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Parkinson's disease (PD) leads to dysfunction inmultiple cortico-striatal circuits. The neurodegeneration has also
been associatedwith impairedwhitematter integrity. This structural and functional “disconnection” in PD needs
further characterization.
We investigated the structural and functional organization of the PD whole brain connectome consisting of 200
nodes using diffusion tensor imaging and resting-state functional MRI, respectively. Data from 20 non-demented
PD patients on dopaminergic medication and 20 matched controls were analyzed using graph theory-based
methods. We focused on node strength, clustering coefficient, and local efficiency as measures of local network
properties; and network modularity as a measure of information flow.
PD patients showed reducedwhitematter connectivity in frontoparietal-striatal nodes compared to controls, but
no change inmodular organization of thewhitematter tracts. PD group also showed reduction in functional local
network metrics in many nodes distributed across the connectome. There was also decreased functional modu-
larity in the core cognitive networks including the defaultmode and dorsal attention networks, and sensorimotor
network, aswell as a lack ofmodular distinction in the orbitofrontal and basal ganglia nodes in the PDgroup com-
pared to controls.
Our results suggest that despite subtle white matter connectivity changes, the overall structural organization of
the PD connectome remains robust at relatively early disease stages. However, there is a breakdown in the func-
tional modular organization of the PD connectome.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Parkinson's disease (PD) is a neurodegenerative disorder character-
ized by dopaminergic neuronal loss in the substantia nigra pars
compacta (Braak et al., 2003). Dopamine deficiency leads to dysfunction
in multiple, topographically organized cortico-striatal circuits, conse-
quently giving rise to motor symptoms as well as cognitive and emo-
tional problems. The pathology in PD is not limited to the neuronal
cell bodies. Studies using animal and cell culture models of PD
have demonstrated that neurodegeneration is also associated with
axonopathy and synaptic dysfunction, and impairs white matter integ-
rity (Burke and O'Malley, 2013; O'Malley, 2010; Tagliaferro et al., 2015).

PD-related deficits are complex in nature. The neuroanatomical cor-
relates of these wide-ranging deficits have been characterized in task-
based neuroimaging studies (for review Hanganu et al., 2015;
Schendan et al., 2013; Tinaz et al., 2008). Several studies have also
Haven, CT 06510, United States.
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investigated the alterations in functional connectivity patterns in PD
using resting-state functional MRI (rs-fMRI). Many of these studies fo-
cused on abnormal functional connectivity in cortico-striatal circuits
(Hacker et al., 2012; Helmich et al., 2010) or in specific networks (e.g.,
default mode, dorsal attention, salience) using various methods such
as seed-based functional connectivity or independent component anal-
ysis (Baggio et al., 2015; Putcha et al., 2015; Tessitore et al., 2012). Neu-
roimaging studies using diffusion tensor imaging (DTI) have shown
disrupted white matter integrity in major tracts in various stages of
PD. Furthermore, this disruption was found to correlate with cognitive
impairment (Hattori et al., 2012; Melzer et al., 2013).

More recently, complex network theories and tools have contribut-
ed substantially to our understanding of the structure and function of
the brain as a large-scale neural network, i.e., connectome. Within this
framework, pathology is approached as a phenomenon emerging from
the abnormal connections and interactions between distributed brain
regions rather than being the result of focal lesions. Network research
using neuroimaging data has led to important insights into the brain pa-
thology in several neuropsychiatric conditions including Alzheimer's
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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disease, schizophrenia, traumatic brain injury, epilepsy, and multiple
sclerosis (Filippi et al., 2013; Stam, 2014). Relatively few studies have
employed large-scale graph theory-based network methods using rs-
fMRI in PD. These studies reported abnormalities in global and local net-
work properties within the studied networks which also correlated
with disease severity and cognitive deficits (Berman et al., 2016;
Göttlich et al., 2013; Lebedev et al., 2014; Skidmore et al., 2011; Tinaz
et al., 2016).

Taken together, evidence from neuropathological and neuroimaging
studies suggests that PD can be conceptualized as a structural and func-
tional “disconnection” syndrome. Yet, the nature of this disconnection
warrants better characterization. Results of the rs-fMRI network studies
in PD have been variable due tomethodological factors and cohort char-
acteristics, and the whole connectome was not examined in all studies.
In addition, to our knowledge, the white matter integrity of the whole
connectome in PD has not been investigated using graph theory-based
network methods.

