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Abstract Glial cells in Alzheimer’s disease (AD) have been
shown to be capable of clearing or at least restricting the
accumulation of toxic amyloid beta (Aβ) deposits. Recently,
bone marrow (BM)–derived monocytic cells have been
recognized in experimental studies to be superior in their
phagocytic properties when compared to their brain endog-
enous counterparts. In human AD, BM-derived monocytic
cells may have deficiencies in their capacity to restrict
plaque growth. Therefore, enhancement of phagocytic prop-
erties of cells of monocyte origin, both brain endogenous
microglia and BM-derived monocytic cells, offers an attrac-
tive therapeutic approach to fight off AD. Transgenic mouse
models with aberrant Aβ deposition offer a valuable tool for
discovery of novel pathways to facilitate cell-mediated Aβ
uptake. This article reviews the most recent findings on the
phagocytic capacity of cells with monocytic origin in various
transgenic AD models and describes the methods to study
phagocytic activity of these cells.
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Introduction

Microglia and bone marrow (BM)–derived monocytic cells
have been implicated in Alzheimer’s disease (AD) patho-
genesis. The role of microglia in the development of AD has
for long been under debate. As AD progresses, the magni-
tude of proinflammatory microglia-secreted cytokines
increases, contributing to the vicious cycle of inflammation
and following neuronal damage. In addition, some evidence
suggests that microglia may actually promote Aβ deposi-
tion. On the other hand, whereas microglial phagocytosis of
Aβ in vivo may be rather limited, microglia in vitro are
efficient Aβ phagocytes. A subpopulation of brain mono-
cytic cells enters the brain from the circulation upon brain
damage. Infiltration of BM-derived cells is very limited in
healthy brain and in AD transgenic mice [1, 2••] but this
infiltration is increased upon injury associated with blood–
brain barrier (BBB) disruption, and infiltrated monocytic
cells have been detected in brains of AD patients who quite
often suffer from comorbidities such as small cerebral
infarcts [3]. BM-derived cells have been shown to be supe-
rior in phagocytosing and clearing Aβ in several different
models developed to assess phagocytic activity [4–7]. AD
transgenic mice with aberrant Aβ accumulation have been
the major cornerstone in studies revealing novel pathways to
enhance Aβ clearance. This review article describes the
most recent findings on the phenotype of phagocytic cells
across different currently available transgenic AD models.
In addition, development of methods for assessing the Aβ
phagocytic properties is discussed.
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Alzheimer’s Disease Animal Models

AD research was clearly boosted by the development of
transgenic mouse models, and to date, the availability of
such models is ample. The obtained pathology of AD mice
depends on the transgene, promoter, and mutation of choice;
the integration site; and the achieved expression level of the
transgene. Human amyloid precursor protein (hAPP) in
different length, either 695, 751, or 770 amino acids, have
been used as transgenes with several mutations and with
either neuron-specific platelet-derived growth factor and
Thy-1 promoters or nonneuronal hamster PrP promoter.
The onset and severity of Aβ pathology has been indicated
to depend on achieved Aβ 1–42 levels, with the mutations in
APP augmenting the pathology (reviewed in [8]). Whereas
mutated APP isoforms seem to be sufficient to cause Aβ
deposition, presenilin (PS) 1 or 2 alone are unable to result
in any detectable lesions despite the fact that elevation in Aβ
levels is observed. Overexpression of mutated PS together
with mutated hAPP isoforms aggravates the progression of
Aβ pathology with earlier appearance of the plaques. In
addition to the APP- and PS-based transgenic mice, transgenic
mice carrying mutated tau also have been developed [9].
Overexpression of tau alone is not sufficient to result in
plaques, but, together with APP and PS, recapitulates both
neurofibrillary tangles and plaques.

Despite the transgene expressed, none of the currently
available transgenic mouse models capture the full human
AD pathology. However, they are suitable for studies of Aβ
phagocytosis due to the facts that

(1) similar to human brain, Aβ deposition increases with
aging;

(2) Aβ in mouse models occurs in similar form as in
human AD brain; compared to human cases, the de-
posited Aβ in AD transgenic mice is similar in size,
and stains with Congo red and Thioflavin S and also
can be found around the vasculature as amyloid
angiopathy;

(3) plaques are recognized by glial cells which are recruited
around the deposits; and

(4) brain levels of Aβ in these models correlate, at least to
some extent, with the severity of cognitive impairment
(nicely reviewed by Duyckaerts et al. [8]).

Microglial Phenotype in Alzheimer’s Disease Models

Microglia are the main immunological effector cells with
phagocytic properties in the brain. The origin of microglia
has long been suggested to lay on the hematopoietic progen-
itor cells; however, recent reports show that microglia derive
from primitive myeloid progenitors at early embryonic life but

later are maintained with minimal contribution of hematopoi-
etic cells of peripheral origin [10, 11]. Microglia are difficult
to be distinguished from other myeloid subsets, however, very
recently microglia was reported to express fractalkine receptor
CX3CR1, but not the chemokine receptor CCR2, from
embryonic stage throughout life [11]. The phenotype of
microglia had long been referred to as being either active or
resting; however, it now is widely recognized that microglia
display various forms of activation states and are never rest-
ing, but rather constitutively survey the brain parenchyma for
pathogens. Microglial phenotypes are being categorized into
M1 and M2; the latter also referred to alternative activation.
M2 activation state has been further subcategorized into M2a,
M2b, and M2c, but most likely any category is not able to
fully capture the microglial function because microglia may
have unique activation properties depending on the type of
stimuli [12].

Microglia in AD mice have been proposed to exert
proinflammatory phenotype. Exogenously added Aβ has
been shown to promote the production of several proin-
flammatory mediators, such as interleukin (IL)-1β, IL-6,
tumor necrosis factor (TNF)–α, macrophage inflamma-
tory protein-1 (MIP-1), Aβ degrading enzymes, prosta-
noids, complement proteins, and free radicals [13]. On
the other hand, microglia recognize and respond differ-
ently even to different forms of Aβ. Oligomeric, the
more toxic form of Aβ, has been shown to cause M1
shift in microglial phenotype compared to fibrillar form
of the peptide [14]. In addition, preexisting activation
state achieved with anti-inflammatory cytokines reduces
microglial reactivity to Aβ [14].

