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ABSTRACT

With their immunosuppressive features, human mesenchymal stromal cells (MSCs), sometimes
also termed as mesenchymal stem cells, hold great potential as a cell-based therapy for various
immune-mediated diseases. Indeed, MSCs have already been approved as a treatment for graft
versus host disease. However, contradictory data from clinical trials and lack of conclusive proof
of efficacy hinder the progress toward wider clinical use of MSCs and highlight the need for
more relevant disease models. Humanized mice are increasingly used as models to study
immune-mediated disease, as they simulate human immunobiology more closely than conven-
tional murine models. With further advances in their resemblance to human immunobiology, it
is very likely that humanized mice will be used more commonly as models to investigate MSCs
with regard to their therapeutic safety and their immunomodulatory effect and its underlying
mechanisms. Recent studies that explore the immunosuppressive features of MSCs in humanized
mouse models will be discussed in this review. STEM CELLS 2019;37:298–305

SIGNIFICANCE STATEMENT

The immunosuppressive features of mesenchymal stromal cells (MSCs) have been widely dem-
onstrated. However, a more widespread clinical use of MSCs is hampered by contradictory data
from clinical trials and an incomplete understanding of the underlying mechanism by which
MSCs exert this immunosuppression, resulting in inconclusive proof efficacy. The present review
discusses humanized mice as a tool to develop a better understanding of the mode of action of
MSCs in mitigating the immune response in an in vivo environment that closely resembles
human immunobiology. The goal is that a greater understanding may enable and encourage
more studies using humanized mice to investigate the immunomodulatory features of MSCs.

INTRODUCTION

Mesenchymal Stromal Cells

Mesenchymal stromal cells (MSCs) are of
mesodermal origin and have self-renewal and
multipotent differentiation capacity. They give
rise to adipocytes, osteocytes, and chondro-
cytes and can be derived from various origins,
such as the bone marrow (BM), dental pulp,
umbilical cord blood (UCB), placenta, and adi-
pose tissue [2]. MSCs have been shown to
have regenerative potential and contribute to
tissue repair [3]. Besides a somatic origin,
MSCs can also be differentiated from pluripo-
tent stem cells (PSCs), including embryonic
stem cells and induced PSCs (iPSCs), potentially
providing an unlimited source of cells for ther-
apeutic use (reviewed in [4]). MSCs have
stimulated great interest because of their

immunomodulatory and anti-inflammatory
properties (Fig. 1). Specifically, MSCs have been
shown to inhibit effector T-cell proliferation,
drive induction of regulatory T (Treg) cells
[5–7], induce macrophage transformation to an
M2 anti-inflammatory phenotype [8], modulate
dendritic cell (DC) maturation and functional
properties [9–11], directly affect B cell prolifer-
ation and maturation [12], and impair natural
killer T-cell proliferation [13]. To make MSCs
more effective as a cellular therapy, it is impor-
tant to determine the mechanism(s) by which
they exert their immunomodulatory effects.
Although much remains unknown, the consen-
sus is that MSCs act through cell-to-cell contact
as well as soluble factors, either produced con-
stitutively by MSCs or released by target cells
induced by crosstalk with MSCs (reviewed in
[1]). Numerous soluble factors have been
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associated with MSC-mediated immunomodulation, such as
indoleamine 2,3-dioxygenase [14, 15], hepatocyte growth fac-
tor, transforming growth factor-β [5], prostaglandin E-2
[16–18], interleukin (IL)-10 [19, 20], IL-6 [11], and monocyte
chemoattractant protein-1 [6]. In addition, it has also been
suggested that cell-to-cell contact between MSCs and T cells is
necessary for MSCs to display their inhibitory effect on T-cell
proliferation, cytotoxicity, and the number of antigen-specific T
cells [21].

