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Abstract: Fexuprazan is a new drug candidate in the potassium-competitive acid blocker (P-CAB)
family. As proton pump inhibitors (PPIs), P-CABs inhibit gastric acid secretion and can be used to treat
gastric acid-related disorders such as gastroesophageal reflux disease (GERD). Physiologically based
pharmacokinetic (PBPK) models predict drug interactions as pharmacokinetic profiles in biological
matrices can be mechanistically simulated. Here, we propose an optimized and validated PBPK
model for fexuprazan by integrating in vitro, in vivo, and in silico data. The extent of fexuprazan
tissue distribution in humans was predicted using tissue-to-plasma partition coefficients in rats and
the allometric relationships of fexuprazan distribution volumes (VSS) among preclinical species.
Urinary fexuprazan excretion was minimal (0.29–2.02%), and this drug was eliminated primarily by
the liver and metabolite formation. The fraction absorbed (Fa) of 0.761, estimated from the PBPK
modeling, was consistent with the physicochemical properties of fexuprazan, including its in vitro
solubility and permeability. The predicted oral bioavailability of fexuprazan (38.4–38.6%) was within
the range of the preclinical datasets. The Cmax, AUClast, and time-concentration profiles predicted by
the PBPK model established by the learning set were accurately predicted for the validation sets.

Keywords: DWP14012; fexuprazan; human scaling; physiologically based pharmacokinetic model-
ing; potassium-competitive acid blocker

1. Introduction

Potassium-competitive acid blockers (P-CAB) are novel H+/K+ ATPase inhibitors
administered for the treatment of gastric acid-related disorders including gastroesophageal
reflux disease (GERD), gastric ulcer, and Helicobacter pylori (H. pylori) infection [1,2]. GERD
is a common gastrointestinal disorder in the United States [3] and South Korea [4]. It is
associated with serious complications such as Barrett’s esophagus and esophageal ade-
nocarcinoma [3–5]. Several models have been constructed to elucidate the mechanism of
GERD progression, and continuous esophageal stimulation by gastric acid is considered
a major cause [3,4]. There is widespread use of gastric acid-neutralizing drugs, such as
proton pump inhibitors (PPIs), to treat various gastric disorders [4,5]. However, PPIs have
drawbacks related to their pharmacokinetics (short elimination half-life) and pharmaco-
dynamics (slow onset of action and inability to control nocturnal acid secretion) [6–8].
While PPIs covalently bind the proton pump [7–9], P-CABs competitively and reversibly
inhibit the potassium site of H+/K+ATPase and have relatively long plasma half-lives,
which could lead to their rapid onset, long duration of action, and acid suppression efficacy
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being at least comparable to that of PPIs [7,9]. Hence, several P-CABs have already been
approved, including revaprazan in South Korea (2005), vonoprazan in Japan (2015), and
tegoprazan in South Korea (2018) [5]. The foregoing drugs constitute the next generation
of PPIs [5].

Fexuprazan (DWP14012) is a new candidate P-CAB currently undergoing Phase 3 clin-
ical trials on patients with erosive esophagitis (Daewoong Pharmaceutical, Co. Ltd., Seoul,
Korea). A Phase 1 clinical study [10] revealed that fexuprazan has favorable kinetics, in-
cluding rapid absorption (median Tmax: 1.75–3.5 h) and long elimination half-life (~9 h). Its
inhibitory effect of gastric acid secretion was reached at ~2 h after the first 80–320-mg dose
(pH ≥ 4.0), and this onset was significantly faster than that of the PPI esomeprazole (e.g.,
~4 h). In addition, the duration of fexuprazan action was also maintained during the night,
and the mean percentage of time that intragastric pH was above 4 was reasonably described
in relation to the fexuprazan exposure in the plasma (AUCtau) [1]. Despite clinical evidence
for its efficacy, it is nonetheless necessary to understand fexuprazan pharmacokinetics
based on in vitro experiments showing its biotransformation by CYP3A4 [10], which might
result in drug-drug interactions (DDIs) because acid suppression therapy is frequently
co-administered with other drugs [11–14]. Physiologically based pharmacokinetic (PBPK)
models are more useful for predicting potential DDIs than conventional compartmental
approaches [14,15]. As PBPK models incorporate physiological and anatomical variables
in their structure, these models may be rationally scaled to predict drug pharmacoki-
netics in various species (e.g., experimental animals to humans) and populations (e.g.,
children, the elderly, and individuals taking multiple medications). Preclinical studies
disclosed differences in absolute fexuprazan bioavailability among rats, dogs, and monkeys
(range: 3.89–50.6%) [16], despite its sufficient solubility (i.e., freely soluble at pH 4.0 and
slightly water-soluble at pH 1.2 and 6.8 [16]) and permeability (e.g., comparable with
highly permeable propranolol [17–19]). Its efflux ratio in Caco-2 systems was <2, and it
was unaffected by MDR1, MRP, and BCRP inhibitors such as cyclosporin A, MK571, and
fumitremorgin C [16]. Considering that absolute fexuprazan bioavailability data were
unavailable for humans as clinical trials did not include intravenous fexuprazan phar-
macokinetics, modeling with in vitro and in vivo PBPK parameters could help elucidate
clinical fexuprazan pharmacokinetics.

