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Abstract
Stoichiometric producer–grazer models are nonsmooth due to the Liebig’s Law of
Minimum and can generate new dynamics such as bistability for producer–grazer
interactions. Environmental noises can be extremely important and change dynami-
cal behaviors of a stoichiometric producer–grazer model. In this paper, we consider
a stochastically forced producer–grazer model and study the phenomena of noise-
induced state switching between two stochastic attractors in the bistable zone. Namely,
there is a frequent random hopping of phase trajectories between attracting basins of
the attractors. In addition, by applying the stochastic sensitivity function technique,
we construct the confidence ellipse and confidence band to find the configurational
arrangement of equilibria and a limit cycle, respectively.

Keywords Stoichiometric producer–grazer model · Noise-induced state switching ·
Stochastic sensitivity · Confidence domains

Mathematics Subject Classification 22E46 · 53C35 · 57S20

1 Introduction

Ecological stoichiometry is the study of the balance of energy (carbon or C) and
multiple nutrients (such as phosphorus or P, nitrogen or N) in ecological interactions
(Sterner and Elser 2002). Organisms are composed of key elements, including C, N,
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P, whose balance affects organismal reproduction and growth, nutrient cycling, and
trophic interactions. Plants can be easily limited by nutrient, and herbivores are more
nutrient-rich organisms than plants (Elser et al. 2000). The plant nutrient quality can
dramatically affect the growth of herbivorous grazers andmay even lead to their extinc-
tion (Urabe et al. 2002). Historic predator-prey models only consider energy (carbon)
flow in the formof population or density. In reality, producer–grazer interactionmodels
should incorporate both food quantity and quality.

In many ecosystems, trophic interactions can be regulated by excessively enrich-
ing or limiting some key resources for reproduction and growth (Grover 2002; Peace
2015). To better understand how nutrient availability affects the population reproduc-
tion and growth, a series of newly emerged stoichiometric population models have
been proposed in the past two decades for studying the underlying laws of ecological
stoichiometry (Andersen 1997; Hessen and Bjerkeng 1997; Kuang et al. 2004; Wang
et al. 2007, 2008, 2012; Stecha et al. 2012; Jiang et al. 2019; Song et al. 2019; Zhao
et al. 2020), and one of the well received stoichiometric producer–grazer models that
track both the quantity and the quality of producer is formulated in (Loladze et al.
2000): ⎧

⎨

⎩

dx
dt = bx

(
1 − x

min{K ,(P−θ y)/q}
) − f (x)y,

dy
dt = emin

{
1, (P−θ y)/x

θ

}
f (x)y − dy,

(1.1)

where x, y are the densities of producer (phytoplankton/algae) and grazer (daphnia)
(mg C/l), respectively; b is the intrinsic growth rate of producer (/day); K is the
carrying capacity of producer, which is positively related to light intensity; e is the
maximal production efficiency of grazer (no unit); d is the specific loss rate of grazer
that includes metabolic losses and death (/day); q is the minimal phosphorus/carbon
ratio in producer (mg P/mg C); θ is the constant phosphorus/carbon ratio in grazer
(mg P/mg C); P the total mass of phosphorus in the entire system (mg P/l); f (x) is the
consumption rate of grazer, which is usually one of Holling-type functional responses.
By applying the Liebig’s Law of Minimum, the producer’s growth rate is limited by
both light and nutrient, and the grazer’s growth rate is limited by both food quantity
and food quality. Hence, the growth terms have minimum functions min

(
K ,

P−θ y
q

)

and emin
(
1, (P−θ y)/x

θ

)
.

Model (1.1) has complex dynamics such as multiple positive equilibria and bista-
bility (Loladze et al. 2000). Later, Li et al. (2011) provided a rigorous mathematical
analysis for global stability results of all equilibria and the existence of limit cycleswith
Holling-type functional responses and fixed parameters except K , andXie et al. (2018)
presented complete global and bifurcation analyses for model (1.1) with Holling type
II functional response with all flexible parameters. They found that the model has four
types of bistability: between an internal equilibrium and a limit cycle, between an
internal equilibrium and a boundary equilibrium, between two internal equilibria, and
between a boundary equilibrium and a limit cycle.

In nature, deterministic systems are inevitably affected by various environmental
noises which can be important or even dominant in controlling dynamics of trophic
interactions. Environmental noises can change the qualitative behavior of a determinis-
tic model (Zhao et al. 2015; Xu and Yuan 2016; Yu et al. 2018, 2019a, b; Zhao and Liu
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2019; Wang and Liu 2019; Yu and Yuan 2020). Over the past several decades, many
deterministicmodels with noise-induced transitions have been extensively studied (Xu
et al. 2016; Bashkirtseva et al. 2010; Xu et al. 2018;Wu et al. 2019). In Xu et al. (2016),
noise perturbations change the coexistence state to extinction for a chemostat model.
A new method based on the stochastic sensitivity functions (SSF) technique has been
proposed in Bashkirtseva et al. (2010) to construct the analytical description of ran-
domly forced equilibria and cycles of discrete-timemodels. The presence of coexisting
attractors under random perturbations can generate new dynamic regimes, which have
no analogues in the deterministic case (Anishchenko et al. 2007; Pisarchik and Feudel
2014). Effects of perturbations in limit cycles were studied in Kurrer and Schulten
(1991); Baras (1997). Nonlinear dynamical models show various new phenomena,
such as stochastic resonance (Gammaitoni et al. 2009; McDonnell et al. 2010), noise-
induced transitions (Horsthemke and Lefever 1984), noise-induced order (Matsumoto
and Tsuda 1983; Gassmann 1997), noise-induced chaos (Gao et al. 1999), and noise-
induced complexity (Zaks et al. 2005). Analysis of the noise effects on dynamical
systems with multiple stable states attracts the attention of many researchers (Kim
et al. 1998). Multistable systems exhibit complex dynamics with noise-induced hop-
ping between coexisting attractors and their basins of attraction (Kraut and Feudel
2002; de Souza et al. 2007; Dykman et al. 1990, 1994). The sensitivity analysis of
randomly forced oscillations is pivotal for investigating these transitions.