Although the mechanism by which MSCs mediate immuno-
suppression is still incompletely understood, multiple clinical
trials have been initiated, in which adult MSCs have been used
as a therapy to treat immune-mediated diseases such as graft
versus host disease (GvHD), aplastic anemia, multiple sclerosis,
rheumatoid arthritis, and Crohn’s disease (www.clinicaltrials.
gov) [1]. In Canada and New Zealand, clinical trials have
resulted in the conditional approval of MSCs for the treatment
of steroid-resistant and/or immunosuppressant-resistant acute
GvHD (aGvHD) in pediatric patients [22–27]. However, it is not
only somatic MSCs that are the subject of current clinical trials.
Intriguingly, Cynata Therapeutics Limited is running a first-
of-its-kind clinical trial using iPSC-derived MSCs for the treatment
of GvHD (http://www.prnewswire.com/news-releases/uk-
regulatory-authority-approves-cynata-gvhd-clinical-trial-300329939.
html). Despite this interest in MSCs for clinical application,

both in vivo studies and potentially contradictory data from
clinical trials, have failed to show conclusive proof of efficacy
[24, 25], and this may yet hinder the progression of this cell
therapy to later clinical phases. There remains both a require-
ment for better MSC potency assay methods and more com-
prehensive immune monitoring of treated patients to further
understand the mode of action of these cells in vivo [24, 28].
Better models to investigate the mechanisms underlying the
immunosuppressive function of MSCs may facilitate the clinical
application of MSCs, and humanized mice represent one such
improved model. In this review, we introduce and summarize
the findings of recent studies that have used the humanized
mouse model to explore the immunomodulatory properties
of MSCs.

Humanized Mouse Models

In general, a humanized mouse is a murine model with a
human component. However, most of the models relevant to
the study of human immune responses use immunocompro-
mised mice in which the immune system has been reconstituted
with human immune cells/immune system (Table 1). Over
recent years, increasingly elaborate immunocompromised
strains have been developed to achieve higher engraftment
rates of human cells. A detailed description of the development
of humanized mouse models is beyond the scope of this review

Figure 1. Current understanding of immunomodulatory mechanisms of mesenchymal stromal cells (MSCs). MSCs exert their immuno-
modulatory function through cell-to-cell contact as well as soluble factors, either produced constitutively by MSCs or released by target
cells induced by crosstalk with MSCs. MSCs can inhibit the proliferation and function of T cells, NKT cells, B cells, and DCs. MSCs also pre-
serve neutrophils viability, drive Treg cell expansion, inhibit the formation of CTL, induce IDO production in phagocytes, and induce differ-
entiation toward macrophage M2 anti-inflammatory phenotype. Several soluble factors have been shown to play a role in the
immunomodulatory effects of MSCs, including PGE2, TGF-β, IDO, nitric oxide, HGF, FAS-L, PD-L1, HLA-G, IL-6, and IL-10. Green arrow
depicts stimulatory effect and red flat ended arrow depicts inhibitory effect (adapted from [1]). Abbreviations: CTL, cytotoxic T lympho-
cytes; DC, dendritic cell; FAS-L, FAS ligand; HGF, hepatocyte growth factor; HLA-G, human leucocyte antigen-G; IDO, indoleamine
2,3-dioxygenase; IL, interleukin; PD-L1, programmed death-ligand 1; PGE2, prostaglandin E2; NKT, natural killer T; TGF-β, transforming
growth factor-β; Treg, regulatory T.
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and has been reviewed elsewhere (reviewed in [29–32]). In
brief, one of the first immunodeficient strains to be developed
used the severe combined immunodeficiency (SCID) mouse,

showing deficiency for immune functions mediated by T and B
lymphocytes [33]. Similarly, models of immunodeficiency were
also generated based on the use of recombination activating

Table 1. Summary of current humanized mouse models with schematic presentation of the generation

Model Generation/mice Advantages Disadvantages

Hu-PBMC
SCID, 
NOD-
SCID, 
NSG, 
NOG,
NRG,
BRG, 
B6RGHuman 

PBMCs 

Irradiation 

• Easy to generate
• Engraftment of T cells

• No multilineage
hematopoiesis

• No primary immune
response

• Development of GvHD within
a few weeks

• Allows only for short-time
experiments

Hu-CD34+

NSG, 
NOG, 
BRG, 
B6RG

Human 
CD34+ 
cells 

Irradiation 

• Easy to generate
• Multilineage hematopoiesis
• Primary immune response

• T-cell education on murine
MHC molecules

• Murine MHC-restricted T
cells may enter into complex
immune interactions with
human APCs