In the present study, a PBPK model was developed for fexuprazan orally administered
to humans at clinically relevant dosages using in vitro and in vivo experimental data and
published data including metabolite formation kinetics and plasma protein binding [20,21].
We used pharmacokinetic data for experimental animals to determine the allometric re-
lationship between volume of distribution and body weight and estimate fexuprazan
tissue-to-plasma partition coefficients in humans. The proposed fexuprazan PBPK model
was validated using separate clinical datasets [1,10,22,23]. It could also be expanded to pre-
dict fexuprazan pharmacokinetics in various clinical settings such as specific populations,
which might be difficult to perform in clinical trials such as senior citizens or children, and
in combination with other drugs.

2. Materials and Methods
2.1. Model Structure

The present study was the first to develop a physiological model of fexuprazan phar-
macokinetics. Briefly, it consisted of 13 compartments including the arterial/venous blood
pool, adipose tissue, adrenal gland, brain, heart, kidney, large and small intestines, liver, lung,
spleen, and stomach (Figure 1). The anatomical volumes and blood flow rates required for the
PBPK calculations were obtained from the literature [15,24] (Table 1). A detailed description
of the model highlighted fexuprazan absorption, distribution, and elimination.
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Figure 1. Physiological model of the pharmacokinetics of orally administered fexuprazan in humans.

Table 1. Summary of physiological input parameters used for the PBPK model. The cardiac output
for a representative human of 70 kg body weight was set to be 5200 mL/min in this study [15,24].

Tissue Volume (mL) Blood Flow (mL/min)

Adipose 15,000 270
Adrenal gland 14 15.6

Brain 1400 593
Heart 329 208

Kidney 308 910
Large Intestine 371 208

Liver 1800 1326
Lung 532 5200

Small Intestine 520 520
Spleen 182 104

Stomach 147 52
Venous blood 3470
Arterial blood 1730

2.2. Absorption Kinetics

A first-order model was used to describe the absorption kinetics of fexuprazan. The
pharmacokinetic profiles for the first dose day were obtained from a previous clinical study
(Study Protocol No. NCT02757144) in a dose range of 20–80 mg/day. The fraction absorbed
(Fa) was optimized according to the administered fexuprazan dose [16]. The first-order
absorption rate (Ka) was predicted from the theoretical relationship Ka = 2·Pe f f /radius,
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assuming that the human intestinal tract is a cylindrical tube with 1.75 cm radius. The
effective permeability (Pe f f ) was predicted from an empirical correlation between in vitro
Caco-2 permeability (nm/s) and in vivo intestinal effective permeability (µm/s), according
to the following equation [25]:

log Pe f f = 0.4926 × log Papp − 0.1454 (1)

It was assumed that the drug absorbed from the enteric compartment was transported into
the liver by blood perfusion via the portal vein.