Several proinflammatory cytokines, such as IL-6, TNF-
α, and IL-1β, have been shown to be increased In brains of
human AD patients [13, 15]. The situation is similar in AD
transgenic mouse models. The overall levels of proinflamma-
tory cytokines of microglial secretion seem to be upregulated,
indicating a classical, cytotoxic activity of microglia, though
detected cytokines and the time point of their upregulation
may vary from model to model. Several studies have assessed
microglial cytokine secretion [16–18] from whole brain
homogenates or brain total microglia, but because other brain
cells are equally capable in secreting the same cytokines as
microglia and microglia may differ in their cytokine secretion
depending on their surroundings, more cell-specific studies
are clearly needed. Aging also may cause a shift in microglial
phenotype [19]. Table 1 lists the cytokine expression profile of
some commonly used AD transgenic models. In most models,
Aβ accumulation precedes the upregulation of cytokines.
Indeed, Aβ-laden milieu causes a shift in microglial pheno-
type, which may depend on not only the total brain Aβ
pathology but also the microenvironment the microglial cell
encounters [19, 20]. Bolmont et al. [20] showed that microglia
in the vicinity of plaques are actively taking up additionally
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injected Aβ dye in contrast to microglia further away from the
plaques and in brains of wild-type controls, suggesting a
polarized surrounding-dependent activation and phagocytic
capacity of microglia in AD mouse brain. Also, neurotrans-
mitters and neuropeptides may modulate microglial activity
and Aβ phagocytosis [21, 22]. A deeper knowledge of the
microglial activation properties is urgently needed to fully
understand how microglial activation status could be adjusted
toward more efficient phagocytosis without risking other,
important properties of microglia in AD brain.

Bone Marrow–derived Monocytic Cells in Alzheimer’s
Disease Models

Several studies have failed to show efficient microglial in
vivo Aβ phagocytosis without additional stimulus, yet in-
creasing evidence shows that peripheral macrophages and
monocytic cells are competent phagocytes. These cells have
their origin in the BM, where they develop from hemato-
poietic stem cells (HSC). Upon stimuli, monocytic cells are
released from BM into the circulation. Monocytes in the
bloodstream are rather short-living and infiltrate into the target

tissues followed by cytokine and chemokine secretion. The
Ly6C+CCR2+ monocytes have been shown to be the direct
infiltrating precursors of BM-derived microglia in the brain,
with the chemokine CCL2 being the major contributor in
mediating the infiltration. Infiltrating COX-2 immunoreactive
monocytic cells containing intracellular Aβ also have been
found in human AD brain [23]. Similar to brain microglia,
BM-derived cells also have been categorized based on their
activation state and expression of cell surface molecules.
Roughly, proinflammatory Ly6C+ monocytes are recruited in
inflamed tissue mediated by CCL2-CCR2 interaction, where-
as Ly6C– monocytes are thought to be recruited at the resolv-
ing phase of the insult mediated by CX3CR1 and take part in
wound repair and tissue remodeling processes [24, 25] .

Whether or not microglia phagocytose Aβ in AD brain or
contribute to Aβ accumulation is not yet clear; however,
several lines of evidence suggest that BM monocytic cells
are efficient phagocytes in vitro and in vivo [26–28]. In
addition, there is evidence that monocytes in patients with
AD have deficient capacity to phagocytose Aβ [29].
Although Aβ pathology itself may not be sufficient in
increasing the infiltration of BM-derived monocytic cells
in AD transgenic mouse brain [2••], AD patients frequently

Table 1 Microglial cytokine expression profiles in some Alzheimer’s disease mouse models

Study AD mouse model Development of
Aβ pathology

Detection method Cytokine expression profile

Masoumi et al. [80] APPswe/PS1dE9 4 months IHC TNF-α ↑ starting at age 8 mo and
IL-1β, IL-6, and MCP-1 ↑ starting
at age 10 mo

Hoozemans et al. [15] APPswe/PS1dE9 4 months Isolated microglia; qPCR SRA, CD36, RAGE, insulysin,
neprilysin, and
MMP-9 ↓; IL-1β and TNF-α↑
starting at age 8 mo

Farfara et al. [81] Tg2576 9–11 months IHC; in situ hybridization IFN-γ and IL-12 ↑ and IL-4 ↓ starting
at age 9 mo

Jankowsky et al. [16] APPswe; APP/PS1 11 months in APPswe;
10 weeks in APP/PS1

Organotypic slice cultures;
multiplex cytokine assay

IL-1α, TNF-α, GM-CSF, and IL-6 ↑
at age 15 mo in both models.
APP/PS1 brain slices produced
significantly more IL-12p40, IL-1β,
IL-1α, TNF-α, GM-CSF, and IL-6
compared to APPswe brain slices.
Cytokine levels correlated with brain
Aβ in both models

Hickman et al. [17] PS1(M146L) x
APP751sl

3–4 months Brain homogenates; qPCR TNFα, iNOS, IL-1β, FASL, TRAIL,
nox1, and Cox2 ↑ at age 18 mo.
IL-1β ↑ at age 12 mo

Hickman et al. [17] PS1(M146L) x
APP751sl

3–4 months IHC Microglia in the near vicinity of Aβ
plaques were shown to adopt an
incomplete alternative activation
state characterized by elevation of
YM-1 and absence of TNF-α and
iNOS at age 18 mo

Aβ beta amyloid; AD Alzheimer’s disease; FASL Fas ligand; GM-CSF granulocyte-macrophage colony-stimulating factor; IFN-γ interferon-
gamma; IHC immunohistochemistry; IL interleukin; iNOS inducible nitric oxide synthase; MCP monocyte chemotactic protein-1; MMP-9 matrix
metalloproteinase 9; qPCR quantitative polymerase chain reaction ; RAGE receptor for advanced glycation endproducts; SRA scavenger receptor A;
TNF-α tumor necrosis factor alpha; TRAIL TNF-related apoptosis-inducing ligand
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suffer from comorbidities such as cerebral infarcts, which
are associated with BBB damage. Therefore, it is likely that
BM-derived monocytic cell infiltration occurs in human
AD. In addition, CD11b+ myeloid cells have been shown
to infiltrate into AD transgenic mouse brain when infused
into the bloodstream [30•]. Even without parenchymal infil-
tration, BM-derived cells may have an important function as
Aβ phagocytizing perivascular macrophages, the absence of
which was associated with increased cerebral amyloid angiop-
athy (CAA) and mortality in CCR2-deficient AD mice [2••].

Aβ Phagocytosis and Degradation in Alzheimer’s
Disease

In familial cases of AD, imbalance in the production and
clearance of Aβ leads to harmful responses to specific Aβ
species in neurons and glia, Aβ accumulation, and, eventu-
ally, progressive neurodegeneration [31]. Even small chron-
ic deficits in the mechanisms of Aβ reduction may lead to
aberrant Aβ accumulation. Dysfunctions in Aβ clearance
by microglia or BM-derived monocytic cells in the brain
parenchyma, Aβ egress from brain to blood, or Aβ clearance
by perivascular macrophages and peripheral blood monocytes
may contribute to increased Aβ burden. Depending on the site
of Aβ accumulation, it can be referred to as parenchymal Aβ
deposition or CAA. Although these conditions have different
appearances and possibly altered disease severity, they prob-
ably carry similar pathological mechanisms, which also may
work in parallel.