Our main goal in this study was to investigate the white matter in-
tegrity and functional reorganization of the connectome in non-de-
mented, medicated PD patients using DTI and rs-fMRI, respectively.
We also examined whether white matter and functional connectivity
changes coincided spatially within the connectome. To this end, we
employed graph theory-based methods specifically focusing on local
network metrics including node strength, clustering coefficient, and
local efficiency; as well as network modularity.

We hypothesized that there would be nodal connectivity changes
and breakdown in the modular organization of the structural and func-
tional networks in PD patients compared to matched controls.

2. Materials and methods

2.1. Subjects

The following exclusion criteria applied to all participants: The pres-
ence of any neurological or psychiatric disorder (other than PD), abnor-
mality in neurological examinations or in routine clinical MRI scans, and
active alcohol or illicit drug use.

Patients were referred from the National Institutes of Health
Parkinson's Disease Clinic. Healthy volunteers (HVs) were recruited
from the local community. Twenty-four patients with idiopathic PD
(age range 44–75, 12 females) and 24 matched healthy volunteers
(HV) (age range 43–71, 11 females) participated in the study after giv-
ing written informed consent in accordance with the Combined Neuro-
science Institutional Review Board of the National Institutes of Health.

The PD diagnosis was established according to the UK Parkinson's
Disease Society Brain Bank Clinical Diagnosis Criteria (Hughes et al.,
2001). All patients had bradykinesia and at least one of the following
impairments: rigidity, resting tremor, or postural instability. Patients
were assessed using the Unified Parkinson's Disease Rating Scale
(UPDRS) (Fahn and Elton, 1987) and the Hoehn and Yahr (H&Y) scale
(Hoehn and Yahr, 1967). The Mini Mental State Examination (MMSE)
(cut-off score b 26) (Dubois et al., 2007) andMontreal Cognitive Assess-
ment test (MoCA) (Nasreddine et al., 2005) (cut-off score b 19) (Hoops
et al., 2009) were also administered to all participants to screen for
dementia.

2.2. Scanning procedure

All patientswere clinically evaluated using theUPDRSpart III (motor
exam) first off any dopaminergic medication N 12 h in themorning. Pa-
tients took their regular dose of dopaminergicmedications immediately
before they were placed in the MRI scanner. Structural scans were col-
lected first, all of which lasted about an hour. Subsequently, in the
same session, the rs-fMRI scans were collected within 60–70 min fol-
lowing medication intake. The timing of the rs-fMRI scans was planned
to allow to reach the clinically defined “on” state which is usually
observed in one hour following medication intake. The clinical assess-
ment during the “on” state was performed immediately upon comple-
tion of scanning, within 80 min of the dopaminergic medication
intake. The same scanning order was used for HVs.

2.3. Final cohort

Based on our criteria, three patients had excessive head motion
(averagemotion ≥0.4mm) inMRI scans andwere excluded. In addition,
one patient was excluded because of technical problems in MRI data
collection and one HV was excluded due to a previously unkown lacu-
nar stroke observed in the clinical MRI sequences. Three matched HVs
were also excluded to match the PD group. In the end, a total of 20 pa-
tients (age range 44–75, average age 62.5 ± 6.9, 11 females) and 20
HVs (age range 43–71, average age 61.9±6.6, 11 females)were includ-
ed in the imaging analyses.

2.4. Image acquisition

All imageswere collected in a GE 750 3 T scanner using a 32-channel
head coil in the Nuclear Magnetic Resonance Center at the NIH.

The following imaging parameters were used:
T1-weighted anatomical images: Magnetization prepared rapid ac-

quisition gradient echo (MPRAGE), 3D inversion recovery, TR:
7.664 ms, TE: 3.42 ms, TI: 425 ms, slice thickness: 1 mm, 1 × 1 mm in-
plane resolution, percent phase FoV: 100, flip angle: 7, matrix size:
256 × 256.

T2-weighted diffusion images: Fat-saturated, 62 images, TR: 7.500ms,
TE: 100.74ms, slice thickness: 2.5mm, 0.9375mm×0.9375mm in-plane
resolution, FoV: 240, percent phase FoV: 80, flip angle: 90, matrix size
256 × 256, maximum B value 1100, 70 diffusion directions and 10 non-
diffusion weighted images.

