely adopted in various studies12,47,48. Specifically, we compared our travel time estimates with Route Planning 
API from Baidu Map (https://lbsyun.baidu.com/), Gaode Map (https://lbs.amap.com/) and Tencent Map 
(https://lbs.qq.com/), the three largest and most authoritative map navigation service providers in China.

We generated 62,000 OD coordinate pairs by randomly selecting 10 hospitals as destinations (D) and 200 
coordinates as origins (O) in each province. After cleaning invalid and outlier values, a final validation dataset of 
53,022 pairs of OD coordinates and corresponding travel time estimates were obtained. A sample record of the 
validation dataset is shown in Table 2. We then compared our travel time estimates, based on the CH model and 
OSM road networks, with the estimates from the three APIs.

Fig. 2 Hospital accessibility at multiple spatial scales: (a) grid; (b) county; (c) city; (d) province. In each figure, 
the small plot in the lower-left corner illustrates the data distribution using a histogram and Kernel Density 
Estimate (KDE) plot. The X-axis represents hospital accessibility and the Y-axis represents the probability density.
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Given that the maximum search radius (T0) was set to 60 minutes in the accessibility calculations, and to 
facilitate comparison, we allowed a tolerance of 30 minutes, setting the threshold for both data sources at 90 min-
utes. The Baidu Map API provides values for both real-time traffic and ideal conditions, while the Gaode Map 
API and Tencent Map API only offer real-time traffic values. Hypothesis tests and confidence intervals(CIs) were 
conducted using bootstrapping with 10,000 resamples49.

The results showed a significant positive correlation between our travel time estimates and the APIs estimates 
(R² = 0.82–0.87, p < 10−4), as illustrated in Fig. 3. The median travel time estimate was 5.43 minutes higher than 
Baidu ideal conditions(Baidu*) estimate (p < 10−4, 95%CI = 5.32–5.57), but 18.55 minutes lower than Baidu 
real-time estimate (p < 10−4, 95%CI = 18.32–18.75), 17.4 minutes lower than Gaode real-time estimate (p < 10−4, 
95%CI = 17.23–17.55), and 17.1 minutes lower than Tencent real-time estimate (p < 10−4, 95%CI = 16.82–17.23).

Additionally, we considered the reliability of estimations on a smaller scale. Validation was conducted by 
randomly selecting five hospitals within each city as destinations (D) and 100 coordinates as origins (O), and 
finally 156,108 records were obtained as the validation dataset (Fig. 4). The R² values between the two data 
sources ranged from 0.77 to 0.83 (p < 10−4). The median travel time estimate was 7.53 minutes higher than 
Baidu ideal conditions(Baidu*) estimate (p < 10−4, 95%CI = 7.47–7.58), but 16.97 minutes lower than Baidu 
real-time estimate (p < 10−4, 95%CI = 16.88–17.05), 16.4 minutes lower than Gaode real-time estimate (p < 10−4, 
95%CI = 16.33–16.47), and 15.5 minutes lower than Tencent real-time estimate (p < 10−4, 95%CI = 15.43–15.57).

The results were as expected since our calculations used the maximum speeds from the OSM road net-
work without considering traffic conditions, making them closer to Baidu ideal travel times. According to the 
validation standards in related studies12,47,48, this level of error is acceptable and our estimates are reliable. In 
fact, removing the 90-minute travel time threshold yields better results (province-level R² = 0.96–0.97, city-level 
R² = 0.88–0.90; p < 10−4).

Usage Notes
We have produced two datasets covering all of China: travel time to hospitals and hospital accessibility based on 
capacity-to-population ratios. These datasets are available in GeoTIFF or SHP file formats and can be analyzed and 
visualized using GIS software, such as QGIS and ArcMap, as well as Python and R packages like Geopandas, SF, etc.

Province (City) O_lon O_lat D_lon D_lat CH model Baidu* Baidu Tencent Gaode

Guangdong 112.6063 22.0485 113.0884 23.0397 92.3 88.8 116.8 121.7 117.4

Guangdong 112.5986 22.8672 113.0884 23.0397 49.8 38.8 54.2 52.8 54.2

Guangdong 114.9498 23.7988 113.0884 23.0397 150 156.8 195.6 202.5 187.3

… … … … … … … … … …

Table 2. A sample record of the validation datasets.

Fig. 3 Comparison of travel time estimates from APIs and the CH model, using random OD samples selected 
from province levels. (a–c) Comparison between the travel time derived from Baidu, Gaode, and Tencent Maps 
APIs under real-time traffic conditions and estimated by CH model. (d) Comparison between the optimal travel 
time derived under ideal traffic conditions from Baidu Maps and estimated by CH model. (e) The differences 
between APIs results and CH model estimates.
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The availability of our codes and datasets allows users to adjust the search radius according to different 
research themes and situation (e.g., hospital types, patient types). This is facilitated by our high-resolution travel 
time modeling based on OSM road networks, which requires substantial computational resources and memory 
requirement.

The datasets provide insights into the current status of healthcare resource allocation in China across mul-
tiple spatial scales, including travel time and per capita accessible resources. They can directly support anal-
yses of equity and balance in hospital resource distribution, a critical concern for governments and public 
health sectors worldwide. For example, Fig. 5 illustrates an application of our dataset, demonstrating the use 
of the Population-based Gini index and Grid-level Gini index to assess inequality in hospital accessibility. 
Researchers and policymakers can efficiently evaluate healthcare accessibility and equity at specific spatial scales 
or within particular regions, integrating factors such as topography, economic development, and transportation 

Fig. 4 Comparison of travel time estimates from APIs and the CH model, using random OD samples selected 
from city levels.

Fig. 5 Spatial distribution of hospital accessibility inequality at county, city, and province levels using the Gini 
index. (a–c) Population-based Gini index. (d–f) Grid-level Gini index. In each figure, the small plot in the 
lower-left corner illustrates the data distribution using a histogram and Kernel Density Estimate (KDE) plot. 
The X-axis represents the Gini index and the Y-axis represents the probability density.
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infrastructure for a more comprehensive analysis. Consequently, our nationwide high-resolution hospital acces-
sibility dataset provides comprehensive data support for government health departments, aiding in the develop-
ment of more informed and reasonable healthcare policies and resource allocation strategies.

Despite our efforts to ensure the reliability of our hospital accessibility datasets, several limitations should be 
acknowledged. Firstly, due to data limitations, we focused primarily on spatial factors and simplified the defini-
tion of demand to population size. In reality, non-spatial factors—such as gender, age, race/ethnicity, education, 
and income—significantly influence healthcare needs and access opportunities across different groups. In future 
work, we aim to obtain more detailed demographic data, such as gender distribution, age structure, the propor-
tion of pregnant women, and socioeconomic attributes, to better segment healthcare demand and improve the 
measures of accessibility. Secondly, the hospital data we used includes only hospitals with a certain number of 
beds. Thus, actual healthcare accessibility may be higher than our estimates, as many smaller primary healthcare 
facilities such as community health service centers, village clinics are not covered in our data. Additionally, we 
assumed all travel occurs under ideal conditions at maximum allowable speeds and shortest paths on all road 
networks, which is a common limitation of similar datasets.

Code availability
Data processing and analysis were conducted using the Python version 3.8 and code is available for download at 
the public GitHub repository: https://github.com/uwaovo/hospital_accessibility.
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