BLT
NSG, NOG, 
NOD-SCID, 
BRG

Human 
fetal 
liver/ 
thymus 
fragments

Human 
CD34+

cells 

Irradiation 

• Multilineage hematopoiesis
• Primary immune response
• T-cell education in

autologous human thymus
• Maintenance of naïve,

central memory, and effector
memory T cells

• Challenging to generate
• Requires human fetal tissue
• Development of

late-onset GvHD
• Inadequate reconstitution of

the innate immune system

Hu-HLA-A2tg-CD34+

NSG, 
NOD, 
BRG

HLA-A2 
transgene

Irradiation 

Human 
CD34+

cells 

• Multilineage hematopoiesis
• Primary immune response
• T-cell education on human

MHC because of transgenic
expression of HLA-A2
molecules

• Development of
HLA-A2-restricted and
antigen-specific cytotoxic T
cells

• Production of all human Ig
classes

• No T-cell education on
human MHC class II
molecules

• No transgenic expression of
other human antigens

• Inefficient production of
antigen-specific IgG

NeoThy
NSG,
NSG-W (no 
irradiation 
required)

Human 
neonatal 
thymus 
fragment

Human 
CD34+

cells 

Irradiation 

• Advantages of the BLT also
apply to NeoThy

• More thymus tissue available
allows for ~50-fold more
mice per donor compared
to BLT

• Neonatal tissue is
developmentally more
mature

• Does not require human
fetal tissue

• Challenging to generate
• Requires human neonatal

tissue
• Potentially susceptible

to GvHD

Abbreviations: APC, antigen-presenting cells; BLT, bone marrow liver thymus; BRG, BALB/c-Rag2nullIL2rγnull; B6RG, C57BL/6-Rag2nullIL2rγnull; GvHD,
graft versus host disease; HLA, human leucocyte antigen; Hu, humanized; Ig, immunoglobulin; MHC, major histocompatibility complex; NBSGW
(referred to as NSG-W), NOD,B6.SCID IL2rγnullKitW41/W41; NOD, nonobese diabetic; NOG, NODShi.Cg-PrkdcscidIL2rγtm1Sug; NRG, NOD-Rag1nullIL2rγnull;
NSG, NOD/SCID/IL2rγnull; PBMCs, peripheral blood mononuclear cells; SCID, severe combined immunodeficiency.
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gene (Rag) 1 or 2 knockouts [34]. The next generation of immu-
nocompromised mice, including, for example, the nonobese dia-
betic (NOD)/SCID/IL2rγnull (NSG), NODShi.Cg-PrkdcscidIL2rγtm1Sug,
BALB/c-Rag2nullIL2rγnull, C57BL/6-Rag2nullIL2rγnull, and NOD-
Rag1nullIL2rγnull models, were generated by introducing multiple
genetic manipulations resulting in a multidysfunctional immune
system [29, 32, 35]. To subsequently “humanize” immunocom-
promised mice, human immune cells, such as peripheral blood
mononuclear cells (PBMCs) are injected, resulting in engraft-
ment of human T cells [36]. Immunodeficient mice may also be
reconstituted with human CD34+ cells, resulting in development
of human B cells, T cells, monocytes, and DCs [37]. However,
both these models are limited by the education and selection of
human T cells in the murine host thymus. The BM liver thymus
(BLT) mouse, conversely, allows for T-cell selection on human
major histocompatibility complex (MHC). To generate a BLT
mouse, human fetal thymus and liver fragments are implanted
under the murine kidney capsule, followed by injection of
CD34+ cells, derived from the same fetal liver, which allows for
T-cell selection in the implanted autologous human thymus
[38]. To circumvent the need to use fetal human tissue, Brown
et al. recently developed the NeoThy humanized mouse, in
which human neonatal thymus and human CD34+ cells are
engrafted into immunocompromised mice [39]. Another strat-
egy for T-cell education on human MHC molecules is based on
the use of genetically modified humanized mice that express
human leucocyte antigen (HLA) molecules. After reconstitution
with human CD34+, these mice show development of HLA-
A2-restricted and antigen-specific cytotoxic T cells [40].