Functional MRI data: Echoplanar images (EPI), TR: 2000 ms, TE:
27ms, 40 sliceswith thickness: 3mm, 2.5 × 2.5mm in-plane resolution,
axial orientation, FoV: 240, percent phase FoV: 100, flip angle: 70, ma-
trix size: 96 × 96. FMRI data were collected during rest with eyes closed
for 5 min.

2.5. Image processing

2.5.1. Pre-processing

2.5.1.1. DTI data. We used the same preprocessing and probabilistic
tractographymethods as detailed in Lauro et al. (2016). The T2-weight-
ed images were mid-sagittally aligned and the anterior and posterior
commissure (AC and PC) landmarks were manually defined on the
T2-weighted volume using the Medical Image Processing, Analysis
and Visualization (MIPAV) software package (McAuliffe et al., 2001).
A rigid body Talairach transformation was then applied resulting in
AC–PC aligned volumes. The T2-weighted images served as the co-
registration target for the DWI volumes and the T1-weighted volume.

DWI volumes were used to estimate diffusion tensors and maps of
their associated DTI parameters including the principal directions of dif-
fusion (i.e. eigenvectors), eigenvalues, fractional anisotropy (FA), and
mean diffusivity which were used to quantitatively compare brain tis-
sue properties. FA and principal diffusion directions were used for esti-
mating white matter fiber trajectories which estimate the proxy
location of the white matter and the orientation of propagating tracts,
respectively, and their confidence intervals were calculated for the im-
plementation of probabilistic tractography.

Preprocessing of the DWI volumes was performed in TORTOISE
(Pierpaoli et al., 2010). The DWI volumes were first motion-, eddy-,
and EPI distortion-corrected, co-registered to the AC–PC aligned T2-
weighted volume, and resampled to 1.5mm isotropic voxels using stan-
dard settings in the ‘DIFF_ PREP’ tool.
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The FA and directionally encoded color data were subsequently
computed using ‘DIFF_CALC’, and resultant datasets were visually qual-
ity checked and exported to nifti format.

The gradient direction data obtained from DWI DICOM images were
translated into AFNI-readable format using the 1dDW_Grad_o_Mat
command with scanner-specific formatting. The preprocessed DWI
volumes were used to estimate the diffusion tensors using AFNI's
‘3dDWItoDT’ command with nonlinear fitting.

We used the Functional and Tractographic Connectivity Analysis
Toolbox (FATCAT) (Taylor and Saad, 2013) for tractography analyses.
In FATCAT, both deterministic and probabilistic tractography use the al-
gorithm called “fiber assessment by continuous tracking including
diagonals (FACTID)”. This algorithm has been validated in a series of
tests on both human data and a standard phantom (Taylor et al.,
2012). Whole brain deterministic tractography was implemented
using the ‘3dTrackID’ command with the ‘DET’ mode option in FATCAT
to view the quality of TORTOISE preprocessing and the gradient
matching. For this, default tracking parameters were used (FA N 0.2,
turning angle b 60°., and keeping tracts with length N 20 mm) to find
tracts within the whole brain mask with OR logic. The resulting file
was viewed in SUMA (Saad and Reynolds, 2012) along with a volume
image to ensure that no obvious regions had been masked out and
that major bundles appeared where expected. Uncertainty intervals
(i.e., variances) of the FA and first eigenvector were estimated with
‘3dDWUncert’ using 500 jackknife-resampling iterations, for use in the
probabilistic tractography.
2.5.1.2. Rs-fMRI data. The rs-fMRI data were analyzed using the
Analysis of Functional Neuroimages (AFNI) software (Cox, 1996). The
afni_proc.py script for preprocessing and @ANATICOR script for noise
detection and removal from resting-state time series were used (Jo et
al., 2013; Tinaz et al., 2016). This approach reduces the sensitivity of cor-
relation coefficients to head motion and diminishes hardware-related
noise more efficiently in resting-state data (Jo et al., 2010). The first
two EPI volumes were removed to ensure that all remaining volumes
were at magnetization steady-state. Spikes were identified in the time
series. EPI volumes were slice-time corrected and motion parameters
were estimated using rigid body transformations (three translations
and three rotations, and their derivatives). The motion limit was
0.4 mm and outlier limit was 0.1. Subsequently, anatomical images
were spatially normalized to a Montreal Neurological Institute (MNI)
template (MNI_caez_N27). All transformations were applied at once
to the EPI data to prevent multiple resampling steps. The EPI volumes
were smoothedwith a 6mmfull-width half-maximumGaussian kernel.
Nuisance variables (motion, spikes, local white matter) were regressed
out. Global signal was not removed to prevent the introduction of spu-
rious (anti)correlations (Saad et al., 2012). The time series were
bandpass-filtered (0.01 b f b 0.1 Hz) to capture the resting-state fluctu-
ations of the blood oxygenation level-dependent (BOLD) signal.
Fig. 1. Sample illustration of the Craddock parcels (n = 200) d
2.5.2. Data analyses