The aim of this paper is to study the phenomena of noise-induced transitions for
model (1.1) with Holling-type II functional response by using the SSF technique.
The rest of this paper is organized as follows. In Sect. 2, we review the determinis-
tic producer–grazer model with stoichiometric constraints and propose its stochastic
version. The analysis of noise-induced transitions and the construction of confidence
ellipses for this model will be presented in Sect. 3. In Sect. 4, we provide the con-
struction of both confidence band and confidence ellipse and show that noise-induced
transitions occur when confidence domains are intersected. Finally, we conclude and
discuss the paper in Sect. 5.

2 Model Formulation andMain Results

In this section, in order to formulate our stochastic model, we first recall the main
results of model (1.1) with Holling-type II functional response from Xie et al. (2018).
As in Xie et al. (2018), we always assume that in this paper

e < 1, q < θ,
ad

ce − d
< p, K ≤ min

{
P

q
,
θ

q

ad

ce − d

}

, (2.1)

where p := P
θ
. Then, model (1.1) is simplified as:

{
dx
dt = bx

(
1 − x

K

) − cxy
a+x ,

dy
dt = cey

a+x min{x, p − y} − dy.
(2.2)
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Denote

Ω = {(x, y) : 0 < x < K , 0 < y < p, qx + θ y < P}.

Then,Ω is a positively invariant set for model (2.2) [see Li et al. (2011) for the detailed
proof]. Obviously, Ω is an open trapezoid due to the limitation of (2.1). We refer the
readers to Fig. 2 in Xie et al. (2018), where the grazer nullcline (red curves) in the
forward invariant regionΩ is the positive x-axis and a polygonal line consisted of two
line segments: x = x∗, y ∈ [0, p−x∗] (denoted by l1) and dx+cey = cep−ad, x ∈
[x∗,min{K ,

cep
d −a}] (denoted by l2), where x∗ := ad

ce−d ; the producer nullcline (blue
curves) in the forward invariant region Ω is the positive y-axis and a parabola arc:
y = b

c (1 − x
K )(a + x), (x, y) ∈ Ω . Though the vector field defined by system (2.2)

is not C1 in Ω , it is locally Lipschitz-continuous, which guarantees the existence and
uniqueness of solutions of system (2.2).

System (2.2) always has two boundary equilibria: E0 = (0, 0) and E1 = (K , 0). It
may also have none or one to three coexistence/interior equilibria. The dynamics of
system (2.2) is completely determined by some critical values about K listed below
[see Xie et al. (2018) for more details]:

(a) K1 = x∗ = ad
ce−d ;

(b) K2 = a + 2x∗;
(c) K3 = x∗

1− c
b · p−x∗

a+x∗
;

(d) K4 is the value of K at which the line segment l2 is tangent to the parabola (not
always exists);

(e) K5 = cep
d − a.

The authors in Xie et al. (2018) have provided a complete global analysis for system
(2.2) without fixing any parameter. Their analysis shows that the model has far richer
dynamics than those found in the previous paper (Li et al. 2011). For example, system
(2.2) may have three interior equilibria E2, E3, E4 in the forward invariant region Ω

and four types of bistability may appear: (i) between E2 and E4, (ii) between the limit
cycle and E4, (iii) between E2 and E1, (iv) between the limit cycle and E1. The readers
are referred to Xie et al. (2018) for more details. In this paper, we are only concerned
with the first two types and explore the impact of noises existed in the environment
on bistability between two interior attractors: one is for the stable equilibrium E2 or
the unique stable limit cycle surrounding the unstable equilibrium E2, the other is for
the stable internal equilibrium E4.

We remark that a necessary condition for system (2.2) to have three internal equi-
libria is that K4 exists. Here, we just mention the following two results from Xie et al.
(2018) with small modifications, which will be used in the sequel analysis.

Lemma 2.1 (Theorem 3.2 (3) of Xie et al. (2018)) Assume that K1 < K4 < K2 <

K3 < K5. If K ∈ (K4, K2), there exist three internal equilibria: E2 and E4 are two
stable equilibria, E3 is a saddle, and the model has no limit cycle, see Fig. 1a. Hence,
bistability occurs: orbits on the left of the stable manifold of E3 will eventually tend
to E2, orbits on the right of the stable manifold of E3 will eventually tend to E4, and
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Fig. 1 Bistability of model (2.2) occur: a two internal equilibria; b an equilibrium and a limit cycle. Here,
hollow dots denote unstable equilibria, solid dots are stable equilibria; blue closed circle denotes stable
limit cycle (Color figure online)

the separatrix is the stable manifold of E3. Moreover, the model has three heteroclinic
orbits from E3 to E2, from E3 to E4, and from E1 to E4, respectively.