Humanized mice have been used in the investigation of
many clinical indications, including human-specific viral infec-
tions, tumor immunology, transplantation, and autoimmunity
(reviewed in [30, 41–43]). In the fields of transplantation and
immune-mediated conditions, despite the availability of vari-
ous animal models, results do not always translate to clinical
efficacy [43]. This is highlighted by the incomplete mimicry of
disease phenotypes by conventional mouse models. For
instance, classic mouse models that have been transplanted
with thymus fragments from myasthenia gravis (MG) patients
do not reproduce clinical weakness, whereas a humanized
mouse model transplanted with MG thymus resulted in MG-
like symptoms [44]. Equally, a humanized mouse model of pul-
monary fibrosis exhibited a more severe disease phenotype
than nonhumanized murine models, as a direct result of
human immune cells being present in the lungs [45]. The avail-
ability of humanized mouse models has enabled a mechanistic
investigation of human immune responses and also a more rel-
evant testing approach to therapeutic intervention.

RESULTS AND DISCUSSION

Humanized Mice as Models to Study the
Immunomodulatory Effects of MSCs

Although in vitro studies have successfully provided important
insight into the immunomodulatory features of MSCs [5, 8–13],
the in vitro environment cannot fully reflect the complexity of a
human immune response. In addition, although murine models
have been used for investigating the immunosuppressive prop-
erties of MSCs in vivo [46, 47], there remain fundamental differ-
ences between the human and murine immune systems. For

example, humans and mice differ in their expression of MHC,
cytokines, and costimulatory molecules [48], and more specifi-
cally, human MSCs differ in their immunomodulatory mecha-
nisms compared with murine MSCs [49]. These differences
highlight the urgent need for models that resemble the human
milieu more closely, particularly in the field of immune-
mediated diseases. To meet this need, humanized mice are
increasingly being used as a tool with which to test the safety
and efficacy of a range of therapeutic strategies [30]. We pre-
sent here the application of these models to the evaluation of
the therapeutic potential of MSCs.

Clinical Safety and Efficacy of MSCs

Prior to the acceptance of MSCs as a viable therapeutic option,
there is a requirement to demonstrate whether these cells
show efficacy and are safe for clinical use. This safety evaluation
would comprise the usual regulatory requirements for any cell
therapy, provided by National Regulatory Authorities (https://
www.fda.gov/BiologicsBloodVaccines/GuidanceCompliance
RegulatoryInformation/Guidances/CellularandGeneTherapy/;
http://www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/
general/general_content_000405.jsp&mid=WC0b01ac058002958a).
One of the key considerations is the immune response of the
recipient to the graft. MSCs that have been used in the clinic
are often of allogeneic origin and therefore retain the poten-
tial to elicit an immune response in the recipient. Although
MSCs have been suggested to be an immune-privileged cell
population, there are some reports that indicate that alloge-
neic MSCs are immunogenic [50]. In this context, humanized
mice are a useful tool for assessing the immunogenicity and
safety of MSCs. Furthermore, MSCs derived from different
donors/origins have also been shown to vary in their efficacy
[25, 51, 52]. If this is true, then it is clearly important to estab-
lish the most appropriate source of MSCs for clinical applica-
tion, and humanized mice represent an attractive model in
which the efficacy of different MSC types can be compared.

Lee et al. have used the NSG mouse model reconstituted
with human CD34+ cells (NSG-CD34+) to investigate the immu-
nological safety of allogeneic human MSCs [53]. As MHC mole-
cules are the main mediators of an allogeneic immune
response, the expression levels of MHC represent a key com-
ponent in the potential immunogenicity of a cell. The authors
demonstrated that MSCs derived from UCB did not express
MHC class II in vitro. Furthermore, coculture with PBMCs
induced expression of HLA-G in UCB-MSCs, which is associated
with immune tolerance. To confirm these results in vivo, T-cell
proliferation and proinflammatory cytokines were quantified in
response to the injection of UCB-MSCs versus PBMCs into
NSG-CD34+ mice. UCB-MSCs resulted in lower T-cell prolifera-
tion and reduced interferon gamma (IFN-γ), tumor necrosis
factor alpha (TNF-α), and immunoglobulin G (IgG) production,
suggesting that allogeneic human UCB-MSCs exhibit reduced
immunogenicity.