The role of microglia in the regulation of Aβ levels in
AD has been under intensive investigation. Depending on
conditions, glial cells may have a role in AD by potentially
contributing to increased Aβ burden [32]. However, microglia
as brain mononuclear phagocytes have been shown to partic-
ipate in Aβ reduction with multiple mechanisms. Microglia
are able to secrete various proteases such as neprilysin,
insulin-degrading enzyme, angiotensin-converting enzyme,
cathepsin B, cystatin C, and matrix metalloproteases (MMPs),
which may degrade Aβ, among other biologically active
peptides [31]. After stating this, in this context we concentrate
on Aβ removal by phagocytic mechanisms by myeloid cells
including microglia.

Microglia take up soluble Aβ species through nonsatur-
able fluid phase macropinocytosis and traffic them into the
late endosomes and lysosomes for degradation [33]. Oligo-
meric Aβ uptake by microglia involves recognition of Aβ
by scavenger receptors, followed by Aβ internalization,
trafficking to lysosomes, and degradation by lysosomal
proteases including cathepsin B [34]. Fibrillar Aβ is recog-
nized by cell surface innate immune receptors, including
scavenger receptors and toll-like receptors (TLR), and taken
up by receptor-mediated phagocytosis or endocytosis

[35–37] . Also, some other receptors have been linked to
fibrillar Aβ phagocytosis, such as a Dap12-associated re-
ceptor called signal regulatory protein-β1 (SIRPβ1) [38] or
triggering receptor expressed on myeloid cells (TREM2)
[39], low density lipoprotein (LDL) receptor, and apolipo-
protein E (apoE), as reviewed by Bu [40]. Specifically,
macrophages from ApoE2 mice are more efficient in
degrading Aβ than ApoE3 macrophages, which in turn are
better phagocytes than ApoE4 macrophages [41•].

Low activity of lysosomal enzymes in microglia in com-
parison tomacrophages may account for the limitedmicroglial
degradation of Aβ [6]. The question remains as to what extent
microglia are able to degrade fibrillar Aβ and whether mono-
cytes derived from the periphery would outweigh parenchy-
mal microglia in Aβ clearance in vivo. In addition to limited
phagocytosis, microglial capacity for efficient Aβ degradation
also may be limited [42]. Even though microglia in the AD
brain and similarly in AD mouse brain can take up Aβ, their
Aβ removal capacity is not sufficient to prevent the accumu-
lation of plaques without any intervention. Thus, interventions
aiming at facilitating the uptake and degradation of Aβ by
microglial cell are an attractive therapeutic approach.

In Vitro Methods in Studying Aβ Phagocytosis
in Alzheimer’s Disease Models

The phagocytosis of Aβ is in its simplest form studied by
incubating cells with recombinant Aβ peptides and quanti-
fying uptake and degradation of Aβ peptide from the cells.
The fact that Aβ peptides are prone to aggregation, the
origin of Aβ preparation, and the way Aβ is solubilized
may obviously cause a lot of variation in the outcome of the
form of Aβ that is finally applied on the cells. This may
explain high variation in the responses to Aβ detected
between different cell culture studies. There are many sec-
ondary cell lines utilized as models of inflammatory cells,
such as immortalized microglia cell lines BV-2, N9,
MMGT12, and C8-B4 from mouse origin; HAPI from rat
origin; and HMO6 and CHME3 from human origin, as well
as macrophage cell line RAW264.7 of mouse origin and
monocyte cell line THP-1 of human origin. BV-2 microglia
is one of the most utilized cell lines in Aβ phagocytosis
studies in vitro [43, 44].

Secondary cells have many similarities but also several
differences to primary microglia [43–45], which are one step
closer to native microglia. Primary microglia can be
obtained from neonatal or adult rodents [46–48] as well as
postmortem human brain [49]. Neonatal microglia, a model
widely used to study microglia function, actually consist of
subpopulations of cells displaying partially different func-
tions [28, 50, 51]. Neonatal microglia also may have imma-
ture responses to inflammatory stimulus compared to adult
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microglia, which have decline in proteasomal function and
reduced Aβ phagocytosis [46, 52]. Also, microglia
obtained from aged animals show altered responses to
inflammation and decreased Aβ uptake and phagocyto-
sis in comparison to microglia isolated from young
adult animals [48]. Aged animals also have reduced
expression of Aβ-binding receptors and Aβ-degrading
enzymes [17]. Primary monocytes can be obtained from
mouse BM or human peripheral blood, or from HSC by
differentiation with macrophage colony–stimulating factor
(MCSF) [28, 53]. Macrophages can be collected from mouse
peritoneum after induced inflammatory stimulus or by spon-
taneous or MCSF-induced differentiation of primary mono-
cytes in vitro [6, 28, 29, 41•, 54].

For the simplest Aβ uptake studies, cells are incu-
bated with a fluorochrome-conjugated Aβ, which can be
tracked inside the cells using fluorescent microscopy or
quantified by flow cytometry [28, 29, 33, 41•]. To study
degradation of internalized Aβ, quantification of remain-
ing Aβ protein levels within the cells is recommended
instead of fluorescence signal to ensure that the readout
is true Aβ clearance and not just fadeout of the fluoro-
chrome. Phagocytosis in general also can be studied by
feeding the cells with fluorescent beads or latex beads;
however this is a nonspecific assay for overall phago-
cytic activity.

Ex Vivo Methods in Studying Aβ Phagocytosis
in Alzheimer’s Disease Models

To expose the cells into a more authentic environment for
Aβ phagocytosis, the cells may be applied on top of brain
sections prepared from aged transgenic AD mice containing
native Aβ deposits [28, 41•, 55, 56]. The reduction in Aβ
burden can be determined by immunohistochemical Aβ
staining as well as quantification of protein levels. The
sections also may be obtained from postmortem samples
from AD patients as a more suitable model for studying
Aβ phagocytosis when cells of human origin are investigated.
The ex vivo Aβ phagocytosis assay is superior to Aβ uptake
assay in regard to the exposure of cells into native AD brain
conditions, which may modulate the cell phenotype mimick-
ing the in vivo situation. Preferably, cells of various origin and
alternative methods should be combined when studying the
mechanisms of Aβ phagocytosis.

In Vivo Methods in Studying Aβ Phagocytosis
in Alzheimer’s Disease Models

Finally, the most relevant model for Aβ phagocytosis is to
utilize transgenic mouse models of AD. To study the role of

specific factors involved in the Aβ clearance, transgenic AD
mice have been crossbred with mouse strains lacking or
overexpressing certain protein products. Because knocking
out specific genes may have developmental consequences
or, on the other hand, the gene function may be compensated
by other factors, it is an advantage to utilize conditional trans-
gene technology. With this technology, the expression of a
particular gene is conditional to a specific stimulus and can be
switched “on” or “off” as desired. This has been utilized with
AD models in order to ablate a certain type of cell to study
their contribution to AD pathology [4, 57, 58].