Lemma 2.2 (Theorem 3.2 (4) of Xie et al. (2018)) Assume that K1 < K4 < K2 <

K3 < K5. If K ∈ (K2, K3), there also exist three internal equilibria: E3 is a saddle,
E4 is stable, but E2 becomes unstable. Meanwhile, the model has a unique stable limit
cycle surrounding the equilibrium E2 (cyan dashed-dotted line) for K ∈ (K2, K∗],
where K∗ is the broken value of K for the limit cycle, see Fig. 1b. In this case bistability
occurs: solutions of the model on the right of the stable manifold of E3 tend to the
equilibrium E4, solutions of the model on the left of the stable manifold of E3 tend to
the limit cycle, and the separatrix is the stable manifold of E3. Moreover, the model
has two heteroclinic orbits from E3 to E4 and from E1 to E4, respectively.

We are now in a position to propose our stochastic model. From the biological point
of view, the sources of environmental noise affecting the producer and the grazer are
different. Following the approach used in Refs. Imhof andWalcher (2005) we consider
randomness into deterministic system (2.2) and then obtain the following stochastic
differential equation:

{
dx = (

bx
(
1 − x

K

) − cxy
a+x

)
dt + εx xdB1,

dy = ( cey
a+x min{x, p − y} − dy

)
dt + εy ydB2,

(2.3)

where B1(t) and B2(t) are two standard one-dimensional independent Brownian
motions, εx , εy are the noise intensities.

For the simplicity of discussion, we assume εx = εy = ε. Notice that system (2.3)
consists of two subsystems. Therefore, we assume that ε = ε1 when x + y ≤ p and
ε = ε2 when x + y > p. The following theorem is about the existence and uniqueness
of the global positive solution of model (2.3), whose proof is provided in “Appendix
1”.
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Theorem 2.1 Assume that εx = εy . Then, for any given positive initial value
(x(0), y(0)) ∈ R

2+, stochastic system (2.3) admits a unique positive solution
(x(t), y(t)) for t ≥ 0 and the solution will remain in R

2+ with probability one, in
other words, (x(t), y(t)) ∈ R

2+ for all t ≥ 0 almost surely (a.s.).

In the following, we study the phenomenon of noise-induced transitions between
stochastic attractors for stochastic model (2.3).

3 Analysis of Noise-Induced Transitions Between Two Internal
Equilibria

In order to analyze the influence of noise onmodel (2.2), we take the following realistic
parameter values from (Li et al. 2011):

e = 0.8, b = 1.2, d = 0.25, θ = 0.04, q = 0.004, c = 0.8, a = 0.25. (3.1)

We further take p = 0.615, it is easy to compute from Example 2 in Xie et al. (2018)
that

K1 = 0.1625, K2 = 0.5705, K3 = 0.6139, K4 = 0.5661, K5 = 1.3244.

Obviously, K1 < K4 < K2 < K3 < K5. Now taking the above parameter values
and K = 0.567 in model (2.2) (i.e., stochastic model (2.3) with ε = 0), there exist a
washout equilibrium E0 = (0, 0), a mono-culture equilibrium E1 = (0.5670, 0), and
three coexistence/interior equilibria E2 = (0.1603, 0.4415), E3 = (0.2193, 0.4317),
and E4 = (0.2454, 0.4215). It is easy to see that K ∈ (K4, K2) = (0.5661, 0.5705).
From Example 2 in Xie et al. (2018) and Lemma 2.1, we know that equilibria E0 and
E1 are unstable, E3 is a saddle point, coexistence equilibria E2 and E4 are locally
asymptotically stable. Using the command “DEtools [phaseportrait]” of Maple, the
vector field of the deterministic model with given parameters is drawn as in Fig. 2, in
which the red dash-dotted line is the separatrix of two attraction domains and the blue
dash-dotted line is the separatrix of two subsystems.

For the deterministic model, the trajectory with its initial point inside the separatrix
converges to the coexistence equilibrium E2, and the trajectory with its initial value
outside the separatrix converges to the coexistence equilibrium E4. However, the
dynamics of the stochastic model sometimes can be difficult to predict accurately.
In order to illustrate the impact of environmental noise on dynamical behaviors of
model (2.2), we take equilibrium E2 as an example. For equilibrium E4, we can
discuss similarly. For a weak noise, the stochastic trajectory with its initial value near
the deterministic coexistence equilibrium will fluctuate around this equilibrium, the
densities of grazer and producer stay close to their equilibrium values (see Fig. 3).
However, as the noise intensity increases and becomes sufficiently large, both grazer
and producer can go extinct (see Fig. 4). Hence, there is a critical noise intensity ε∗

1 ,
when 0 < ε1 < ε∗

1 , both grazer and producer persist. Furthermore, in this interval
we find interesting phenomena of noise-induced transitions between two stochastic
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Fig. 2 Vector field of the deterministicmodel and the equation of the separatrix of two subsystems: x+y = p
(Color figure online)
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Fig. 3 a Time series of x(t) and y(t); b Phase trajectory for stochastic model (2.3) with the initial value
(0.1603, 0.4415) and the noise intensity ε1 = 0.0015 (Color figure online)

attractors. Here, Figs. 3 and 4 are drawn with Matlab software by using the Euler-
Maruyama method developed in Ref. Higham (2001). The same method is also used
in the numerical simulations of time series and random trajectories in the later figures
of the paper.