2.3. Distribution Kinetics

To estimate the apparent volume of distribution of fexuprazan in humans, an allo-
metric relationship for VSS (distribution volume at steady state) was determined from
pharmacokinetic studies on rats, monkeys, and dogs. A standard moment analysis of
systemic fexuprazan pharmacokinetics indicated that VSS were 20.2 L/kg for rat, 9.17 L/kg
for monkey, and 12.6 L/kg for dog. A typical allometric equation (y = a × BWb) was used
for fexuprazan to obtain the correlations between VSS and body weight (0.25 kg for rat,
4 kg for monkey, and 10 kg for dog), as follows:

VSS (L) = 15.0 × [BW (kg)]0.8356 (2)

It was estimated that VSS = 7.48 L/kg for a human weighing 70 kg.
To establish the extent of tissue distribution of fexuprazan, the steady state tissue-to-

plasma concentration ratios (Kp,SS = AUCtissue/AUCplasma) in eleven major tissues of rats
were derived from a previous study (Table 2) [14,16].

Table 2. Summary of steady state tissue-to-plasma concentration ratios of fexuprazan in 11 major
tissues of rats.

Tissue Kp,SS

Adipose 11.7
Adrenal gland 56.1

Brain 3.55
Heart 12.4

Kidney 44.2
Large Intestine 110

Liver 417
Lung 236

Small Intestine 637
Spleen 47.9

Stomach 519

Based on anatomical tissue volumes (Table 1) and Kp,SS (Table 2), the initial VSS was
calculated using the Øie-Tozer equation [26]:

VSS = Vp + Vrbc × EP + ∑
(
VT,i × Kp,SS

)
, (3)

where Vp, Vrbc, and VT are the plasma, red blood cell, and tissue volumes, respectively, and
EP is the erythrocyte-to-plasma partition coefficient, which is calculated as follows:

EP = 1 + (R − 1)/Hct (4)

where Hct is the hematocrit (0.45) [27] and R is the blood-to-plasma concentration ratio
(R = 0.8). Assuming that the allometric relationship determined from preclinical species is
reliable for predicting human VSS (7.48 L/kg), Kp,scalar (0.371) was multiplied by Kp,SS for
rat tissues (Table 2) to obtain Kp applicable to human tissues. Because fexuprazan has a large
extraction ratio (ER) in the liver, Kp,SS scaled by Kp,scalar were corrected with ER estimated
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from the results of an in vitro metabolite phenotyping study and preliminary simulations
of additional intrinsic clearance (i.e., CLu,add in terms of unbound clearance) [28]. For
non-eliminating organs, Kp,SS corrected by Kp,scalar were regarded as Kp.

For the rate of tissue distribution of fexuprazan in humans, perfusion-limited dis-
tribution was assumed based on its high in vitro permeability coefficients (16.5 ± 2.0 ×
10−6 cm/s and 23.7 ± 4.6 × 10−6 cm/s in the apical to basolateral and basolateral to
apical sides of Caco-2 cell systems, respectively) [16]. These values were comparable to
those for propranolol, and the perfusion-limited model was also applicable for clinical
pharmacokinetics of the drug [29].

2.4. Elimination Kinetics

According to a previous clinical study (Study Protocol No. NCT02757144 [10,22]),
renal fexuprazan excretion was kinetically unimportant (i.e., Fe (fraction excreted into
urine) in the range of 0.29–2.02%). In the present study, therefore, non-renal fexuprazan
elimination was assumed to be primarily governed by hepatic elimination. An in vitro
metabolite phenotyping study [1,16] suggested that hepatic elimination depended on the
CYP3A4-mediated oxidative deamination of fexuprazan to M14 (5-(2,4-difluorophenyl)-
1-([3-fluorophenyl]sulfonyl)-4-methoxy-1H-pyrrole-3-carboxylic acid) and the hydroxy-
lation of fexuprazan to M11 (N-([5-(2,4-difluorophenyl)-1-((3-fluorophenyl)sulfonyl)-4-
methoxy-1H-pyrrol-3-yl]methyl)-N-methylhydroxylamine). Based on the previous in vitro
metabolism studies involving recombinant CYP enzyme activity with human liver micro-
somes [1], the contribution of other enzymes to the metabolic conversion of fexuprazan into
M14 (8.5% by CYP2B6 and CYP2C19) and M11 (31.8% by CYP2B6 and CYP2D6) appeared
to be insignificant.