Another related study compared levels of MHC class II
expression between different MSC populations, including MSCs
derived from iPSCs, fetuses (fMSCs) and adult BM [54]. No
MHC class II expression was detected in any of these MSC
populations in the absence of IFN-γ. IFN-γ is a proinflamma-
tory cytokine, naturally present in sites of inflammation and
therefore often used to recapitulate an in vivo inflammatory
environment. When MSCs were stimulated with IFN-γ, MHC
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class II molecules were expressed at minimal levels in iPSC-
MSCs as opposed to higher levels in fMSCs and BM-MSCs,
which suggests that iPSC-MSCs exhibit low levels of immuno-
genicity. To test whether iPSC-MSCs are not only safe but also
show efficacy in vivo, the authors of this study compared the
repair efficacy, survival-rate after transplantation, and effect
on inflammation between iPSC-MSCs and BM-MSCs in a
humanized NSG-PBMC model of hind limb ischemia [54]. The
levels of inflammation in the ischemic limbs were determined
by quantifying CD45+ and CD4+ cells in the muscle tissue of
the ischemic limbs. In order to trace the cells post-translation,
MSCs were labeled with green fluorescent protein (GFP)
before being injected intramuscularly into four sites of the
thigh of the ischemic hind limbs. The results suggested that
human iPSC-MSCs led to less inflammation and a better recov-
ery of hind limb ischemia compared with BM-MSCs. Moreover,
quantifying GFP+-MSCs revealed that iPSC-MSCs exhibited
higher cell survival than BM-MSCs.

Taken together, these studies show that the humanized
mouse can be used as an in vivo model to evaluate the immu-
nological safety of MSCs [53, 54]. Moreover, when used as a
specific disease model, such as a model of hind limb ischemia,
it allows for an assessment of the efficacy of MSCs as a regen-
erative therapy [54]. It should be mentioned, however, that
Lee et al. recognized the limitations of the NSG-CD34+ model,
as there was only a small proportion of mature T cells present
after reconstitution. They contributed the prevalence of imma-
ture T cells to abnormal thymic selection and therefore
emphasized the need for confirmation of their results in a
more relevant humanized mouse model, such as the BLT
mouse [53].

MSC Therapy as a Treatment in GvHD

Although MSCs have received approval for the indication of
aGvHD in some countries [22–27], the data from clinical trials
have been ambiguous and have failed to show conclusive
proof of efficacy [24, 25]. In addition, it has proven to be
challenging to determine the mode of action by which MSCs
exercise their immunomodulatory phenotype. To further inves-
tigate MSCs as a cellular therapy in GvHD, Tobin et al. adminis-
tered human MSCs into NSG-PBMC humanized mice, which
served as model of GvHD [55]. MSC treatment resulted in the
reduction of liver and gut pathology and significantly increased
survival of GvHD NSG mice. However, the administration of
MSCs did not prevent GvHD development in the longer term,
corresponding with data from clinical trials [26, 27]. Further-
more, the study suggests that MSCs exert a direct suppressive
effect on donor T-cell proliferation and reduced TNF-α produc-
tion as the underlying mechanism of MSC immunosuppression
in GvHD [55]. Another study that used UCB-MSCs to amelio-
rate GvHD in NOD/SCID mice (reconstituted with human
PBMCs) suggested that multiple doses of UCB-MSC were nec-
essary to prevent the development of GvHD, but MSCs were
not effective once GvHD had been fully established [56]. This
is in accordance with the conclusion by the authors of the first
study, proposing that MSCs mediate a more transient mitigat-
ing effect on GvHD development, rather than induction of
immune tolerance [55]. Given that these findings are in good
agreement with the data from some recent clinical trials, the
authors reasonably concluded that the NSG-PBMC GvHD
mouse serves as a suitable model to explore the underlying

mechanism of MSC immunosuppression, and the potential of
MSCs as cellular-based therapy in GvHD. Further reflecting the
sometimes-conflicting data from clinical trials, other studies
utilizing the humanized NSG-PBMC model to mimic GvHD have
found that MSCs are not effective in preventing GvHD, even if
MSCs were administered in multiple doses [57, 58]. Although
humanized mice offer the advantage of enabling human MSCs
and MSC-derived soluble factors to interact with human
immune cells, GvHD remains a complex disease. Different
sources of MSCs, different routes of administration and doses,
as well as variability in patient responsiveness to MSC treat-
ment means that, in addition to more relevant disease models,
further efforts to standardize therapeutic approaches will be
required to improve the outcomes of studies/clinical trials
on GvHD.