In the following, by using the SSF method (see “Appendix 2”), we construct
confidence ellipses for stochastic model (2.3) to characterize the configurational
arrangement of stochastic coexistence equilibria and then further estimate the thresh-
old value of the noise intensity of state switching.
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Fig. 4 a Time series of x(t) and y(t); b Phase trajectory for stochastic model (2.3) with the initial value
(0.1603, 0.4415) and the noise intensity ε1 = 0.15 (Color figure online)

Define

F =
(

f11 f12
f21 f22

)

, G =
(
g11 0
0 g22

)

, S = GGT ,

where

f11 = cxy

(a + x)2
− bx

K
, f12 = − cx

a + x
, f21 = acey

(a + x)2
, f22 = 0

and

g11 = x, g22 = y.

The stochastic sensitivity matrix

W =
(

w11 w12
w21 w22

)

satisfies the following equations:

⎧
⎪⎪⎨

⎪⎪⎩

2 f11w11 + f12w12 + f12w21 = −g211,
f21w11 + ( f11 + f22)w12 + f12w22 = 0,
f21w11 + ( f11 + f22)w21 + f12w22 = 0,
f21w12 + f21w21 + 2 f22w22 = −g222.

It then follows from (B.3) that the confidence ellipse equation is

〈
(x − x̄, y − ȳ)T ,W−1((x − x̄, y − ȳ)T )

〉 = 2ε2 ln
1

1 − P
, (3.2)
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Fig. 5 a Separatrix (dashed-dotted) and confidence ellipses (solid) for ε1 = 0.001 (small), ε1 = 0.002
(middle), ε1 = 0.003 (large). bRandom state (blue) of stochastic model (2.3) and confidence ellipse (green)
for ε1 = 0.0015

where (x̄, ȳ) is a interior equilibrium of deterministic model (2.2), ε and P are respec-
tively the noise intensity and a fiducial probability.

Taking the same parameters as in Fig. 2, for the interior equilibrium E2 =
(0.1603, 0.4415) we have

W =
(
83.1776 −0.5261
−0.5261 111.6737

)

, W−1 =
(
0.0120 0.0001
0.0001 0.0090

)

,

respectively. Then, from Eq. (3.2) the confidence ellipse equation of E2 is

0.0120(x − 0.1603)2 + 0.0002(x − 0.1603)(y − 0.4415) + 0.009(y − 0.4415)2

= 2ε21 ln
1

1 − P1
.

For fixing fiducial probability P1 = 0.95, we take the noise intensities ε1 =
0.001, 0.002, and 0.003, respectively, resulting in the corresponding confidence
ellipses shown in Fig. 5a. Obviously, as the noise intensity increases, the confidence
ellipse starts to expand and after crossing the separatrix, it enters the attraction domain
of the coexistence equilibrium E4. The value ε1 corresponding to the tangency of the
confidence ellipse can be used as an estimation for the threshold noise intensity of the
onset of noise-induced transitions. Here, ε1 = 0.002. Figure 5b illustrates the confi-
dence ellipse with ε1 = 0.0015, one can see that the random states of the stochastic
model are distributed around the corresponding deterministic coexistence equilibrium,
and they belong to the interior of the confidence ellipse with probability 0.95.

Similarly, the stochastic sensitivity matrix corresponding to equilibrium E4 is

W =
(

6.5749 −2.7132
−2.7132 1.4468

)

,W−1 =
(
0.6726 1.2613
1.2613 3.0565

)

,
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then the confidence ellipse equation of E4 is

0.6726(x − 0.2454)2 + 2.5226(x − 0.2454)(y − 0.4215) + 3.0565(y − 0.4215)2

= 2ε22 ln
1

1 − P2
.

By taking P1 = P2 = 0.95, we consider two confidence ellipses together. For a
weak noise (ε1 = 0.001, ε2 = 0.003), two confidence ellipses of the coexistence E2
(green) and E4 (blue) are distinctly separated by the separatrix of two attraction basins
(see the left panel of Fig. 6a), and solutions starting from one side will eventually
approach the coexistence equilibrium E2 (red) or E4 (green) on that side (see the
middle panel of Fig. 6a). Stochastic trajectories leaving the unforced deterministic
attractors concentrate in their small neighborhoods (see the right panel of Fig. 6a).
Here, the dynamics of the stochastic model is almost regular and small noises have
little impact on the densities of grazer and producer.

As the noise intensity increases, the confidence ellipse expands. We keep ε1 =
0.001 and increase ε2 to 0.008, then the confidence ellipse (blue) of the coexistence
equilibrium E4 crosses the separatrix (see the left panel of Fig. 6b). Solutions starting
from the attraction basin of E4 will eventually approach the coexistence equilibrium
E2 on the other side with high probability (see the middle panel of Fig. 6b). The
phenomenon of noise-induced transition occurs (see the right panel of Fig. 6b). We
also have a symmetric result in Fig. 6c (for ε1 = 0.003, ε2 = 0.003).

The above three situations are all related to the initial point. However, when both
confidence ellipses expand and cross the separatrix and intersect each other (see the
left panel of Fig. 6d for ε1 = 0.003, ε2 = 0.008), we obtain frequent random hopping
of phase trajectories between attraction basins of the equilibria E2 and E4. On the
phase plane, a place of this intersection marks a location of the “transition bridge”
between basins of attraction where noise-induced transitions are most likely to occur.
These results obtained by the confidence domain method are in agreement with the
direct numerical simulation of time series (middle panel) and random trajectories (right
panel) in Fig. 6d. The difference is that the initial value can be evaluated anywhere in
the invariant set.

