
INTRODUCTION

Itch is a devastating symptom accompanied by various disease 

conditions originating from dermatological, systemic, neurologi-
cal or psychogenic problems [1]. During the last decade, a great 
advance has been made in our understanding of the molecular 
and cellular mechanisms of itch [2]. A number of itch-transducing 
molecules and neurotransmitters are identified in the primary 
sensory neurons and spinal cord, and the brain circuits mediating 
itch have begun to be revealed using animal models such as ro-
dents and monkeys. Scratching is a main behavioral consequence 
elicited by acute treatment of pruritogens or by chronic itch condi-
tions, and has been quantified in the animal and human studies 
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Technologue

Scratching is a main behavioral response accompanied by acute and chronic itch conditions, and has been quantified as an objec-
tive correlate to assess itch in studies using laboratory animals. Scratching has been counted mostly by human annotators, which is 
a time-consuming and laborious process. It has been attempted to develop automated scoring methods using various strategies, but 
they often require specialized equipment, costly software, or implantation of device which may disturb animal behaviors. To comple-
ment limitations of those methods, we have adapted machine learning-based strategy to develop a novel automated and real-time 
method detecting mouse scratching from experimental movies captured using monochrome cameras such as a webcam. Scratching 
is identified by characteristic changes in pixels, body position, and body size by frame as well as the size of body. To build a training 
model, a novel two-step J48 decision tree-inducing algorithm along with a C4.5 post-pruning algorithm was applied to three 30-min 
video recordings in which a mouse exhibits scratching following an intradermal injection of a pruritogen, and the resultant frames 
were then used for the next round of training. The trained method exhibited, on average, a sensitivity and specificity of 95.19% and 
92.96%, respectively, in a performance test with five new recordings. This result suggests that it can be used as a non-invasive, auto-
mated and objective tool to measure mouse scratching from video recordings captured in general experimental settings, permitting 
rapid and accurate analysis of scratching for preclinical studies and high throughput drug screening.
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as a correlate representing the subjective experience of itch. In 
many previous studies involving laboratory animals such as mice, 
scratching was counted manually as in scratching bouts by human 
annotators by playing video recordings back and forth, which is 
a labor-intensive and time-consuming process often hinders the 
progress of the study and may also subject to human errors. Thus, 
it has attempted to develop automated detecting methods for 
mouse scratching based on various strategies, including the detec-
tion of vibration and sound generated when a mouse scratches 
the skin with the hind paw, motional detection of a metal ring or 
magnet implanted to the hind limb, the use of force platform de-
tecting repetitive events, and also computer vision-based analysis 
[3-12]. Few studies have involved a machine-learning algorithm. 
Although those methods permit automated and decent detection 
of scratching, they are often limited by invasive and potentially 
disturbing handling of animals as well as costly software and test-
ing equipment, such as high-speed and high-resolution cameras 
and depth-sensing cameras. 

Here, we propose a new machine learning-based method for 
automatic and real-time detection of mouse scratching behav-
ior in its homecage from videos recorded with an inexpensive 
monochrome camera such as webcam. By taking advantage of 
characteristic frame-dependent changes occurring when a mouse 
exhibits scratching, the novel method can distinguish scratching 
from other homecage activities such as walking, rearing, grooming, 
and digging. After two rounds of training with a two-step deci-
sion tree-inducing algorithm, it exhibited an ability in detecting 
scratching behavior with a sensitivity and specificity of 95.19% and 
92.96%, respectively. In the following performance test, the new 
method could detect scratching from a separate set of recordings 
taken at various pixel resolutions with a sensitivity and specificity 
of 97.3% and 79.3%, respectively, and outperformed other ma-
chine-learning algorithms, such as support vector machine (SVM), 
k-nearest neighbor (kNN), convolutional neural network (CNN), 
recurrent neural network (RNN), and long short-term memory 
(LSTM). Given that the proposed method requires neither expen-
sive recording equipment nor accessary devices attached to an ani-
mal, it is very useful and reliable over existing automated scoring 
system measuring mouse scratching. 

MATERIALS AND METHODS

Recording of mouse scratching behavior

The animal experiments were approved by DGIST Institutional 
Animal Care and Use Committee (IACUC) and were conducted 
in accordance with the National Institutes of Health Guide for the 
Care and Use of Laboratory Animals.