2.5.2.1. Network definition and metrics. We used the Craddock atlas
(Craddock et al., 2012) with 200 cortical, subcortical, and cerebellar
parcellations as our network template (Fig. 1). This atlas was created
using rs-fMRI time series and yielded spatially coherent and temporally
homogeneous clusters. We chose the option with 200 parcellations be-
cause this number was found to provide regional interpretability of the
resultswithout compromising cluster homogeneity or causing loss of sub-
stantial information. This template (from here on “Craddock200”) was
applied to bothDTI and rs-fMRI datasets, and every parcel in the template
was considered a “node” in the network. The center-of-mass coordinates
and labels of the nodes can be found in Supplementary material Table S1.

The characteristics of the graph metrics we used are defined as fol-
lows (Bullmore and Sporns, 2009; Rubinov and Sporns, 2010):

Node strength indicates how strongly one node is connected to the
rest of the nodes in the network. We used the undirected, weighted
sum of the connections.

Clustering coefficient measures the density of connections between
neighboring nodes and is associatedwith the efficiency of local informa-
tion transfer. Local efficiency is related to the clustering coefficient and
reflects how relevant a node is for the communication among neigh-
bors. Modularity is a measure of the community structure of a network.
Communities are defined as groups of densely interconnected nodes
that are sparsely connected with the rest of the network (Bertolero et
al., 2015; Meunier et al., 2010; Mišić and Sporns, 2016; Newman,
2006). The modular organization of networks determines the network
dynamics and information flow.

2.5.2.2. DTI data
2.5.2.2.1. Tissue segmentation and ROI setup. The following steps were

performed to bring the Craddock200-based parcellations in the MNI
space into the subject-specific DTI space:

1- The T1-weighted volume was intensity-normalized using the
3dUnifize command in AFNI, and then skull-stripped in FreeSurfer
(http://surfer.nmr.mgh.harvard.edu/). The skull-stripped T1-
weighted volume was then co-registered to the MNI_caez_N27
template in AFNI using the auto_warp.py nonlinear registration
function.

2- The skull-stripped T1-weighted volume was also aligned to the tar-
get T2-weighted volume using AFNI's align_epi_anat.py script with
the local Pearson's coefficient (LPC) cost function (Saad et al., 2009).

3- This T1/T2 linear transformation was concatenated and applied to
bring the Craddock200 template (originally in MNI space) to the
DTI space using the 3dNwarpApply nonlinear transformation
function.
In the end, an ROI volume with 200 parcellations was obtained for
each subject which was subsequently used to perform ROI-based
probabilistic tractography.
isplayed on axial sections of the MNI_caez_27 template.

http://surfer.nmr.mgh.harvard.edu
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2.5.2.2.2. Probabilistic tractography.We used FATCAT for full probabi-
listic tractography. FATCAT uses repeated iterations of whole brain
tracking to estimate the likelihood of structural white matter connec-
tions between all pairs of target ROIs within a network. Probabilistic
tractography on the whole brain Craddock200 parcellation was per-
formed using the command 3dTrackID with the PROB mode option.
Tracking parameters used were: FA N 0.2, turning angle b 60°., keeping
tracts with length N 20 mm, thresholding fraction N0.021, five seeds
per voxel and a total of 5000 Monte Carlo iterations. At each iteration,
the voxel parameters were perturbed according to estimated parameter
uncertainties. Tracks passing through individual ROIs and locations of
tracts that intersected any pairs of ROIs were recorded. The probability
statistics of the tractographic connections between all pairs of ROIs
were automatically calculated. The automatically generated ‘*.grid’ file
output of 3dTrackID containedmatrices (here, 200 × 200) of output sta-
tistics for each subject describing the properties of the tractographic
connections between all pairs of nodes, such as the number of tracts
(NT) and themean and standard deviation of FA. The probabilistic num-
ber of tracts between the nodes divided by the total number of probabi-
listic tracts in thewhole brainwas defined as the fractional NT (fNT) and
used as the measure of anatomical pairwise connectivity between
nodes. A 200 × 200 adjacency matrix for each subject was created
based on the pairwise fNT values. As a confirmation, the white matter
“degree” of each node was computed using the FA values and reported
in Supplementary material.