First studies showing the infiltration of peripheral
myeloid cells in AD mouse brain have taken advantage
of the chimeric mouse model. In this model, recipient
mice are irradiated and their blood cell production is
reconstituted by transplantation of either purified HSC
or crude leukocyte population including HSC. Donor
mice expressing a reporter gene, such as green fluores-
cent protein, have been utilized to track the peripheral
derived cells from the brain. Although the method is
widely used [4, 26, 59], the irradiation in the chimeric
model has been legitimately criticized for causing pre-
conditioning leading to increased permeability of BBB
and excessive peripheral cell infiltration into the brain paren-
chyma [1, 2••]. Other approaches have been to transplant the
cells to naive mouse circulation or locally into the brain to
study their Aβ phagocytosis [28, 30•, 60].

Aβ burden in the brain can be quantified with im-
munohistochemical staining for total Aβ or with Congo
red staining for fibrillar Aβ plaques. The levels of
soluble and insoluble Aβ species may be determined
from the brain and blood with enzyme-linked immuno-
sorbent assay. Because AD pathology and Aβ deposi-
tion occur in transgenic mice within months and may
require as long as 1–2 years to fully develop, there is a
demand for methods that would allow monitoring the
Aβ burden in longitudinal studies. Recent progresses in
neuroimaging techniques enable this monitoring in vivo.
Positron emission tomography with Aβ tracers can be
utilized to directly visualize Aβ in vivo [61]. Also, the
development of magnetic resonance imaging techniques
has led to promising results in visualization of Aβ
deposits [62]. Aβ deposition and interaction with cells
can be monitored in brain in vivo utilizing multiphoton
microscopy [20, 63, 64••]. In general, alterations in Aβ
burden can be monitored in parallel with behavioral
studies to link it to possible changes in memory deficits
and anxiety. However, the Aβ burden and learning
deficits do not necessarily correlate because other mecha-
nisms or specific forms of Aβ may engage to these processes
[65–68] . The findings on the mechanisms of Aβ phagocyto-
sis in AD models will be discussed in more detail in the next
paragraph.
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Table 2 Role of specific myeloid cells or factors regulating myeloid cell migration or activity affiliated to Aβ clearance in the animal
models of AD

Study Cells Model Effect on Aβ burden

Mildner et al. [2••] BM CCR2+ cells CCR2−/−BM cell chimera in
APPswe/PS1 and Tg2576
mice

Irradiation preconditioning and CCR2 expression
in BM cells are required for their brain
engraftment. Peripheral macrophages rather than
parenchymal microglia modulate Aβ deposition
in AD mice

El Khoury et al. [5] CCR2 CCR2−/−mice crossed with
Tg2576 mice

Absence of CCR2 impairs microglia accumulation
and increases Aβ levels and mortality in AD
mice

Magga et al. [28] BM CD11b+ cells Adoptive transfer of neprilysin-
transfected BM CD11b+ cells
into APP/PS1mice

BM CD11b+ cells home to AD mouse brain after
adoptive transfer. Injection of CD11b+ cells
expressing secreted form of neprilysin is
associated with reduced Aβ burden

Koistinaho
et al. [56]

Microglia/CD11b+ cells CD11b+ cell ablation in APPPS1
and APP23 mice

Nearly complete ablation of CD11b+ cells did not
alter Aβ levels in AD mice within the
observation period of 4 weeks

Ruan et al. [82] CD11c+ TGF-β+ cells Dominant negative TGF-β in
CD11c+ cells in Tg2576 and
APPswe/PS1dE9 mice

TGF-β deficiency in CD11c+ reduced
parenchymal and vascular Aβ burden involving
infiltration of peripheral macrophages

Abbas et al. [83] CD45 CD45−/−crossed with
APPswe/PS1dE9 mice

CD45 deficiency promotes proinflammatory
microglial activation, reduces their phagocytic
activity, and increases soluble and insoluble Aβ
levels

Town et al. [84] Myeloid differentiation
factor 88

MyD88−/−BM cell chimera in
TgCRND8 and APPswe/PS1dE9
mice

MyD88 deletion in BM cells attenuates
neuroinflammation, enhances Aβ phagocytosis,
and reduces Aβ burden

Zhu et al. [85] and
Hao et al. [86]

CX3CR1 CX3CR1−/−crossed with APPPS1
mice

Absence of CX3CR1 leads to altered
inflammation, enhancement of microglia Aβ
phagocytosis, and reduction of Aβ burden

Lee et al. [87] CD14 CD14−/−crossed with APPswe/PS1dE9 mice TLR co-receptor CD14 deficiency alters
microglia activation and reduces microgliosis
and Aβ burden

Liu et al. [88] TLR4 TLR4 mutation mice crossed with
APPswe/PS1dE9 mice

TLR mutation decreases microglia activation and
increases Aβ deposition in early AD possibly
involving reduced Aβ clearance

Reed-Geaghan
et al. [89]

TLR9 ligand TLR9 ligand CpG injection (i.c.v)
into Tg2576 mice

TLR9 ligand CpG reduces Aβ burden and
increases microglial production of degrading
enzymes and reduction of Aβ

Song et al. [90] EP2 EP2−/−BM cell chimera in APPswe/
PS1dE9 mice

EP2 deletion in BM cells reduces Aβ burden

Doi et al. [91] and
Keene et al. [92]

Liver X receptor LXR agonist p.o. into APP23 mice,
LXR−/−crossed with APPswe/PS1dE9
mice

LXR agonist reduces Aβ burden in AD mice on
high-fat diet. Astrocytic LXR activation and the
release of ApoE are involved in microglial Aβ
phagocytosis

Terwel et al. [93] Complement
factor C3

C3−/−crossed with APP mice Absence of C3 drives microglia into M2
alternative activation phenotype and increases
Aβ burden

Fitz et al. [94] IL-6 AAV1-induced IL-6 overexpression in
brain of TgCRND8 and Tg2576 mice

Overexpression of IL-6 leads to massive gliosis,
and attenuates Aβ deposition by enhanced
microglia activation and possibly by increased
Aβ phagocytosis

Maier et al. [95] IL-1β Overexpression of IL-1β in brain of
APPswe/PS1dE9 mice

Sustained overexpression of IL-1β enhances
microglia activation and reduces Aβ burden

Chakrabarty
et al. [96]

MCSF Weekly i.p. injections of MCSF into
APPswe/PS1

MCSF increases microgliosis and BM cell
infiltration and reduces Aβ burden by
phagocytosis

Aβ beta amyloid; AAV adeno associated virus; AD Alzheimer’s disease; apoE apolipoprotein E; BM bone marrow; EP2 prostaglandin E2 receptor
subtype 2; i.c.v. intracerebroventricular; IL interleukin; i.p. intraperitoneal; LXR liver x receptor; MCSF macrocyte colony–stimulating factor; p.o.
per oral; TGF-β+ transforming growth factor beta; TLR9 toll-like receptor 9
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Mechanisms of Aβ Phagocytosis in Myeloid Cells
in Alzheimer’s Disease Models

Microglia-mediated clearance of Aβ in vivo may be rather
limited, but it can be enhanced by opsonization of Aβ
deposits obtained with active or passive immunotherapy.
Enhanced Aβ clearance in turn associates with alleviation
of AD-related neuropathological alterations (reviewed in
[69]). The Aβ-antibody complex is identifiedwith Fc receptors
present in immune cells, including microglia and macrophages
subsequently leading to Fc receptor–mediated phagocytosis
(reviewed in [70]). However, microglia-mediated Aβ phago-
cytosis does not explain all the beneficial effects of immuniza-
tion because other mechanisms, such as altered Aβ
fibrillization in brain parenchyma or enhanced brain to blood
efflux of Aβ also may occur (reviewed in [69]).