The kinetic variables for fexuprazan metabolism to M14 and M11 in recombinant
enzyme systems were transformed into those in human liver microsomes. Using pooled hu-
man liver microsomes (Catalog No. 452161, Batch No. 4133007, BD GentestTM), testosterone
6β-hydroxylation activity (by CYP3A4) was 6100 pmol/min/mg protein. This metabolic
pathway in recombinant CYP3A4 system was determined to be 200 pmol/min/pmol P450.
Because CYP abundance in liver (i.e., CYP3A4 content in human liver microsome) was
0.079 nmol/mg protein [20], inter-system extrapolation factor was estimated to be 0.4 for
the CYP3A4 system. Assuming a microsomal protein per gram of liver (MPPGL) value
of 39.79, obtained from Simcyp V19 release 1 (Certara UK Limited, Sheffield, UK) [15],
and liver weight at a liver density of unity (Table 1), Vmax and Km for M14 formation
were estimated to be 248 nmol/min and 0.093 µM, respectively, and Vmax and Km for M11
formation were estimated to be 800 nmol/min and 15.95 µM, respectively. The free fraction
of fexuprazan in human liver microsomes ( fu,mic) was estimated in silico to be 0.904 [21].
The intrinsic clearance of unbound hepatic fexuprazan (CLu,int) was calculated as follows:

CLu,int = ∑
Vmax

Km × fu,mic + CLI × fu,LI
+ CLu,add (5)

where fu,LI is the free fraction of fexuprazan in the liver calculated by dividing the free
fraction in the plasma ( fup) by the equilibrium tissue-to-plasma partition coefficient for
the liver (Kp,LI). CLu,add (the unbound additional intrinsic clearance) consists of biliary
excretion and miscellaneous hepatic elimination pathways other than metabolic M14 and
M11 formation, which was optimized depending on the administered fexuprazan dose.

2.5. PBPK Calculations

For the fexuprazan absorption kinetics, the differential equation for the amount of
drug in the enteral compartment is:

dXa

dt
= −Ka × Xa (6)
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where Xa is the amount of drug remaining in the enteral compartment and Ka is the
first-order absorption rate constant. The initial amount of fexuprazan in the absorption
compartment was the product of Fa and the administered fexuprazan dose. Oral bioavail-
ability (F) of fexuprazan in humans was estimated using the following relationship:

F = Fa × Fg × Fh (7)

Fh =
QLI R

QLI R + fupCLu,int
(8)

where Fg is the fraction escaping from gut wall extraction (e.g., metabolism), Fh is the
hepatic availability, and QLI is the hepatic blood flow. In this calculation, Fg was assumed
to be unity for fexuprazan.

Assuming a perfusion-limited fexuprazan distribution rate, the differential equation
for all tissues other than the liver was:

VT
dCT
dt

= QT ·
(

Cart −
CT × R

Kp

)
(9)

where VT is the volume of tissue compartment, CT and Cart are the drug concentrations in
the tissue and arterial blood compartments, respectively, QT is the blood flow to the tissue,
R is the blood-to-plasma concentration ratio, and Kp is the equilibrium tissue-to-plasma
concentration ratio.

For the liver compartment:

VLI
dCLI

dt = Ka × Xa + (QLI − QST − QSP − QSm,IN − QLa,IN)·Cart + QST
CST×R
Kp,ST

+ QSP
CSP×R
Kp,SP

+QSm,IN
CSm,IN×R
Kp,Sm,IN

+ QLa,IN
CLa,IN×R
Kp,La,IN

− QLI
CLI×R
Kp,LI

− CLu,int
fup

Kp,LI
CLI

(10)

where VLI is the liver volume; CLI , CST , CSP, CSm,IN , and CLa,IN are the drug concentrations
in the liver, stomach, spleen, and small and large intestines, respectively; QLI , QST , QSP
QSm,IN , and QLa,IN are the blood flow to liver, stomach, spleen, and small and large
intestines, respectively; Kp,LI , Kp,ST , Kp,SP, Kp,Sm,IN , and Kp,La,IN are the equilibrium tissue-
to-plasma concentration ratios for the liver, stomach, spleen, and small and large intestines,
respectively; and CLu,int is the intrinsic drug molecule clearance in the liver compartment.