MSCs in Transplant Rejection

Traditionally, patients who experience allograft rejection follow-
ing organ transplantation receive immunosuppressive agents,
which can lead to severe side effects, such as the development
of opportunistic infections [59]. In light of this, alternative
immunosuppressive approaches with less severe adverse effects
are being investigated. The administration of MSCs in kidney-
transplant patients has been promising in this regard, as it
resulted in lower incidence of acute rejection, decreased risk of
opportunistic infection, and better graft function [60]. Currently,
BM-MSCs are the most commonly used type of MSCs in the
clinic [22, 26]; however, BM aspiration is an invasive procedure
and so other sources of MSCs, that can be harvested more con-
veniently and have comparable immunomodulatory efficacy,
may represent an alternative to BM-MSCs. Roemeling-van Rhijn
et al. compared the immunomodulatory efficacy of BM-MSC
and adipose tissue-derived MSCs in the context of a humanized
SCID-PBMC mouse, which was engrafted with a human alloge-
neic skin graft [61]. The skin grafts showed pronounced CD45+

T-cell infiltrates consisting of CD4+ and CD8+ T cells and
increased IFN-γ expression, reflecting rejection of the graft. To
exclude rejection responses because of xenogeneic recognition,
a control group was transplanted with the human skin graft but
did not receive an adoptive transfer of human PBMCs. The con-
trol mice did not demonstrate leukocyte infiltration, confirming
that the graft is recognized as an allotransplant rather than a
xenotransplant. Alloreactivity toward the skin graft was signifi-
cantly suppressed by both BM-MSCs and adipose tissue-derived
MSCs, with similar efficacy. Importantly, this study demon-
strated the utility of the humanized SCID-PBMC allograft model
for the evaluation of MSC immunosuppressive efficacy in allo-
graft rejection.

In a diabetic NSG-PBMC model, human BM-MSCs were used
to mitigate the immune response to human islet transplants
[62]. Islet transplantation as a treatment for type 1 diabetes
was introduced in the late 1990s; however, its more widespread
application was hampered by the availability of islet grafts and
also by transplant rejection and the loss of islet viability and
function [62]. Wu et al. showed that cotransplantation of
human islets with BM-MSCs improved islet allograft survival and
significantly prolonged the duration of insulin independence in
the humanized mouse model. Addressing the underlying
mechanism of transplant tolerance, the authors suggested BM-
MSC-mediated activation of monocytes to produce IL-10 and
the promotion of Treg cell proliferation through soluble factors.
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Although MSCs have been previously shown to improve islet
transplantation in vivo [63], the presence of human immune
cells in the humanized mouse model led to an improved under-
standing of the mechanism by which BM-MSCs promote immu-
nomodulation in allograft transplantation.

These studies demonstrate that humanized mouse models
primarily offer an in vivo environment that closely represents the
human immune milieu. However, they also provide a potential
source of “humanized” immune cells and serve as an alternative
to invasive sampling of human cells, such as BM, from a human
donor. Importantly, easier access to cells of this type may facili-
tate research in this area. As an example of this, Chen et al. have
used BM from the humanized NSG-CD34+ mouse model to
obtain human DCs to investigate MSCs and their effects on allo-
graft rejection [64]. On a molecular level, transplant rejection
occurs when transplant alloantigens are recognized as “foreign”
by the host. There are three known pathways of allorecognition:
direct, indirect, and semidirect allorecognition. Although direct
allorecognition describes the presentation of donor MHC mole-
cules by donor antigen-presenting cells (APCs) (received by the
host in the donor graft), indirect allorecognition involves host
APCs presenting donor MHC molecules to host T cells. The semi-
direct pathway of allorecognition proposes that recipient APCs
acquire intact allogeneic MHC-peptide complexes through cell-to-
cell contact from donor APCs [65]. All three pathways rely on
APCs as key players in the response. As DCs are one of the most
important types of APC, they play a crucial role in alloantigen
presentation and thus transplant rejection. It has previously been
suggested that MSCs have immunomodulatory effects in vitro on
human DC differentiation and maturation [9, 10]. Although these
reports focused on DCs derived from human PBMCs as well as
from human CD34+ cells, the study reported by Chen
et al. investigated the effects of MSCs on BM-derived DCs, where
the DCs were derived from the BM of the humanized NSG-CD34+

model [64]. To explore the effect of MSCs on DC maturation and
differentiation, MSCs were cocultured with the human BM-
derived DCs. The study showed that MSCs inhibited DC differ-
entiation and kept DCs in an immature or quiescent state,
demonstrated by changes in phenotype and function [64].
The authors conclude by suggesting that inhibition of DC dif-
ferentiation and maturation may represent one of several
potential mechanisms that explain the beneficial effects of
MSCs in clinical trials but also highlight the need for confir-
mation of these results in an in vivo model. Furthermore, this
study showed that the humanized NSG-CD34+ model repre-
sents an important tool to generate human BM-derived DCs.