4 Analysis of Noise-Induced State Switching Between Confidence
Ellipse and Confidence Band

When p = 0.617, K = 0.574 and other parameter values are the same as in (3.1),
Lemma 2.2 implies that the coexistence equilibrium E4 = (0.2652, 0.4157) of model
(2.2) is stable, but E2 = (0.2083, 0.4380) becomes unstable. Meanwhile, the model
has a unique stable limit cycle surrounding the equilibrium E2, where both population
levels fluctuate around a coexistence equilibrium.We next analyze noise-induced state
switching by constructing confidence band and confidence ellipse.

In the stochastic case, the limit cycle generally disappears, but the trajectories will
remain in a small neighborhood of the deterministic limit cycle for a small noise. For
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Fig. 6 Confidence ellipses (left), time series (middle) and random trajectories (right) of stochastic model
(2.3) for: a ε1 = 0.001, ε2 = 0.003; b ε1 = 0.001, ε2 = 0.008; c ε1 = 0.003, ε2 = 0.003; d ε1 = 0.003,
ε2 = 0.008 (Color figure online)

characterizing the configurational arrangement of this neighborhood, in what follows,
we will construct the confidence band for stochastic model (2.3).

For convenience, let

F1(x, y) = bx

(

1 − x

K

)

− cxy

a + x
,

F2(x, y) = cexy

a + x
− dy,

123



55 Page 12 of 22 S. Yuan et al.

and denote the deterministic limit cycle by Γ (x(t), y(t)), t ∈ [0, T ], where T is the
period. Then, we can write matrices F(t), G(t) and S(t) as follows:

F(t) =
(

f11(t) f12(t)
f21(t) f22(t)

)

, G(t) =
(
g11(t) 0
0 g22(t)

)

, S(t) = G(t)G(t)T ,

where

f11(t) =
(

b − 2bx

K
− acy

(a + x)2

)

|Γ , f12(t) = −
(

cx

a + x

)

|Γ ,

f21(t) =
(

acey

(a + x)2

)

|Γ , f22(t) =
(

cex

a + x
− d

)

|Γ ,

and

g11(t) = x |Γ , g22(t) = y |Γ .

From (B.4),we know that the stochastic sensitivity functionμ(t) satisfies the following
boundary problem:

μ̇ = a(t)μ + b(t), μ(0) = μ(T ),

where

a(t) = 2 f11(t)p
2
1(t) + 2( f12(t) + f21(t))p1(t)p2(t) + 2 f22(t)p

2
2(t),

b(t) = g11(t)p
2
1(t) + g22(t)p

2
2(t).

Here,

p1(t) = F2(x, y)
√

F2
1 (x, y) + F2

2 (x, y)
,

p2(t) = − F1(x, y)
√

F2
1 (x, y) + F2

2 (x, y)

are elements of a vector function p(t) = (p1(t), p2(t))T orthogonal to vector
(F1(x, y), F2(x, y))T |Γ . It follows from (B.5) that the boundaries Γ1,2(t) of the
confidence band have the following explicit parametrical form:

Γ1(t) = Γ (t) + ε1k
√
2μ(t)p(t),

Γ2(t) = Γ (t) − ε1k
√
2μ(t)p(t).

Here, the parameter k is connected with the fiducial probability P1 by the formula
k = er f −1(P1), where er f (x) = 2√

π

∫ x
0 e−t2dt is the error function.
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Fig. 7 Confidence bands for stochastic model (2.3). aRandom states (blue) aroundΓ (red) and band (green)
for ε1 = 0.0005, P1 = 0.95; b P1 = 0.95 and ε1 = 0.0006 (green), ε1 = 0.0003 (blue); c ε1 = 0.0006
and P1 = 0.95 (green), P1 = 0.75 (blue)

In Fig. 7a, the red line is the deterministic limit cycle, the blue points are the random
states on different time and the two green lines are the boundaries of the confidence
band. Obviously, the random states are distributed around the deterministic limit cycle,
and they belong to the interior of the confidence band with probability 0.95.

Figure 7b, c illustrate the effects of the noise intensity and fiducial probability on
the size of confidence band. It is easy to see from Fig. 7b, c that the configurational
arrangement of confidence band begins to expand as the noise intensity or fiducial
probability increases. This result can be deduced from the expressions of Γ1(t) and
Γ2(t).

Following the same logic as in Sect. 3, we can obtain the stochastic sensitivity
matrix of E4 as follows:

W =
(

3.2019 −1.4053
−1.4053 0.9516

)

, and W−1 =
(
0.8876 1.3108
1.3108 2.9867

)

.

Then, from (B.3) the confidence ellipse equation of E4 is

0.8876(x − 0.2652)2 + 2.6216(x − 0.2652)(y − 0.4157) + 2.9867(y − 0.4157)2

= 2ε22 ln
1

1 − P2
.

By taking P1 = P2 = 0.95, we investigate the evolution process between confi-
dence band and confidence ellipse. For a weak noise, confidence band and confidence
ellipse are distinctly separated, the trajectory with its initial point in either of two
attraction basins will eventually approach confidence band or confidence ellipse in that
attraction basin. Stochastic trajectories leaving the unforced deterministic attractors
concentrate in their small neighborhoods (see Fig. 8a for ε1 = 0.0006, ε2 = 0.006).
With ε1 = 0.001, ε2 = 0.015, the left panel of Fig. 8b illustrates that confidence
band and confidence ellipse expand and intersect each other. This leads to frequent
random hopping of phase trajectories between attraction basins of the limit cycle and
a coexistence equilibrium (see the middle and right panels of Fig. 8b).
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Fig. 8 Confidence domains (left), time series (middle) and random trajectories (right) of stochastic model
(2.3) for: a ε1 = 0.0006, ε2 = 0.0006; b ε1 = 0.001, ε2 = 0.015 (Color figure online)