C57BL6/J wild-type male mice were housed singly and were 
maintained on a 12-h light/dark schedule with ad lib access to 
food and water. After a 10-min baseline recording in a home cage, 
a mouse was intradermally injected at the nape of the neck with 
a pruritogen, chloroquine (0.2 mg in 50 μl), using a 31G insulin 
syringe (BD Ultra-Fine II). The injected mouse was returned to 
the home cage in a room with 300~450 lux illumination and was 
recorded for 30 min using a Security Monitor Pro and a webcam 
(Logitech HD Pro webcam) installed 66 cm above from the bed-
ding of cage with dimensions (mm) of W403×L165×H174, using a 
tripod. The recording was performed at 29.0±0.01 frames per sec-
ond (fps) in the resolution of 960×720 pixels. Manual scoring was 
performed by two different human annotators by playing videos 
back and forth.

Feature extraction

Mouse scratching occurs in small sets of very fast movements, 
which could arise at about 10 times per second or more. Detecting 
individual scratches is not facilitated from data recorded using a 
customized monochrome camera with a frame rate of less than 
30 fps. Therefore, in this study, we paid attention to short-term 
patterns generated when a mouse scratches with respect to body 
size Sb, frame-to-frame body size difference ∆Sb, frame-to-frame 
body position difference ∆Pb and frame-to-frame pixel difference 
∆Np. Body size Sb is the area in pixels of a mouse body in a frame. 
Frame-to-frame body size difference ∆Sb is the difference in pixels 
of body size Sb in two consecutive frames. Frame-to-frame body 
position difference ∆Pb is the distance in pixels of the center posi-
tion of the mouse body in two consecutive frames. Frame-to-
frame pixel difference ∆Np is the number of pixels with difference 
values in two consecutive frames. When a mouse scratches, it usu-
ally stands on one of its hind paws and uses another one of its hind 
paws to scratch its ear, back, or side, resulting in lateral bending and 
flection of its body. Its body shape in the recording changes from 
the lateral bending and flection position in one frame to the stand-
ing back position in the next frame. Therefore, frame-to-frame 
body size difference ∆Sb, frame-to-frame body position difference 
∆Pb and frame-to-frame pixel difference ∆Np could be specific to 
patterns of body movement during scratching. Body size Sb is also 
specific to the patterns of body movement during scratching. 

Fig. 1a illustrates the overall flowchart of the detection method 
for a mice scratching and the sample images for each step in Fig. 
1b. As shown in the figure, first the input frame image I(x, y, ti) is 
binarized to segment an edge image B(x, y, ti) of a mouse from the 
background using the equation (1) where ti is the time stamp of 
the i th frame image. The threshold θbg is adjusted to reduce noise 
due to sawdust in the cage.
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Subsequently, an erosion image E(x, y, ti) of the binary image B(x, 
y, ti) is produced by a 2×2 square structuring element in order to 
reduce edge or isolated noises as shown below in (2). 
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Next, parameters of body size Sb, frame-to-frame body size dif-
ference ∆Sb, frame-to-frame body position difference ∆Pb and 
frame-to-frame pixel difference ∆Np are obtained from the erosion 
image E (x, y, ti) using an object fitting method such as OpenCV 
function findContours: E(x, y, ti) → C(xc, yc, ti)as follows.
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The frame-to-frame pixel difference ∆Np is calculated as the 
number of non-zero pixels with the absolute value of the frame-
to-frame differential images between time ti and ti-1 to extract the 
motion from the silhouette image, as shown in (7).
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Finally, a two-step decision tree algorithm is applied to create 
a training model of a mouse scratching behavior by using the 
features of body size Sb, frame-to-frame body size difference ∆Sb, 
frame-to-frame body position difference ∆Pb, and frame-to-frame 
pixel difference ∆Np. The training model is then used to detect the 
mouse scratching behavior. 

Two-step decision tree algorithm

A decision tree, one of the most popular machine-learning algo-
rithms, is a tree where each node, link, and leaf represents a feature, 
a decision, and an outcome, respectively. We used the J48 decision 
tree-inducing algorithm using information gain. It is based on the 
concept of entropy and information content to decide which fea-
ture to split on at each step in building the tree. We applied the J48 
decision tree-inducing algorithm in two steps to build a training 
model of a mouse scratching behavior by using the four features, 

Fig. 1. (a) Overall flowchart (a) and sample image (b) showing the procedures to develop a novel automatic method detecting scratching. Experimental 
movies recoded following an intradermal injection of an itch-causing compound into the nape of the neck of a mouse were registered and binarized for 
the frame-to-frame analysis. Following a process of noise reduction, four characteristic changes accompanying scratching, changes in body size as well as 
changes in pixels, body size and body position by frame, were extracted from the movies. These features were utilized to determine scratching from other 
homecage behaviors by a two-step decision tree-inducing algorithm during two rounds of training procedures to build a novel detection method.
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the frame-to-frame pixel difference, the frame-to-frame body po-
sition difference, the frame-to-frame body size difference and the 
body size. In other words, all the frames of the training data were 
used in the first step to build a model of a mouse scratching be-
havior and then the resultant frames detected as scratching in the 
first step were used as the training data in the second step to build 
a fine modulated version of the model. The C4.5 post-pruning 
algorithm was used at both steps to optimize the computational 
efficiency and classification accuracy of the training model.