Although the immunotherapy treatment for AD is promis-
ing, it is hindered by severe adverse effects such as brain
microhemorrhages observed in animal studies and encephali-
tis observed in clinical trials after passive and active immuni-
zation, respectively, as reviewed in [69]. It has been reported
that macrophages laden with Aβ may get trapped to endothe-
lial layer, inhibiting the monocyte emigration and Aβ export
across BBB [53], possibly partly explaining the increased
occurrence of hemorrhages. There are naturally occurring
autoantibodies to Aβ in plasma and cerebrospinal fluid that
exist in both healthy individuals as well as in AD patients
although their levels may be decreased in advanced AD as
well as within normal aging [71, 72] . Because these autoanti-
bodies promote microglia-mediated uptake and clearance of
Aβ [73, 74] and bind to Aβ deposits in human AD brain [75]
and after peripheral administration in animal models in vivo
[74], they may offer a more native therapeutical approach to
combat towards Aβ. An alternative vaccination strategy also
was described with glatiramer acetate, a weak agonist of auto-
antigens, involving recruitment of BM-derived dendritic cells
and their regulation of Aβ deposition [57, 76].

Findings on certain cell types, receptors, or pharmacolog-
ical treatments associated with Aβ clearance by microglia or
monocytic cells in animal models of AD are represented in
Table 2. Many pharmacological approaches such as galant-
amine [77], valproic acid [78], and cannabinoids [79] have
been shown to enhance phagocytosis and potentially, clear-
ance of Aβ in mouse microglial or monocytic cells in vitro.
Pharmacological approach with curcuminoids also was shown
to result in Aβ clearance by human monocytes obtained from
AD patients [29, 80], suggesting that in vitro models of AD
may be applicable to study monocytic function in AD. Fur-
thermore, therapeutical approaches not directly associated
with Aβ phagocytosis may have unexpected effects on micro-
glial function as reported for galantamine and γ-secretase
inhibitors increasing and inhibiting microglial Aβ phagocy-
tosis, respectively [77, 81].

Conclusions

Transgenic AD mouse models have revolutionized the re-
search of mechanisms leading to Aβ clearance by cells of
myeloid origin. Several in vitro and ex vivo methods assess-
ing the phagocytic capacity of microglia and BM-derived
monocytic cells have been developed. Increasing knowl-
edge of the heterogeneity of microglial function in AD has
changed the course of research to not only dampen micro-
glial reactivity but also to modulate their activation proper-
ties. Pinpointing such events leading to reduction in brain
toxic Aβ levels offers an attractive tool for combating this
devastating disease.

Disclosures Dr. Tarja Malm has served as a consultant for Medeia
Therapeutics Ltd. and Baxter Innovations GmbH. Dr. Johanna Magga
has served as a consultant for Medeia Therapeutics Ltd. and Baxter
Innovations GmbH. Dr. Jari Koistinaho has served as a board member
and consultant to Medeia Therapeutics Ltd.; has received grants from
Medeia Therapeutics Ltd. and Baxter Innovations GmbH; has received
travel expense compensation from Baxter Innovations GmbH; and his
wife is a CEO of Medeia Therapeutics Ltd.

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any non-
commercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

References

Papers of particular interest, published recently, have
been highlighted as:
• Of importance
•• Of major importance

1. Mildner A, Schmidt H, Nitsche M, et al. Microglia in the adult
brain arise from Ly-6ChiCCR2+ monocytes only under defined
host conditions. Nat Neurosci. 2007;10:1544–53.

2. •• Mildner A, Schlevogt B, Kierdorf K, et al. Distinct and non-
redundant roles of microglia and myeloid subsets in mouse models
of Alzheimer’s disease. J Neurosci. 2011;31:11159–71. This article
describes important findings on myeloid subsets and CCR2 regulating
their migration and functional properties in AD model in vivo.

3. KoistinahoM, Koistinaho J. Interactions between Alzheimer’s disease
and cerebral ischemia–focus on inflammation. Brain Res Brain Res
Rev. 2005;48:240–50.

4. Simard AR, Soulet D, Gowing G, et al. Bone marrow-derived
microglia play a critical role in restricting senile plaque formation
in Alzheimer’s disease. Neuron. 2006;49:489–502.

5. El Khoury J, Toft M, Hickman SE, et al. Ccr2 deficiency impairs
microglial accumulation and accelerates progression of Alzheimer-
like disease. Nat Med. 2007;13:432–8.

6. Majumdar A, Chung H, Dolios G, et al. Degradation of fibrillar
forms of Alzheimer’s amyloid beta-peptide by macrophages. Neu-
robiol Aging. 2008;29:707–15.

7. Fiala M, Cribbs DH, Rosenthal M, Bernard G. Phagocytosis of
amyloid-beta and inflammation: two faces of innate immunity in
Alzheimer’s disease. J Alzheimers Dis. 2007;11:457–63.

Curr Tran Geriatr Gerontol Rep (2012) 1:11–20 17



8. Duyckaerts C, Potier MC, Delatour B. Alzheimer disease models and
human neuropathology: similarities and differences. Acta Neuropathol.
2008;115:5–38.

9. Gotz J, Ittner LM. Animal models of Alzheimer’s disease and
frontotemporal dementia. Nat Rev Neurosci. 2008;9:532–44.

10. Ginhoux F, Greter M, Leboeuf M, et al. Fate mapping analysis
reveals that adult microglia derive from primitive macrophages.
Science. 2010;330(6005):841–5.

11. Mizutani M, Pino PA, Saederup N, et al. The Fractalkine Receptor but
Not CCR2 Is Present on Microglia from Embryonic Development
throughout Adulthood. J Immunol. 2011, In press.

12. Mandrekar-Colucci S, Landreth GE. Microglia and inflammation
in Alzheimer’s disease. CNS Neurol Disord Drug Targets.
2010;9:156–67.