5 Discussion

We study noise-induced transitions from one coexistence to another coexistence in a
constant interval for a stochastically forced producer–grazer model with stoichiomet-
ric constraints. The corresponding deterministic model is nonsmooth and its global
stability and bifurcation are fully analyzed in Xie et al. (2018). When appropriate
parameters are chosen, bistability can occur. The attractors (stable equilibria E2, E4,
or the limit cycle Γ ) correspond to the stable coexistence of grazer and producer. Two
attraction basins are distinctly separated by the separatrix, which is the stable man-
ifold of saddle point E3, and solutions from either side of separatrix will eventually
approach the equilibrium or the limit cycle on that side. However, when there is noise
disturbance, the boundary may be damaged by noise, and the solutions in the attractive
basin of one stable coexistence equilibrium can eventually approach the other stable
coexistence equilibrium with a high probability.

Based on the technique of SSF, we construct confidence ellipses to characterize
the phenomenon of noise-induced state switching between two stochastic coexistence
equilibria. It provides us the general location of the equilibria and the distribution
of random states in the stochastic model. For a weak noise, the confidence ellipses
are completely contained in the attraction basins of the corresponding coexistence
equilibria, and the random trajectories will not leave the confidence ellipses with a
high probability. As the noise intensities increase, the confidence ellipses begin to
expand and when only one ellipse crosses the separatrix, we study the phenomenon
of noise-induced transitions from a coexistence to another coexistence. Furthermore,
when both of confidence ellipses cross the separatrix of two attraction basins and
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intersect each other, we obtain that frequent random hopping of phase trajectories
between the attraction basins of the equilibria.

In addition, we have established the confidence band for the limit cycle of model
(2.3), which provides us the general location of the stochastic cycle and the distribu-
tion of random states around the deterministic limit cycle. Following the same logic,
we analyze the phenomenon of noise-induced transitions via confidence band and
confidence ellipse.

Theoretically, the solution of the stochastic model with multi-stability runs long
enough to cause state switching. When one confidence domain intersects another, the
probability of switching is very high (it can be done in a very short time).

In fact, the phenomenon of noise-induced transitions we get is independent of the
way the noise is introduced, we’re just taking one of these cases. For instance, we
can introduce randomness into deterministic model (2.2) by perturbing the parameter
c → c + ε Ḃ(t) and obtain the following stochastic differential equation:

{
dx = (

bx
(
1 − x

K

) − cxy
a+x

)
dt − ε

cxy
a+x dB,

dy = ( cey
a+x min{x, p − y} − dy

)
dt + ε

cey
a+x min{x, p − y}dB.

The results of numerical simulation of time series and random trajectories are similar
to those presented in this paper.

We discuss the generality of model (2.2), where noised-induced state switching
might not be as common in a real-world situation. There are different noise intensities
and ranges for different species. Our work expounded how the confidence domain
method is used to understand the qualitative changes in stochastic dynamics at which
noise-induced state switching occurswith high probabilities. Thismethod is applicable
to nonsmooth competition models and more complex higher dimensional models in
aquatic or terrestrial ecosystems. Our results enrich the study of asymptotic behaviors
in stoichiometric producer–grazer models and help better understand the stoichiomet-
ric producer–grazer dynamics in the stochastic perspective.
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A Proof of Theorem 2.1

Proof Without lose of generality, we assume that x(0)+ y(0) > p (same logic follows
when x(0)+y(0) ≤ p). Let us introduce the stopping time sequence {τi }, i = 1, 2, · · ·
as follows:

τ1 = inf{t ≥ 0, x(t) + y(t) ≤ p}, τ2 = inf{t ≥ τ1, x(t) + y(t) > p}

and

τ2k+1 = inf{t ≥ τ2k, x(t) + y(t) ≤ p}, τ2k+2 = inf{t ≥ τ2k+1, x(t) + y(t) > p}

for k = 1, 2, · · · . Thus when t ∈ [τ2k, τ2k+1), model (2.3) becomes

⎧
⎨

⎩

dx =
(
bx(1 − x

K ) − cxy
a+x

)
dt + ε2xdB1,

dy =
(
cey(p−y)

a+x − dy
)
dt + ε2ydB2,

(A.1)

and when t ∈ [τ2k+1, τ2k+2), model (2.3) becomes

⎧
⎨

⎩

dx =
(
bx(1 − x

K ) − cxy
a+x

)
dt + ε1xdB1,

dy =
(
cexy
a+x − dy

)
dt + ε1ydB2,

(A.2)

where k = 0, 1, 2, · · · and τ0 = 0. Notice that (A.1) and (A.2) both have a unique
global positive solution for any initial value (x(0), y(0)) ∈ R

2+. This implies that
model (2.3) has a unique local positive solution (x(t), y(t)) on t ∈ [0, τe), where τe is
the explosion time. To show the solution is global, we only need to prove that τe = ∞,
a.s. To this end, let n0 ≥ 0 be sufficiently large such that x(0), y(0) both lie within
the interval [ 1

n0
, n0]. For each integer n ≥ 0, define the stopping time as

τ ′
n = inf{t ∈ [0, τe) : min{x(t), y(t)} ≤ 1

n
or max{x(t), y(t)} ≥ n},

where throughout this article, we set inf ∅ = ∞ (as usual ∅ denotes the empty set).
Obviously, τ ′

n is increasing as n → ∞. Set τ ′∞ = lim
n→∞ τ ′

n , whence τ ′∞ ≤ τe, a.s. If

we can prove τ ′∞ = ∞, a.s., then τe = ∞ and (x(t), y(t)) ∈ R
2+ for all t ≥ 0, a.s. In

other words, to complete the proof all we need to prove is that τ ′∞ = ∞, a.s.We prove
this by contradiction. If this assertion is false, then there exists a pair of constants
T > 0 and ε ∈ (0, 1) such that

P{τ ′∞ ≤ T } > ε.