RESULTS AND DISCUSSION

Statistical analysis of the significance of the extracted four 

features 

Fig. 2 presents the comparisons of the normalized histograms 

(bars) and distributions (lines) between behaviors of scratching 
(Scr; red bars and lines) and no scratching (NoScr; blue bars and 
lines) in the features, the frame-to-frame pixel difference (Fig. 
2a), the frame-to-frame body position difference (Fig. 2b), the 
frame-to-frame body size difference (Fig. 2c) and the body size 
(Fig. 2d), extracted from the training data. Fig. 2 also shows the 
results of ANOVA analysis between the behaviors of scratching 
and no scratching in the features. The ANOVA analysis indicated 
that there were significant differences between the behaviors of 
scratching and no scratching (p-value<0.0001) in all the features of 
the frame-to-frame pixel difference, the frame-to-frame body po-
sition difference, the frame-to-frame body size difference and the 
body size. The averages and standard deviations of each of the fea-
tures for various behaviors including scratching are summarized in 
Table 1 where the unit is the number of pixels and the superscripts 

Fig. 2. Normalized histograms 
and distributions and ANOVA 
analysis results for scratching 
(Scr, red bars and lines) and no 
scratching (NoScr, blue bars and 
lines) behaviors in (a) frame-to-
frame pixel difference, (b) frame-
to-frame body position differ-
ence, (c) frame-to-frame body 
size difference and (d) body size. 
(**p-value<0.0001).

Table 1. Averages and standard deviations of the features for various behaviors including scratching (unit: no. of pixels) 

Behavior
Frame-to-frame pixel 

difference
Frame-to-frame body 

position difference
Frame-to-frame body 

size difference
Body size

scratching 173.3±204.6 1.92±1.68 496.6±530.9 18724.2±2168.1
grooming 54.0±120.7** 1.47±2.56** 315.8±628.5** 16561.9±2401.0**
digging 26.3±90.5** 1.42±2.77** 335.5±591.5** 18321.3±2145.1
rearing 108.6±214.6** 2.69±6.84** 531.5±1335.0* 18660.0±3150.2**
walking 597.8±591.1** 7.42±11.79** 900.9±1877.7** 21386.0±3110.3**

p-value<0.0001**, p-value<0.01* in one-way ANOVA for comparing scratching with each behavior on each feature, Data are mean±SD.



58 www.enjournal.org https://doi.org/10.5607/en.2019.28.1.54

Ingyu Park, et al.

** and * indicate p-value<0.0001 and p-value<0.01, respectively 
obtained in one-way ANOVA for comparing scratching with each 
behavior on each feature. As shown in Table 1, the frame-to-frame 
pixel difference of scratching is significantly smaller than that of 
walking while it is significantly bigger than those of grooming and 
digging in the averages and the standard deviations. On the other 
hand, the frame-to-frame body position difference the frame-to-
frame body size difference of scratching are significantly smaller 
than those of rearing and walking in the averages and the standard 
deviations. Therefore, the frame-to-frame pixel difference, the 
frame-to-frame body position difference and the frame-to-frame 
body size difference parameters of scratching could be the effec-
tive features in the classification of scratching behavior in relation 
to other behaviors.

Performances of the training model built by the two-step 

decision tree algorithm

J48 decision tree-inducing algorithm (Weka implementation of 
C4.5) was used to build a training model of a mouse scratching 
behavior by using the features of the frame-to-frame pixel differ-
ence, the frame-to-frame body position difference, the frame-to-
frame body size difference and the body size. Eight recording data, 
recordings No. 1 through 8, were used. The duration in seconds 
(frame rate per second) of each recording were 1,903 (29.98), 1,866 
(29.99), 1,846 (30.00), 1,835 (29.94), 1,835 (29.99), 1,835 (30.00), 