13. AkiyamaH, Barger S, Barnum S, et al. Inflammation and Alzheimer’s
disease. Neurobiol Aging. 2000;21:383–421.

14. Michelucci A, Heurtaux T, Grandbarbe L, et al. Characterization of
the microglial phenotype under specific pro-inflammatory and
anti-inflammatory conditions: effects of oligomeric and fibrillar
amyloid-beta. J Neuroimmunol. 2009;210:3–12.

15. Hoozemans JJ, Veerhuis R, Rozemuller JM, Eikelenboom P. Neuro-
inflammation and regeneration in the early stages of Alzheimer’s
disease pathology. Int J Dev Neurosci. 2006;24:157–65.

16. Jankowsky JL, Fadale DJ, Anderson J, et al. Mutant presenilins
specifically elevate the levels of the 42 residue beta-amyloid peptide
in vivo: evidence for augmentation of a 42-specific gamma secretase.
Hum Mol Genet. 2004;13:159–70.

17. Hickman SE, Allison EK, El Khoury J. Microglial dysfunction and
defective beta-amyloid clearance pathways in aging Alzheimer’s
disease mice. J Neurosci. 2008;28:8354–60.

18. Patel NS, Paris D, Mathura V, Quadros AN, et al. Inflammatory
cytokine levels correlate with amyloid load in transgenic mouse
models of Alzheimer’s disease. J Neuroinflammation. 2005;2:9.

19. Jimenez S, Baglietto-Vargas D, Caballero C, et al. Inflammatory
response in the hippocampus of PS1M146L/APP751SLmousemodel
of Alzheimer’s disease: age-dependent switch in the microglial phe-
notype from alternative to classic. J Neurosci. 2008;28:11650–61.

20. Bolmont T, Haiss F, Eicke D, et al. Dynamics of the microglial/
amyloid interaction indicate a role in plaquemaintenance. J Neurosci.
2008;28:4283–92.

21. Heneka MT, Nadrigny F, Regen T, et al. Locus ceruleus controls
Alzheimer’s disease pathology by modulating microglial functions
through norepinephrine. Proc Natl Acad Sci U SA. 2010;107:6058–63.

22. Fleisher-Berkovich S, Filipovich-Rimon T, Ben Shmuel S, et al.
Distinct modulation of microglial amyloid beta phagocytosis and
migration by neuropeptides. J Neuroinflammation. 2010;7:61.

23. Fiala M, Liu QN, Sayre J, et al. Cyclooxygenase-2-positive macro-
phages infiltrate the Alzheimer’s disease brain and damage the
blood-brain barrier. Eur J Clin Invest. 2002;32:360–71.

24. Auffray C, Sieweke MH, Geissmann F. Blood monocytes: develop-
ment, heterogeneity, and relationship with dendritic cells. Annu Rev
Immunol. 2009;27:669–92.

25. Malm T, Koistinaho M, Muona A, et al. The role and therapeutic
potential of monocytic cells in Alzheimer’s disease. Glia.
2010;58:889–900.

26. Malm TM, Koistinaho M, Parepalo M, et al. Bone-marrow-derived
cells contribute to the recruitment of microglial cells in response to
beta-amyloid deposition in APP/PS1 double transgenic Alzheimer
mice. Neurobiol Dis. 2005;18:134–42.

27. Simard AR, Rivest S. Bone marrow stem cells have the ability to
populate the entire central nervous system into fully differentiated
parenchymal microglia. FASEB J. 2004;18:998–1000.

28. Magga J, Savchenko E,Malm T, et al.: Production of monocytic cells
from bone marrow stem cells: therapeutic usage in Alzheimer’s
disease. J Cell Mol Med 2011, In press.

29. Fiala M, Liu PT, Espinosa-Jeffrey A, et al. Innate immunity and
transcription of MGAT-III and Toll-like receptors in Alzheimer’s
disease patients are improved by bisdemethoxycurcumin. Proc
Natl Acad Sci U S A. 2007;104:12849–54.

30. • Lebson L, Nash K, Kamath S, et al. Trafficking CD11b-positive
blood cells deliver therapeutic genes to the brain of amyloid-
depositing transgenic mice. J Neurosci. 2010;30:9651–8. This article
describes an applicable method to modify monocytes to enhance
their phagocytic capacity in cell-based therapy in AD model in vivo.

31. De Strooper B. Proteases and proteolysis in Alzheimer disease: a
multifactorial view on the disease process. Physiol Rev. 2010;90:465–
94.

32. Nagele RG, Wegiel J, Venkataraman V, et al. Contribution of glial
cells to the development of amyloid plaques in Alzheimer’s disease.
Neurobiol Aging. 2004;25:663–74.

33. Mandrekar S, Jiang Q, Lee CY, et al. Microglia mediate the
clearance of soluble Abeta through fluid phase macropinocytosis.
J Neurosci. 2009;29:4252–62.

34. Yang CN, Shiao YJ, Shie FS, et al. Mechanism mediating oligomeric
Abeta clearance by naive primary microglia. Neurobiol Dis.
2011;42:221–30.

35. Reed-Geaghan EG, Savage JC, Hise AG, Landreth GE. CD14 and
toll-like receptors 2 and 4 are required for fibrillar A{beta}-stimulated
microglial activation. J Neurosci. 2009;29:11982–92.

36. Richard KL, Filali M, Prefontaine P, Rivest S. Toll-like receptor 2
acts as a natural innate immune receptor to clear amyloid beta 1-42
and delay the cognitive decline in a mouse model of Alzheimer’s
disease. J Neurosci. 2008;28:5784–93.

37. Koenigsknecht J, Landreth G. Microglial phagocytosis of fibrillar
beta-amyloid through a beta1 integrin-dependent mechanism. J
Neurosci. 2004;24:9838–46.

38. Gaikwad S, Larionov S, Wang Y, et al. Signal regulatory protein-
beta1: a microglial modulator of phagocytosis in Alzheimer’s
disease. Am J Pathol. 2009;175:2528–39.

39. Frank S, Burbach GJ, Bonin M, et al. TREM2 is upregulated in
amyloid plaque-associated microglia in aged APP23 transgenic
mice. Glia. 2008;56:1438–47.

40. Bu G. Apolipoprotein E and its receptors in Alzheimer’s disease: path-
ways, pathogenesis and therapy. Nat Rev Neurosci. 2009;10:333–44.

41. • Zhao L, Lin S, Bales KR, et al. Macrophage-mediated degrada-
tion of beta-amyloid via an apolipoprotein E isoform-dependent
mechanism. J Neurosci. 2009;29:3603–12. This article describes
important findings on ApoE isoform-dependent function of phago-
cytic cells in Aβ clearance. Also, in vitro and ex vivo methods to
study Aβ phagocytosis are nicely covered.

42. Paresce DM, ChungH,Maxfield FR. Slow degradation of aggregates
of the Alzheimer’s disease amyloid beta-protein by microglial cells. J
Biol Chem. 1997;272:29390–7.