For the venous blood compartment:

Vven
dCven

dt = QADR
CADR×R
Kp,ADR

+ QAD
CAD×R
Kp,AD

+ QBR
CBR×R
Kp,BR

+ QHE
CHE×R
Kp,HE

+ QKI
CKI×R
Kp,KI

+QLI
CLI×R
Kp,LI

+ QRE × Cart − QCO × Cven
(11)

where Vven is the venous blood volume; CADR, CAD, CBR, CHE, CKI , and Cven are the
drug concentrations in the adrenal gland, adipose, brain, heart, kidney, and venous blood
compartment, respectively; QADR, QAD, QBR, QHE, QKI , and QRE are the blood flows to the
adrenal gland, adipose, brain, heart, and kidney, and the residual blood flow, respectively;
QCO is the cardiac output; and Kp,ADR, Kp,AD, Kp,BR, Kp,HE, and Kp,KI are the equilibrium
tissue-to-plasma concentration ratios of the adrenal gland, adipose, brain, heart, and
kidney, respectively.

For the lung compartment:

VLU
dCLU

dt
= QCO ×

(
Cven −

CLU × R
Kp,LU

)
(12)

where VLU is the lung volume, CLU is the drug concentration in the lung, and Kp,LU is the
equilibrium tissue-to-plasma concentration ratio for the lung.
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For the arterial blood compartment:

Vart
dCart

dt
= QCO ×

(
CLU × R

Kp,LU
− Cart

)
(13)

where Vart is the arterial blood volume.
All the input parameters for PBPK modeling of fexuprazan in man were summarized

in Table 3. Fa, Ka, and CLu,add were optimized with Winnonlin Professional 5.0.1 (Pharsight
Corp., Mountain View, CA, USA). Numerical simulations of the PBPK models were per-
formed with Berkeley Madonna v. 10.1.3 (Berkeley Madonna, Inc., Albany, CA, USA). In
the present study, the fourth order of the Runge–Kutta method was used for numerical
integration. GraphPad Prism v. 9.0.0 (GraphPad Software, San Diego, CA, USA) was used
to visualize the simulation.

Table 3. Input parameters for PBPK modeling of fexuprazan in humans.

Category Parameter (unit) Value Comments

Physicochemical
Properties and Blood

Binding

Compound type Base
pKa 9.04

Determined [16]logP 2.38
fup 0.0645

B/P ratio (R) 0.8

Absorption Ka (min−1) 0.0606 Predicted (See text)
Fa 0.761 Optimized (See text)

Distribution (Kp) *

Adrenal gland 20.8

Corrected by Kp,scalar
(See text)

Adipose 4.32
Brain 1.32
Heart 4.60

Kidney 16.4
Liver 303
Lung 87.6

Large Intestine 40.8
Small Intestine 124

Spleen 17.8
Stomach 193

Elimination
fu,mic 0.904 Predicted (See text)

CLu,add (L/min) 12.9 Optimized (See text)

M14 Formation by
CYP3A4

Vmax (nmol/min) 248
Determined [16]Km (µM) 0.093

M11 Formation by
CYP3A4

Vmax (nmol/min) 800
Determined [16]Km (µM) 15.95

* Tissue-to-plasma partition coefficients (Kp) were corrected from the values of rat tissues (Table 2).

2.6. Modelling Strategies

During model refinement, clinical data [16,22] from a multiple ascending dose (MAD)
study on fexuprazan (Study Protocol No. NCT02757144 [10,22]) for the range of 20–
80 mg/day were used. The relevant parameters in the PBPK models were optimized to the
pharmacokinetic data for fexuprazan at the first dose day (i.e., before the second dosing).
The proposed PBPK model was validated by comparing AUClast (i.e., the area under the
curve from time 0 to the last sampling time) and Cmax (the maximum concentrations)
from the model simulations against those from the clinical data of the MAD study on
fexuprazan at the seventh day of dose (Study Protocol No. NCT02757144 [10,22]) and
other clinical datasets for Japanese, Caucasian, and Korean populations (Study Protocol
No. NCT03574415 [1,23]). In the present study, the fold differences of the resulting AUC
ratios (AUCpred:AUCobs) and Cmax ratios (Cmax,pred:Cmax,obs) within a factor of two were
considered adequate for model performance prediction.
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2.7. Statistical Analysis

Means between/among groups were compared with unpaired t-tests or one-way
ANOVA, followed by the Tukey’s post hoc test. In the present study, data were expressed
as means ± SD. p < 0.05 denoted statistical significance.