1,839 (29.96), and 1,837 (29.89), respectively, in the ascending or-
der of the recording number. In the first step, all the frames of the 
recordings number 1 to 3 were used as the training data to build 
a first version of the model. Once the first version of the model 
was obtained, in the second step, the resulted frames detected as 
scratching in the first step were used as the training data to build a 
fine modulated second version of the model. The C4.5 post-prun-
ing algorithm was used at both steps to optimize the computation-
al efficiency and the classification accuracy of the training model 
where the confidence factor was set to 0.5. Fig. 3 shows the deci-
sion tree of the fine modulated model obtained in the second step, 
where features, decisions, and outcomes are displayed in the shapes 
of ellipse, line, and square, respectively. Features are depicted in dif-
ferently colored ellipses with letters enclosed, where ‘fd’, ‘pd’, ‘sd’ or 
‘sz’ refer the frame-to-frame pixel difference (fdiff), the frame-to-
frame body position difference (pdiff), the frame-to-frame body 
size difference (sdiff) or the body size (size), respectively. Decisions 
are displayed in different patterns of lines, in which solid or dot-
ted lines are cases for the corresponding feature not to be or to be 
greater than the number specified beside the feature, respectively. 
Outcomes are displayed as a letter ‘N’ for non-scratching or ‘S’ for 
scratching on a colored square with white or grey, respectively. Fig. 
3 clearly shows that the features of the frame-to-frame pixel differ-
ence and the frame-to-frame body size difference had dominant 
roles in the detection of the scratching behavior; this was also the 

Fig. 3. Decision tree of the fine modulated model obtained in the second step, where features, decisions, and outcomes are expressed in shapes of ellipse, 
line, and square, respectively. Features are depicted in colored ellipses with letters enclosed, where ‘fd’, ‘pd’, ‘sd’ or ‘sz’ refer the frame-to-frame pixel differ-
ence, the frame-to-frame body position difference, the frame-to-frame body size difference or the body size, respectively. Decisions are displayed in dif-
ferent patterns of lines, in which solid or dotted lines are cases for the corresponding feature not to be or to be greater than the number specified beside 
the feature, respectively. Outcomes are displayed as a letter ‘N’ for non-scratching or ‘S’ for scratching on a colored square with white or grey, respectively.



59www.enjournal.orghttps://doi.org/10.5607/en.2019.28.1.54

ML Based Detection for Mouse Scratching

conclusion of Fig. 2. We implemented the algorithm of the deci-
sion tree in Python 3.7 and tested the performance with the testing 
data of the recordings number 4 to 8 as well as the training data. 

Table 2 shows the sensitivity and specificity values of the per-
formance test for each recording by using the models obtained 
from the first and the second steps for comparison. The sensitiv-
ity was estimated from the rate of the number of frames detected 
as scratching (true positives) to the total number of frames of 
scratching (true positives and false negatives). The specificity was 
estimated from the rate of the number of frames detected as non-
scratching (true negatives) to the total number of frames of non-
scratching (true negatives and false positives). The results indicate 
an average sensitivity and a specificity of 95.19% and 92.96%, re-
spectively in the model of the second step where the average ratios 
of true positives, true negatives, false positives and false negatives 
were 1.71, 91.32, 6.88, and 0.09, respectively. On the other hand, the 
results indicate an average sensitivity and a specificity of 98.23% 
and 86.65%, respectively in the model of the first step. In this in-
stance, the sensitivity was a little less than before (by 3.09%) but 
the specificity had much more improved (by 7.28%) in the model 
obtained from the second step compared with that from the first 
step. All the true and the false were verified manually in which the 
effect of human errors were minimized by cross-checking more 
than 10 times. The performance of the proposed method was also 
verified after a preliminary screening by comparing to other ma-
chine learning algorithms such as classification and regression tree, 
support vector machine, k-nearest neighbor, convolutional neural 
network, recurrent neural network, and long short term memory 
[unpublished data].

Validation of the performances of the training model built 

by the two-step decision tree algorithm using standardized 

input datasets

To validate the performances of the two-step decision tree algo-
rithm, three recordings with various pixel resolutions of 300×340, 
800×600, and 1260×960 were used after resizing their pixel resolu-
tion to 960×720 and the frame rate per second to 30. The duration 
in seconds (frame rate per second) of each pixel resolution of 
300×340, 800×600, and 1260×960 was 1,809 (30.00), 1,804 (29.99), 
and 1,940 (21.26), respectively. The distances from camera and the 
intensities of illumination were varying. Table 3 shows the sensi-
tivity and specificity values of the performance test for each of the 
three recordings, which indicate an average sensitivity and a speci-
ficity of 97.3% and 79.3%, respectively in the model of the second 
step. On the other hand, the results indicate an average sensitivity 
and a specificity of 97.4% and 62.7%, respectively in the model of 
the first step. In this instance, the sensitivity was similar to before 
but the specificity had much more improved (by 16.6%) in the 
model obtained from the second step compared with that from 
the first step. 