Therefore, there exists an integer n1 ≥ n0 such that for all n ≥ n1,

P{τ ′
n ≤ T } ≥ ε. (A.3)
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Define a C2-function V : R2+ → R+ by

V (x, y) = (x − 	1 ln x − 	1 + 	1 ln 	1) + 1

e
(y − ln y − 1),

where 	1 = ad
ce . It is easy to verify that the function V (x, y) ≥ 0 for all (x, y) ∈ R

2+.
Applying Itô’s formula to model (2.3), we obtain that for t ∈ [τ2k, τ2k+1),

LV =
(

1 − 	1

x

)(

bx(1 − x

K
) − cxy

a + x

)

+ 	1ε
2
2

2

+1

e

(

1 − 1

y

) (
cey(p − y)

a + x
− dy

)

+ ε22

2e

=
(

b + 	1b

K

)

x − b

K
x2 + 1

a + x
(−cy2 + (	1c + cp + c)y − cp)

− cxy

a + x
− d

e
y − 	1

(

b − ε22

2

)

+ 1

e

(

d + ε22

2

)

≤ M1

and that for t ∈ [τ2k+1, τ2k+2),

LV =
(

1 − 	1

x

) (

bx(1 − x

K
) − cxy

a + x

)

+ 	1ε
2
1

2
+ 1

e

(

1 − 1

y

)(
cexy

a + x
− dy

)

+ ε21

2e

=
(

b + 	1b

K

)

x − b

K
x2 + 	1cy

a + x
− d

e
y − cx

a + x
− 	1

(

b − ε21

2

)

+ 1

e

(

d + ε21

2

)

≤
(

b + 	1b

K

)

x − b

K
x2 − 	1

(

b − ε21

2

)

+ 1

e

(

d + ε21

2

)

≤ M2.

Therefore, we have that for t ∈ [τ2k, τ2k+1),

dV (x, y) ≤ LVdt+ε2(x−	1)dB1+ ε2

e
(y−1)dB2 ≤ M1dt+ε2(x−	1)dB1+ ε2

e
(y−1)dB2 (A.4)

and that for t ∈ [τ2k+1, τ2k+2),

dV (x, y) ≤ LVdt+ε1(x−	1)dB1+ ε1

e
(y−1)dB2 ≤ M2dt+ε1(x−	1)dB1+ ε1

e
(y−1)dB2.

(A.5)
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Without loss of generality, we assume that (τ ′
n ∧ T ) ∈ [τ2m, τ2m+1) for some k = m

(same logic follows when (τ ′
n ∧ T ) ∈ [τ2m+1, τ2m+2)). This, together with (A.4) and

(A.5), yields

V (x(τ ′
n ∧ T ), y(τ ′

n ∧ T ))

≤ V (x(0), y(0)) +
m−1∑

k=0

(∫ τ2k+1

τ2k

M1dt +
∫ τ2k+1

τ2k

ε2(x − 	1)dB1 +
∫ τ2k+1

τ2k

ε2

e
(y − 1)dB2

)

+
m−1∑

k=0

(∫ τ2k+2

τ2k+1

M2dt +
∫ τ2k+2

τ2k+1

ε1(x − 	1)dB1 +
∫ τ2k+2

τ2k+1

ε1

e
(y − 1)dB2

)

+
∫ τ ′

n∧T

τ2m

M1dt +
∫ τ ′

n∧T

τ2m

ε2(x − 	1)dB1 +
∫ τ ′

n∧T

τ2m

ε2

e
(y − 1)dB2.

Taking the expectations of the above inequality leads to

EV (x(τ ′
n ∧ T ), y(τ ′

n ∧ T )) ≤ V (x(0), y(0)) + ME(τ ′
n ∧ T ),

where M = max{M1, M2}. Noticing that E(τ ′
n ∧ T ) ≤ T , it then follows that

EV (x(τ ′
n ∧ T ), y(τ ′

n ∧ T )) ≤ V (x(0), y(0)) + MT . (A.6)

Let Ωn = {ω ∈ Ω : τ ′
n = τ ′

n(ω) ≤ T } for n ≥ n1 and in view of (A.3), we know
that P(Ωn) ≥ ε. Notice that for every ω ∈ Ωn , we have either x(τ ′

n, ω) or y(τ ′
n, ω)

equals either n or 1
n . Hence V (x(τ ′

n, ω), y(τ ′
n, ω)) is no less than either

(n − 	1 ln n − 	1 + 	1 ln 	1) ∧ 1

e
(n − ln n − 1) or

(
1

n
+ 	1 ln n − 	1 + 	1 ln 	1

)

∧1

e

(
1

n
+ ln n − 1

)

.