2.5.2.3. White matter segmentation. We extracted the total white matter
and white matter hypointensity volumes of each subject from the
FreeSurfer segmentation files and normalized them to the total brain
volume. The hypointensity volumes were used to identify the burden
of nonspecific white matter disease.

2.5.2.4. Rs-fMRI data. The @ROI_Corr_Mat function in AFNI was
employed to create the adjacency matrices for the subsequent network
analyses. The Craddock200 template was used as the ROI volume from
which the simple averages of the BOLD signal time courses were ex-
tracted for each node. A Pearson correlation coefficient was calculated
between the average BOLD time course of each node and that of every
other node creating a 200 × 200 adjacency matrix for each subject.
The coefficients were then Fisher z-transformed.

2.5.2.5. Graph analyses. Graph metrics were calculated using custom
MATLAB scripts containing functions from the Brain Connectivity Tool-
box (BCT) (Rubinov and Sporns, 2010). The 200 × 200 adjacencymatri-
ces generated from DTI and rs-fMRI data were entered in graph
analyses. For each node of the network, strength as a general measure
of connectivity, and clustering coefficient and local efficiency as mea-
sures of local network properties were calculated. The DTI adjacency
matrices were not thresholded because the fNT represents (the proba-
bility of) normalized white matter connectivity between nodes. For
the rs-fMRI adjacency matrices, a range of thresholds was used
(0.1 ≤ r ≤ 0.4 in 0.05 increments, total of seven).

Between-group differences in these graph metrics were assessed
using permutation testing with 5000 iterations and a significance level
set at p b 0.05, two-tailed (Mattest function in Bioinformatics toolbox
of Matlab 2013a). Since threshold values are often arbitrarily deter-
mined (Rubinov and Sporns, 2010), for consistency, we chose stringent
criteria for the rs-fMRI data and considered graphmetrics that indicated
a significant difference (p b 0.05) between the two groups at a mini-
mum of five out of seven correlation thresholds.

Networkmodularity was calculated on group-averaged andweight-
ed adjacency matrices using the multiscale community louvain
algorithm in the BCT. This function provides optimal community struc-
tures by subdividing the networks into non-overlapping groups of
nodes which maximizes the number of within-group edges, and mini-
mizes the number of between-group edges. The resolution parameter
gamma has a default value of 1, and values N1 detect smaller modules.
Here, a gamma range between 1 and 2 in 0.1 increments (500 iterations
per increment) was used. The partition distance function was used to
assess the similarity of modules across the gamma range. Higher simi-
larity indicates stronger stability of the modules. In addition, for each
gamma, groupings of at least three nodes were considered modules.

2.6. Statistics

2.6.1. Demographic data
Age, MMSE, and MoCA scores were compared between the groups

using two-tailed, two-sample t-tests (p b 0.05). UPDRS part III (motor
exam) “on” and “off” scores were compared using a two-tailed,
paired-sample t-test (p b 0.05).

2.6.2. White matter segmentation
The normalized total white matter and white matter hypointensity

volumes were compared between the two groups using two-tailed,
two-sample t-tests (p b 0.05).

2.6.3. Post-hoc analyses

2.6.3.1. Structure — function overlap. We examined whether the func-
tional reorganization in the PD connectomewas supported by structural
changes. As described in Section 2.5.2.5 in the functional graph analysis,
first we identified the groups of nodes that showed significantly re-
duced values in each graph metric category (node strength, clustering
coefficient, and local efficiency) in PDs compared toHVs. Then, the aver-
age nodal fNT values for each group separately was calculated per sub-
ject. Finally, we performed two-sample t-tests to compare these average
nodal fNT values between the two groups (two-tailed, p b 0.05).

We also calculated the average fNT values of nodes belonging to each
rs-fMRImodule (at gamma=1.3, 1.4, and1.5. See in Results section) for
each subject. Two-way repeated measures ANOVA test was performed
using group and module type as the within-subject factors and average
fNT value as the dependent variable.