Validation of the outperformance of the two-step DT com-

pared to other machine-learning algorithms in identifying 

scratching

The performance of the two-step decision tree algorithm was 
compared with that of other machine-learning algorithms, SVM, 
kNN, CNN, RNN, and LSTM, using a separate set of three mov-
ies recorded at the pixel resolution of 300×340, 800×600, or 
1260×960. All movies were processed to the pixel resolutions of 
960×720 and the frame rate of 30 f/s. LinerSVC and KNeigh-
borsClassifier of Scikit-Learn library in Python were used as a 
SVM and s kNN algorithms, respectively. Hinge function was 
used as the loss function, and 100.0 was set to the value of the 
parameter C for optimizing the performances of LinearSVC. 
The parameter k was set to 25 for minimizing the error rate and Table 2. Calculated sensitivity and specificity values of the performance 

test for each recording by using the models obtained from the first and the 
second steps for comparison

Recording 
Number

Sensitivity (%) Specificity (%)

1st step 
model

2nd step 
model

1st step 
model

2nd step 
model

1 98.7 94.6 84.4 91.2
2 98.9 95.9 91.0 94.2
3 100.0 97.7 88.8 94.1
4 98.2 98.0 84.4 92.6
5 100.0 91.4 85.1 92.4
6 96.2 95.5 83.6 91.3
7 96.4 95.3 85.8 92.9
8 97.4 93.1 90.1 95.0

Average 98.23 95.19 86.65 92.96

Table 3. Calculated sensitivity and specificity values of the performance 
test for three recordings with various pixel resolutions and recording dis-
tances by using the models obtained from the first and the second steps 
for comparison

Pixel  
resolutions

Sensitivity (%) Specificity (%)

1st step 
model

2nd step 
model

1st step 
model

2nd step 
model

320×240 94.9 94.8 69.6 85.1
800×600 99.1 99.1 72.2 84.4
1260×960 98.3 98.2 46.4 68.6
Average 97.4 97.3 62.7 79.3
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optimizing the performances of KNeighborsClassifier. Models of 
CNN, RNN and LSTM were implemented in Python with Keras. 
The architecture of the CNN model was designed with 7 layers: 
one input layer, two convolutional layers, two globalmaxpooling 
layers, a fully connected layer, and a sigmoid output layer. Binary_
crossentropy and adam were used as the loss function and the 
optimizer, respectively. SimpleRNN with 4 input layers, 32 hidden 
layers and 1 output layer was designed with batch size of 100 and 
epochs of 100. LSTM was also designed to have the same structure 
and parameters. As summarized in Table 4, the sensitivity of the 
two-step DT was superior to that of other algorithms (two-step 
DT 97.3% vs. SVM 58.1%, kNN 93.0%, CNN 94.1%, RNN 85.8%, 
LSTM 94.3%). The specificity of the two-step DT was less than 
SVM and RNN, but similar to or slightly better than CNN, LSTM, 
and kNN (two-step DT 79.3% vs. SVM 96.1%, kNN 66.5%, CNN 
79.3%, RNN 91.1%, LSTM 76.2%). The combined performance of 
two-step DT, as calculated by sensitivity×specificity, is better than 
SVM, kNN, CNN, and LSTM and comparable to RNN. 

CONCLUSIONS

Herein, we propose an automated and real-time method devel-
oped by the machine learning-based approach, which can be ap-
plicable for the detection and quantification of mouse scratching 
produced under general experimental settings and recorded with 
commercially available monochrome cameras such as a webcam. 
It is a non-invasive and inexpensive methods suitable for objective 
counting of scratching. The advantages of this method are several 
folds. First, the proposed method can detect scratching with excel-
lent and reliable accuracy. The sensitivity and specificity measured 

in the performance test are similar or better than existing auto-
mated counting methods. Second, it requires neither an attach-
ment nor a surgical implantation of a device to a subject animal 
which may not only cause inflammatory reactions in the skin but 
also affect mouse behaviors. Third, experiments can be performed 
in a homecage and require no additional specialized observation 
chamber or expensive equipment. Finally, the graphical user in-
terface developed by this study would allow one to easily analyze 
scratching behavior by providing manual reviewing functions, 
and generating a raster plot and a table with quantified results. The 
performance of the proposed method could be further improved 
by recording movies with a high speed and resolution camera and 
by painting identifiable markers on the head and toe of the subject 
animal to facilitate the detect of characteristic scratching posture. 
The GUI of this method is available at: http://github.com/Park-
Ingyu/MouseBehav (also, see Supplementary Material 1).
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