3. Results
3.1. Establishment and Optimization of the PBPK Model for Fexuprazan in Humans

Kinetic parameters for absorption (Fa) and elimination (CLu,add) of fexuprazan were
obtained by fitting the plasma concentration profiles of 24 individuals orally administered
20 mg, 40 mg, or 80 mg fexuprazan (i.e., profiles for eight volunteers per dose) [10,22]. For
each dose, the Fa estimates were 0.627 ± 0.298, 0.767 ± 0.267, and 0.890 ± 0.344, and CLu,add
estimates were 15.8 ± 7.21 L/min, 13.9 ± 8.16 L/min, and 8.95 ± 5.38 L/min. Because
neither Fa nor CLu,add significantly differed among doses based on one-way ANOVA,
linear pharmacokinetics was assumed for fexuprazan absorption and hepatic clearance
at doses in the range of 20–80 mg. The average Fa and CLu,add of 0.761 and 12.9 L/min
for the 24 volunteers were used to predict fexuprazan pharmacokinetics in other clinical
datasets and to validate the model. Fexuprazan model simulations for optimization are
shown in Figure 2. The AUClast and Cmax ratios were in the range of 0.672–1.32 (Table 4).
Using the established model, the absolute bioavailability could be estimated for orally
administered fexuprazan. Briefly, the time-concentration profiles could be simulated using
the validated PBPK model after intravenous or oral administration of 20, 40, or 80 mg
fexuprazan in humans, and AUC ratio (i.e., AUCPO/AUCIV) was estimated for each dose.
AUC was calculated based on the time-concentration curve, and the bioavailability could
be calculated as 38.4%, 38.4%, and 38.6% for 20, 40, and 80 mg doses, respectively.
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Table 4. Summary of AUClast (ng·min/L) and Cmax (ng/mL) ratios of fexuprazan in the two clinical
trials and simulations.

Dose AUCobs AUCpred AUCratio Cmax,obs Cmax,pred Cmax ratio

Training set (1st day MAD) 1

20 mg 9020 11,900 1.32 16.3 16.6 1.02
40 mg 23,700 23,900 1.01 40.4 33.2 0.822
80 mg 62,400 48,000 0.770 99.1 66.6 0.672

Validation set (7th day MAD) 1

20 mg/day 16,300 14,900 0.916 20.8 20.2 0.972
40 mg/day 28,300 30,000 1.06 43.2 40.4 0.935
80 mg/day 68,700 60,400 0.880 94.4 81.2 0.861
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Table 4. Cont.

Dose AUCobs AUCpred AUCratio Cmax,obs Cmax,pred Cmax ratio

Validation set (1st dose) 2

40 mg 21,000 29,800 1.42 28.8 33.2 1.15
80 mg 66,300 60,000 0.905 86.4 66.6 0.770

Validation set (8th dose) 2

40 mg/day 28,300 37,500 1.32 35.5 40.4 1.14
80 mg/day 61,800 75,700 1.23 78.9 81.2 1.03

1 Observed data from the registered clinical trial in healthy volunteers (registered at ClinicalTrials.gov as
NCT02757144 [10,22]). The observed value is the average value of the pharmacokinetic parameters obtained
from the data of eight people. 2 Observed data from the registered clinical trial among Korean, Caucasian, and
Japanese (registered at ClinicalTrials.gov as NCT03574415 [1,23]). The observed value is the average value of the
pharmacokinetic parameters obtained from the data of 24 people.