43. Horvath RJ, Nutile-McMenemy N, Alkaitis MS, Deleo JA. Differ-
ential migration, LPS-induced cytokine, chemokine, and NO expres-
sion in immortalized BV-2 and HAPI cell lines and primary
microglial cultures. J Neurochem. 2008;107:557–69.

44. Henn A, Lund S, Hedtjarn M, et al. The suitability of BV2 cells as
alternative model system for primary microglia cultures or for
animal experiments examining brain inflammation. ALTEX.
2009;26:83–94.

45. Nagai A, Nakagawa E, Hatori K, et al. Generation and character-
ization of immortalized human microglial cell lines: expression of
cytokines and chemokines. Neurobiol Dis. 2001;8:1057–68.

46. Floden AM, Combs CK. Beta-amyloid stimulates murine postnatal
and adult microglia cultures in a unique manner. J Neurosci.
2006;26:4644–8.

47. Moussaud S, Draheim HJ. A new method to isolate microglia from
adult mice and culture them for an extended period of time. J
Neurosci Methods. 2010;187:243–53.

18 Curr Tran Geriatr Gerontol Rep (2012) 1:11–20



48. Njie EG, Boelen E, Stassen FR, et al.: Ex vivo cultures of micro-
glia from young and aged rodent brain reveal age-related changes
in microglial function. Neurobiol Aging 2010.

49. Walker DG, Lue LF. Investigations with cultured human microglia
on pathogenic mechanisms of Alzheimer’s disease and other neu-
rodegenerative diseases. J Neurosci Res. 2005;81:412–25.

50. Saura J, Tusell JM, Serratosa J. High-yield isolation of murine
microglia by mild trypsinization. Glia. 2003;44:183–9.

51. Shimizu E, Kawahara K, Kajizono M, et al. IL-4-induced selective
clearance of oligomeric beta-amyloid peptide(1-42) by rat primary
type 2 microglia. J Immunol. 2008;181:6503–13.

52. Stolzing A, Grune T. Impairment of protein homeostasis and
decline of proteasome activity in microglial cells from adult Wistar
rats. J Neurosci Res. 2003;71:264–71.

53. Zaghi J, Goldenson B, Inayathullah M, et al. Alzheimer disease
macrophages shuttle amyloid-beta from neurons to vessels, contrib-
uting to amyloid angiopathy. Acta Neuropathol. 2009;117:111–24.

54. Yamamoto M, Kiyota T, Walsh SM, et al. Cytokine-mediated
inhibition of fibrillar amyloid-beta peptide degradation by human
mononuclear phagocytes. J Immunol. 2008;181:3877–86.

55. Wyss-Coray T, Loike JD, Brionne TC, et al. Adult mouse astro-
cytes degrade amyloid-beta in vitro and in situ. Nat Med.
2003;9:453–7.

56. Koistinaho M, Lin S, Wu X, et al. Apolipoprotein E promotes
astrocyte colocalization and degradation of deposited amyloid-beta
peptides. Nat Med. 2004;10:719–26.

57. Butovsky O, Kunis G, Koronyo-Hamaoui M, Schwartz M. Selective
ablation of bone marrow-derived dendritic cells increases amyloid
plaques in a mouse Alzheimer’s disease model. Eur J Neurosci.
2007;26:413–6.

58. Grathwohl SA, Kalin RE, Bolmont T, et al. Formation and mainte-
nance of Alzheimer’s disease beta-amyloid plaques in the absence of
microglia. Nat Neurosci. 2009;12:1361–3.

59. Stalder AK, Ermini F, Bondolfi L, et al. Invasion of hematopoietic
cells into the brain of amyloid precursor protein transgenic mice. J
Neurosci. 2005;25:11125–32.

60. Nikolic WV, Hou H, Town T, et al. Peripherally administered
human umbilical cord blood cells reduce parenchymal and vascular
beta-amyloid deposits in Alzheimer mice. Stem Cells Dev.
2008;17:423–39.

61. Higuchi M, Maeda J, Ji B, et al. In-vivo visualization of key
molecular processes involved in Alzheimer’s disease pathogenesis:
Insights from neuroimaging research in humans and rodent models.
Biochim Biophys Acta. 2010;1802:373–88.

62. Teipel SJ, Kaza E, Hadlich S, et al. Automated detection of
amyloid-beta-related cortical and subcortical signal changes in a
transgenic model of Alzheimer’s disease using high-field MRI. J
Alzheimers Dis. 2011;23:221–37.

63. Meyer-Luehmann M, Spires-Jones TL, Prada C, et al. Rapid appear-
ance and local toxicity of amyloid-beta plaques in a mouse model of
Alzheimer’s disease. Nature. 2008;451:720–4.

64. •• Hefendehl JK, Wegenast-Braun BM, et al. Long-term in vivo
imaging of beta-amyloid plaque appearance and growth in a mouse
model of cerebral beta-amyloidosis. J Neurosci. 2011;31:624–9.
This article describes an in vivo method for long-term tracking on
single Aβ deposits over time. Revealing the dynamics of Aβ depo-
sition is of high importance in understanding the disease mecha-
nisms and for evaluation of AD therapy.

65. Malm T, Ort M, Tahtivaara L, et al. beta-Amyloid infusion results
in delayed and age-dependent learning deficits without role of
inflammation or beta-amyloid deposits. Proc Natl Acad Sci U S
A. 2006;103:8852–7.

66. MalmTM, IivonenH, Goldsteins G, et al. Pyrrolidine dithiocarbamate
activates Akt and improves spatial learning in APP/PS1 mice without
affecting beta-amyloid burden. J Neurosci. 2007;27:3712–21.

67. Cheng IH, Scearce-Levie K, Legleiter J, et al. Accelerating
amyloid-beta fibrillization reduces oligomer levels and functional
deficits in Alzheimer disease mouse models. J Biol Chem.
2007;282:23818–28.

68. Lesne S, Kotilinek L, Ashe KH. Plaque-bearing mice with reduced
levels of oligomeric amyloid-beta assemblies have intact memory
function. Neuroscience. 2008;151:745–9.

69. Morgan D. Immunotherapy for Alzheimer’s disease. J Intern Med.
2011;269:54–63.

70. Okun E, Mattson MP, Arumugam TV. Involvement of Fc receptors
in disorders of the central nervous system. Neuromolecular Med.
2010;12:164–78.

71. Du Y, Dodel R, Hampel H, et al. Reduced levels of amyloid beta-
peptide antibody in Alzheimer disease. Neurology. 2001;57:801–
5.

72. Britschgi M, Olin CE, Johns HT, et al. Neuroprotective natural
antibodies to assemblies of amyloidogenic peptides decrease with
normal aging and advancing Alzheimer’s disease. Proc Natl Acad
Sci U S A. 2009;106:12145–50.