It follows from (A.6) that

V (x(0), y(0)) + MT ≥ E[IΩn(ω)V (x(τ ′
n, ω), y(τ ′

n, ω))]
≥ ε

[

(n − 	1 − 	1 ln
n

	1
) ∧ 1

e
(n − ln n − 1)

∧
(
1

n
− 	1 + 	1 ln(	1n)

)

∧ 1

e

(
1

n
+ ln n − 1

)]

,

where IΩn denotes the indicator function of Ωn . Letting n → ∞, a.s., then we obtain

∞ > V (x(0), y(0)) + MT = ∞,

which leads to the contradiction and thus we must have τ ′∞ = ∞, a.s. This completes
the proof. �
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Remark A.1 In the proof of Theorem 2.1, we first argue that model (2.3) has a unique
positive local solution, which suggests a strong solution that is pathwise unique, since
this is the case for the two subproblems. However, the procedure used usually yields a
weak solutionwith uniqueness in law, see sections 1.4 and 1.5 in Cherny and Engelbert
(2005).

B Stochastic Sensitivity and Confidence Domains

Consider a general nonlinear stochastic model

ẋ = f (x) + εσ (x)ẇ, (B.1)

where x is an n-vector, f (x) is an n-vector function, σ(x) is an n × n-matrix-valued
function, w(t) is an n-dimensional Brownian motion, and ε is a scalar parameter of
the noise intensity. We assume that the deterministic model corresponding to (B.1)
(ε = 0) has a stable attractor.

Random trajectories of model (B.1) leave a deterministic attractor and form a cor-
responding stochastic attractor with stationary probability distribution ρ(x, ε), which
is a stationary solution of the corresponding Fokker-Planck equation. Technically, it
is hard to acquire such a solution. For a weak noise, asymptotes based on the quasipo-
tential v(x) = limε→0 ε2 log ρ(x, ε) are used (Freidlin and Wentzell 1984), and an
approximation of ρ(x, ε) can be written as

ρ(x, ε) ≈ K · exp
(

− v(x)

ε2

)

.

To approach v(x), we use the stochastic sensitivity functions (Bashkirtseva and
Ryashko 2005).

We consider stochastically forced equilibria. We assume that the deterministic
model (B.1) with ε = 0 has a stable equilibrium x̄ . In this case, the following quadratic
approximation of the quasipotential v(x) ≈ 1

2 (x− x̄, V (x− x̄)) is used, one can obtain
an asymptote of the stationary distribution in the Gaussian form:

ρ(x, ε) ≈ K · exp
(

− (x − x̄, V (x − x̄))

2ε2

)

,

where ε2W = ε2V−1 is a covariance matrix. The stochastic sensitivity matrix W is a
unique solution of the matrix equation

FW + WFT = −S, F = ∂ f

∂x
(x̄), S = GGT ,G = σ(x̄). (B.2)

Thismatrix characterizes a spatial arrangement and the size of the stationary distributed
random states in the stochastic model (B.1) around the deterministic equilibrium x̄ .
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Using this matrix, one can construct confidence domains for the geometrical descrip-
tion of the stochastic attractors.

For two dimensional case, a confidence ellipse can be given by the following equa-
tion:

(x − x̄,W−1(x − x̄)) = 2k2ε2, (B.3)

where ε is a noise intensity, k2 = − ln(1 − p), and p is a fiducial probability.
Now we consider that the deterministic model (B.1) with ε = 0 has a stable limit

cycle Γ corresponding to T -periodic solution x = ξ(t). Let Πt be a hyperplane
which is orthogonal to the cycle Γ at the point ξ(t)(0 ≤ t < T ). In this case, for the
Poincaré sectionΠt in the neighborhood of the point ξ(t), the quadratic approximation
of the quasipotential can be written as v(x) ≈ 1

2 (x − ξ(t),W+(t)(x − ξ(t))). The
corresponding Gaussian approximation of the stationary probabilistic distribution is
as follows:

ρ(x, ε) ≈ K exp

(

− (x − ξ(t)T W+(t)(x − ξ(t))

2ε2

)

.

Here, the stochastic sensitivity matrix W (t) of the cycle Γ is a unique solution of the
Lyapunov equation

Ẇ = F(t)W + WFT (t) + P(t)S(t)P(t)

with conditions
W (0) = W (T ),W (t)r(t) ≡ 0,

where F(t) = ∂ f
∂x (ξ(t)), S(t) = σ(ξ(t))σ T (ξ(t)), r(t) = f (ξ(t)), and P(t) is a

matrix of the orthogonal projection onto the hyperplane Πt (Ryashko 1996).
For two-dimensional case, the stochastic sensitivity matrix W (t) can be written

as W (t) = μ(t)P(t). Here, μ(t) > 0 is a T -periodic scalar stochastic sensitivity
function satisfying the following boundary problem:

μ̇ = a(t)μ + b(t), μ(0) = μ(T ) (B.4)

with T -periodic coefficients

a(t) = μT (t)(FT (t) + F(t))u(t), b(t) = μT (t)S(t)u(t),

where u(t) is a normalized vector orthogonal to f (ξ(t)).
The stochastic sensitivity function μ(t) allows us to construct a confidence band

around the deterministic cycle Γ . For the line Πt that is orthogonal to the cycle at
the point ξ(t), a corresponding confidence interval is given by the following equation
(x − ξ(t))2 = 2k2ε2μ(t). Hence, the boundaries x1,2(t) of the confidence band can
be written in an explicit parametrical form:

x1,2(t) = ξ(t) ± kε
√
2μ(t)u(t). (B.5)

Here, the parameter k is connected with the fiducial probability p by the formula
k = er f −1(p), where er f (x) = 2√

π

∫ x
0 e−t2dt is the error function.
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The stochastic sensitivity function technique was successfully applied to analyze
noise-induced transitions in a stoichiometric producer–grazer model and to construct
confidence domains.
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