3.2. Validation of the Fexuprazan PBPK Model for Humans

In the present study, we used in silico, in vitro, and in vivo data to propose PBPK
models for fexuprazan orally administered to humans. The PBPK model was optimized
using first dose day data from the MAD study and validated with dose day 7 data from
the same study [10,22] as well as clinical data for various ethnic groups [1,23]. The AUClast
and Cmax ratios were in the ranges of 0.880–1.06 and 0.861–0.972, respectively (Table 4).
When the plasma fexuparazan concentrations for dose days 1–7 of the MAD study were
plotted, the model simulations reasonably captured the Day 1 data along with the trough
concentrations at Day 7 after multiple dosing (Figure 3).
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Another Phase 1 study was conducted on Japanese, Caucasian, and Korean sub-
jects [1,23]. The clinical dataset comprised the first day after single 40 mg and 80 mg doses
in all three populations. The proposed model reasonably predicted systemic pharmacoki-
netics for 48 h after the first and last fexuprazan doses, with the AUClast and Cmax ratios in
the ranges of 0.905–1.42 and 0.770–1.15, respectively (Table 4). Steady state pharmacokinet-
ics after the eighth dose administered to all three populations was adequately predicted
with AUClast and Cmax ratios in the ranges of 1.23–1.32 and 1.03–1.14, respectively. These
results were consistent with visual inspections of the simulated concentrations. The simu-
lated and observed time-concentration profiles fit well for the first dose day (Figure 4) and
subsequent fexuprazan administrations over 9 days (Figure 5).
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results of optimized model or model prediction. Closed circles (•) represent observed data [1,23]. Data are means ± SD for
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4. Discussion

Pharmacokinetic modeling quantitatively clarifies the in vivo kinetic behavior of new
compounds. Unlike conventional compartmental analyses, PBPK models comprise nu-
merous system-specific (physiological/anatomical) and drug-specific (physicochemical)
parameters that can elucidate and compare pharmacokinetics across preclinical and clin-
ical species. Depending on the quantity and quality of available data, pharmacokinetic
models may be established by combining ‘bottom-up’ or ‘top-down’ approaches [30] to
determine the model parameter(s). Despite insufficient in silico/in vitro/in vivo data for
the clinical pharmacokinetics of fexuprazan, the present PBPK model adequately described
and predicted numerous clinical datasets from various populations at clinically relevant
doses. This model may also be expanded to predict fexuprazan pharmacokinetics under
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different clinical settings such as specific populations and combinations of fexuprazan
with other drugs. However, further studies might have to be performed for mechanistic
establishment of the kinetic parameters not identified via in vitro/in silico approaches such
as Fa and CLu,add.

Previously, other metabolites such as M7 (1-(5-[2,4-difluorophenyl]-1-[(3-fluorophenyl)
sulfonyl]-4-methoxy-1H-pyrrol-3-yl)-N-methylmethanamine) were not detectable in hu-
man plasma 7 days after oral administration of 160 mg/day. In the present study, there-
fore, we optimized CLu,add, which represents miscellaneous hepatic elimination pathways
other than metabolic M14 and M11 formation. The fractional contribution by the various
metabolic pathways (%fm) could be estimated using the terms in Equation (5). The %fm
values were determined to be 18.5%, 0.349%, and 81.1% for the formations of M14 and M11
(primarily by CYP3A4), and CLu,add, respectively. The previously approved P-CAB vono-
prazan was radiolabeled and administered to rats and 88% of its total radioactivity was
recovered from the bile [31]. A similar finding was recorded for radiolabeled fexuprazan
in rats (88% recovered up to 48 h) (NCE001-4225-REP-002). In the case of vonoprazan,
however, the parent drug exhibited negligible biliary excretion in bile duct-cannulated
rats, and there was minimal fecal recovery of the parent drug in dogs [31]. These findings
were consistent with the empirical MW cutoff for kinetically insignificant biliary excretion,
namely, <10% for drugs with MW < 475 Da [32]. Moreover, metabolite profiles were not
fully identified for vonoprazan excreted in bile as there remained 53.8% miscellaneous
radioactivity in rat bile. One of our preclinical studies using rats disclosed that various
metabolites of fexuprazan were identified in bile samples (data not shown). Hence, further
studies should be conducted to identify the kinetic component of CLu,add for P-CAB drugs.