73. Istrin G, Bosis E, SolomonB. Intravenous immunoglobulin enhances
the clearance of fibrillar amyloid-beta peptide. J Neurosci Res.
2006;84:434–43.

74. Magga J, Puli L, Pihlaja R, et al. Human intravenous immuno-
globulin provides protection against Abeta toxicity by multiple
mechanisms in a mouse model of Alzheimer’s disease. J Neuro-
inflammation. 2010;7:90.

75. Kellner A, Matschke J, Bernreuther C, et al. Autoantibodies
against beta-amyloid are common in Alzheimer’s disease and help
control plaque burden. Ann Neurol. 2009;65:24–31.

76. Butovsky O, Koronyo-Hamaoui M, Kunis G, et al. Glatiramer
acetate fights against Alzheimer’s disease by inducing dendritic-
like microglia expressing insulin-like growth factor 1. Proc Natl
Acad Sci U S A. 2006;103:11784–9.

77. Takata K, Kitamura Y, Saeki M, et al. Galantamine-induced amyloid-
{beta} clearance mediated via stimulation of microglial nicotinic
acetylcholine receptors. J Biol Chem. 2010;285:40180–91.

78. Smith AM, Gibbons HM, Dragunow M. Valproic acid enhances
microglial phagocytosis of amyloid-beta(1-42). Neuroscience.
2010;169:505–15.

79. Tolon RM, Nunez E, Pazos MR, et al. The activation of cannabinoid
CB2 receptors stimulates in situ and in vitro beta-amyloid removal by
human macrophages. Brain Res. 2009;1283:148–54.

80. Masoumi A, Goldenson B, Ghirmai S, et al. 1alpha,25-dihydroxyvi-
tamin D3 interacts with curcuminoids to stimulate amyloid-beta clear-
ance by macrophages of Alzheimer’s disease patients. J Alzheimers
Dis. 2009;17:703–17.

81. Farfara D, Trudler D, Segev-Amzaleg N, et al. gamma-Secretase
component presenilin is important for microglia beta-amyloid
clearance. Ann Neurol. 2011;69:170–80.

82. Ruan L, Kang Z, Pei G, Le Y. Amyloid deposition and inflamma-
tion in APPswe/PS1dE9 mouse model of Alzheimer’s disease.
Curr Alzheimer Res. 2009;6:531–40.

83. Abbas N, Bednar I, Mix E, et al. Up-regulation of the inflamma-
tory cytokines IFN-gamma and IL-12 and down-regulation of IL-4
in cerebral cortex regions of APP(SWE) transgenic mice. J Neuro-
immunol. 2002;126:50–7.

84. Town T, Laouar Y, Pittenger C, et al. Blocking TGF-beta-Smad2/3
innate immune signaling mitigates Alzheimer-like pathology. Nat
Med. 2008;14:681–7.

85. Zhu Y, Hou H, Rezai-Zadeh K, et al. CD45 deficiency drives
amyloid-beta peptide oligomers and neuronal loss in Alzheimer’s
disease mice. J Neurosci. 2011;31:1355–65.

86. HaoW, Liu Y, Liu S, et al. Myeloid differentiation factor 88-deficient
bone marrow cells improve Alzheimer’s disease-related symptoms
and pathology. Brain. 2011;134:278–92.

Curr Tran Geriatr Gerontol Rep (2012) 1:11–20 19



87. Lee S, Varvel NH, Konerth ME, et al. CX3CR1 deficiency alters
microglial activation and reduces beta-amyloid deposition in two
Alzheimer’s disease mouse models. Am J Pathol. 2010;177:2549–62.

88. Liu Z, Condello C, Schain A, et al. CX3CR1 in microglia regulates
brain amyloid deposition through selective protofibrillar amyloid-
beta phagocytosis. J Neurosci. 2010;30:17091–101.

89. Reed-Geaghan EG, Reed QW, Cramer PE, Landreth GE. Deletion
of CD14 attenuates Alzheimer’s disease pathology by influencing
the brain’s inflammatory milieu. J Neurosci. 2010;30:15369–73.

90. Song M, Jin J, Lim JE, et al. TLR4 mutation reduces microglial
activation, increases Abeta deposits and exacerbates cognitive
deficits in a mouse model of Alzheimer’s disease. J Neuroinflam-
mation. 2011;8:92.

91. Doi Y, Mizuno T, Maki Y, et al. Microglia activated with the toll-like
receptor 9 ligand CpG attenuate oligomeric amyloid beta neurotoxicity
in in vitro and in vivo models of Alzheimer’s disease. Am J Pathol.
2009;175:2121–32.

92. Keene CD, Chang RC, Lopez-Yglesias AH, et al. Suppressed
accumulation of cerebral amyloid beta peptides in aged transgenic

Alzheimer’s disease mice by transplantation with wild-type or
prostaglandin E2 receptor subtype 2-null bone marrow. Am J
Pathol. 2010;177:346–54.

93. Terwel D, Steffensen KR, Verghese PB, et al. Critical role of
astroglial apolipoprotein E and liver X receptor-alpha expression
for microglial Abeta phagocytosis. J Neurosci. 2011;31:7049–
59.

94. Fitz NF, Cronican A, Pham T, et al. Liver X receptor agonist
treatment ameliorates amyloid pathology and memory deficits
caused by high-fat diet in APP23 mice. J Neurosci. 2010;30:
6862–72.

95. Maier M, Peng Y, Jiang L, et al. Complement C3 deficiency leads to
accelerated amyloid beta plaque deposition and neurodegeneration
and modulation of the microglia/macrophage phenotype in amyloid
precursor protein transgenic mice. J Neurosci. 2008;28:6333–41.

96. Chakrabarty P, Jansen-West K, Beccard A, et al. Massive gliosis
induced by interleukin-6 suppresses Abeta deposition in vivo:
evidence against inflammation as a driving force for amyloid
deposition. FASEB J. 2010;24:548–59.

20 Curr Tran Geriatr Gerontol Rep (2012) 1:11–20


	Animal Models of Alzheimer’s Disease: Utilization of Transgenic Alzheimer’s Disease Models in Studies of Amyloid Beta Clearance
	Abstract
	Introduction
	Alzheimer’s Disease Animal Models
	Microglial Phenotype in Alzheimer’s Disease Models
	Bone Marrow–derived Monocytic Cells in Alzheimer’s Disease Models
	Aβ Phagocytosis and Degradation in Alzheimer’s Disease
	In Vitro Methods in Studying Aβ Phagocytosis in Alzheimer’s Disease Models
	Ex Vivo Methods in Studying Aβ Phagocytosis in Alzheimer’s Disease Models
	In Vivo Methods in Studying Aβ Phagocytosis in Alzheimer’s Disease Models
	Mechanisms of Aβ Phagocytosis in Myeloid Cells in Alzheimer’s Disease Models
	Conclusions
	References
	Papers of particular interest, published recently, have been highlighted as: • Of importance•• Of major importance