MSCs in Other Immune-Mediated Diseases

The immunosuppressive features of MSCs are also being explored
for clinical application in various immune-mediated diseases. An
example of this is MG, which is a rare autoimmune neuromuscu-
lar disease characterized by the presence of antiacetylcholine
receptor (AChR) antibodies. These autoantibodies react against
proteins of the neuromuscular junction, which causes fluctuating
skeletal muscle weakness and fatigability. To simulate MG in a
murine model, Sudres et al. transplanted thymic fragments from
MG patients into NSG mice [44]. The NSG-MG mice exhibited
MG-like symptoms and displayed mouse anti-human AChR anti-
body levels correlating with the levels observed in the patient
sera. The authors compared the therapeutic efficacy of MSCs iso-
lated from human adipose tissues in a resting state (rMSCs) with

the same population of cells in an in vitro preconditioned state
(cMSCs). Preconditioning consisted of 3-day in vitro coculture of
MSCs with allogeneic PBMCs. The study showed that systemic
administration of cMSCs led to an improvement in disease phe-
notype with decreased MG occurrence and severity in treated
mice, and this was much more marked than that seen with
rMSCs. Consequently, the authors suggest that preconditioning of
MSCs could enhance efficacy and may present a promising strat-
egy for the treatment of MG and potentially other autoimmune
diseases. Furthermore, investigation of the mode of action identi-
fied that inhibition of cellular proliferation and a reduction in the
expression of several molecules of the TNF pathway and costimu-
latory molecules contributed to the immunosuppression medi-
ated by cMSCs. Importantly, the correlation between each mouse
experiment and the respective patient’s MG phenotype suggests
that the humanized NSG-MG is a suitable disease model, which
can be used to investigate the efficacy and mode of action of
MSCs as therapy for MG [44].

The immunomodulatory effects of MSCs have also been
investigated for the treatment of pulmonary fibrosis, a condition
in which immune cells and their secreted cytokines play a critical
role in promoting scarring of lung tissue [66]. Ni et al. established
a pulmonary fibrosis humanized mouse model, utilizing
Rag2nullIL2rγnull mice reconstituted with human PBMCs, which
then received an injection of bleomycin to induce pulmonary
fibrosis [45]. Importantly, they confirmed that humanized mice
exhibited a more severe disease phenotype than murine models
and suggested that this is a direct result of human immune cells
being present in the lungs. Furthermore, human CD8+ T cells
were identified to be critical for the induction of pulmonary
fibrosis. Human BM-MSCs injected into these humanized mice
resulted in an alleviation of pulmonary fibrosis. The improvement
in symptoms was attributed to MSC-mediated modulation of
bleomycin-induced abnormal T-cell activation. Furthermore,
experiments revealed that the expression of programmed death-
ligand 1 by MSCs played a critical role in suppressing pulmonary
infiltrating T cells. This study highlights the superiority of human-
ized mice over alternative murine models, to both mimic pulmo-
nary fibrosis, but also to begin to determine the underlying
mechanism of MSC-mediated attenuation of symptoms.

CONCLUSION

Over recent years, the development of humanized mice has led
to models that can recapitulate elements of the human immune
system. The rapid pace of development of these models may
soon permit their use as both preclinical models for a number of
immune-mediated diseases and also for the exploration of the
mode of action of therapeutic intervention strategies. Although
MSCs are being used in the clinic already, the underlying mecha-
nisms of the MSC immunomodulatory effects are far from fully
understood. Better understanding of MSC immunobiology is par-
ticularly important because results of clinical trials have often
been controversial and conclusive proof of efficacy has been
lacking [24, 25]. Advances in our understanding may lead to the
discovery of new ways to modify MSCs to be therapeutically effi-
cacious. Taken together, it is clear that further progress toward
humanized mouse models that most closely mimic human
immune biology may be of particular benefit in the clinical trans-
lation of the exciting therapeutic potential offered by MSCs.
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