The sufficient solubility and permeability of fexuprazan [16] is consistent with our
modeling result of a high Fa (0.761). The first-order rate constant (Ka) of fexuprazan
calculated from in vitro Caco-2 permeability (Equation (1)) [25] adequately predicted the
absorptive phase of in vivo pharmacokinetics. At the optimized Fa of 0.761, absolute
fexuprazan bioavailability in humans is estimated to be 38.4–38.6%, which is comparable to
preclinical data (3.89–50.6%). Assuming unlimited fexuprazan solubility and permeability
in the small intestine, observed differences in fexuprazan bioavailability among species
could be partially explained by interspecies differences in the first-pass effect in the gut
wall and/or liver.

For the distribution of fexuprazan to human tissues, a correction factor of 0.371 (Kp
scalar) was required for consistency with the allometric relationship on VSS. Assuming
the absence of active transport across the membrane, Kp might depend mainly on drug
binding to plasma/tissue constituents. The free fraction of vonoprazan in the plasma (fup)
was higher in rats than in humans (30.5–32.7% and 13.5–14.8%, respectively). Therefore,
the fexuprazan distribution volume may be comparatively higher in rats. However, plasma
protein binding of fexuprazan did not significantly differ across species (93.1–93.9%, 92.7–
92.8%, 88.3–91.0%, and 92.8–94.3% for rats, beagles, cynomolgus monkeys, and humans,
respectively). Considering that fexuprazan may be bound to more tissue constituents than
plasma proteins (VSS = 9.17–20.2 L/kg in preclinical species), a Kp scalar of 0.371 was
required, likely because of differential fexuprazan tissue binding across species.

Our proposed PBPK model revealed that AUCratio and Cmax,ratio were in the ranges of
0.880–1.42 and 0.770–1.15, respectively (Table 4). These values were consistent with our
visual inspections (Figures 3–5). Validation of the proposed PBPK model indicated that its
structure and each parameter were appropriate for the prediction of plasma concentration
profiles following oral administration of fexuprazan in humans in the therapeutic range of
20–80 mg/day within the cutoff criterion of a factor of two.

In the proposed PBPK model, fexuprazan absorption was assumed to follow first-
order kinetics. Fa was estimated by fitting the observed data while considering interspecies
differences in fexuprazan bioavailability. Though the PBPK model predictions reasonably
captured clinical data, the apparent absorption kinetic parameters (Fa and Ka) calculated
here would be influenced by animal physiology (e.g., relative GI tract length, pH, and
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water content) and drug physicochemical properties (e.g., relative solubility over a pH
range and first-pass metabolism). Variability in the foregoing factors could lead to diver-
gent bioavailability values [33]. In preclinical animals, there was species-dependent oral
bioavailability in the range of 3.89–50.6%. Thus, mechanistic absorption models might be
used to analyze factors governing overall absorption, such as ADAM (advanced dissolu-
tion, absorption, and metabolism) and ACAT (advanced compartmental absorption and
transit) that incorporate intestinal metabolism and active transport [34].

The PBPK model proposed herein could serve to predict or describe potential interac-
tions between fexuprazan and other co-administered drugs. The P-CAB drug tegoprazan
has been prescribed for H. pylori eradication in South Korea [8,35], and thus fexuprazan
could also be co-administered with amoxicillin and clarithromycin to treat H. pylori infec-
tion. However, clarithromycin is a CYP3A4 inhibitor and could, therefore, interact with
fexuprazan, a CYP3A substrate. The PBPK model established here could quantitatively
evaluate the clinical significance of DDI risk in ongoing fexuprazan development and opti-
mization. It might also be expanded to analyze fexuprazan pharmacokinetics for elderly
and pediatric populations if adequate physiological information can be incorporated.

In conclusion, a PBPK model for orally administered fexuprazan in humans was
developed and validated here by integrating in vitro, in vivo, and in silico data. The model
may be used to predict potential DDIs as well as pharmacokinetic profiles in various clinical
situations, including elderly and pediatric populations as well as patients with renal or
hepatic impairment.
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