2.6.3.2. Relationship between clinical and modularity data. To investigate
the relationship between the clinical data and modular organization,
we computed the average node fNT per DTI module and average
unthresholded node strength per rs-fMRI module for each PD patient.
These values corresponded to the average nodal whitematter and func-
tional connectivity strength of each module, respectively. We per-
formed a separate multiple regression analysis for each of the DTI and
rs-fMRI modularity datasets, in which the respective average fNT and
unthresholded node strength values per module were entered as inde-
pendent variables. We entered the UPDRS part III (motor exam) “on”
scores as an objective measure of disease severity and the MoCA scores
as a measure of cognitive function as the dependent variables in the
analyses. We used the MoCA scores for two reasons: 1) most patients
showed ceiling effect in theMMSE and 2)MoCA is more sensitive to ex-
ecutive dysfunction.

3. Results

3.1. Subjects

Demographic and clinical data are summarized in Table 1. There
were no significant differences in age (p = 0.8), MoCA (p = 0.5) and
MMSE scores (p = 0.4), or gender and handedness between the PD
and HV groups. There was 30% difference between the UPDRS part III
(motor exam) “off” and “on” scores in the PD group whichwas also sta-
tistically significant (p b 0.0001). Since the “on” exam was performed
immediately upon completion of the rs-fMRI scans, this difference fur-
ther validates that the rs-fMRI scans were collected during the clinical
“on” state.



Table 1
Demographic and clinical data.

PD (n = 20) HV (n = 20)

Age 62.5 ± 6.9 61.9 ± 6.6
Gender (M:F) 9:11 9:11
Handedness (L:R) 1:19 1:19
MoCA 27.6 ± 2.9 27.1 ± 2.1
MMSEa 29.4 ± 1.1 29.7 ± 0.6
Onset side (L:R) 9:11 –
Disease stage (H&Y) 2.0 ± 0.5 –
Disease duration 7.1 ± 3.3 –
UPDRS total
Off 45.4 ± 14.6 –
On 37.3 ± 12.6 –
UPDRS I 2.6 ± 1.7 –
UPDRS II 10.8 ± 4.6 –
UPDRS III –
Off 29.5 ± 9.6 –
On 20.9 ± 7.9 –
UPDRS IV 3.0 ± 2.2 –

HV: healthy volunteer, H&Y: Hoehn & Yahr, MMSE: Mini Mental State Examination,
MoCA: Montreal Cognitive Assessment test, PD: Parkinson's disease, UPDRS: Unified
Parkinson's Disease Rating Scale.

a The MMSE score of one HV subject is missing.
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3.2. DTI data

3.2.1. Local network metrics
The DTI graph analysis revealed no significant difference in the aver-

age fNT values across the whole connectome between the two groups
(p = 0.52). However, we observed reduced node strength, clustering
coefficient, and local efficiency in a small group of nodes mostly in the
frontoparietal regions and subcortically involving the caudate, hippo-
campus, and hypothalamus on the right in the PD group compared to
HVs. Table 2 shows the MNI coordinates and labels of the nodes that
showed significant differences in DTI graph metrics between the two
groups.
3.2.2. Modularity
The overall degree of modularity (Q) was not significantly different

between the groups across the whole gamma range for the DTI data
(p=1). Table S3a in Supplementary material shows the degree of sim-
ilarity and numbers of themodules across all gamma thresholds for DTI
Table 2
DTI graph metrics.

x y z NS CC LE

HV N PD
Parietal

R precuneus 1 −55 19 – ✓ ✓

L SMG −47 −51 54 – ✓ ✓

R post-CG 45 −23 58 ✓ – –
28 −47 68 – – ✓

Frontal
R SMA 5 −1 72 – – ✓

1 21 63 ✓ – –
L MFG −40 24 45 – ✓ ✓

−52 31 25 ✓ – –
L pre-CG −47 13 30 ✓ – –

Basal ganglia
R caudate 5 9 −5 ✓ – –

Subcortical
R hypothalamus 1 −1 −6 ✓ – ✓

R hippocampus 24 −37 −3 – – ✓

PD N HV
None – – – – – –

MFG: middle frontal gyrus, SMA: supplementary motor area, SMG: supramarginal gyrus,
pre/post-CG: pre/postcentral gyrus, L: left; R: right. NS: node strength; CC: clustering co-
efficient; LE: local efficiency.
data. Each cell in the matrix reflects the similarity value between mod-
ules. Both groups had very similar average similarity values across
all thresholds. The highest average similarity value was 0.91 at
gamma = 1.4, 1.5, and 1.6 for both groups.

Themodular organization of the DTI connectomewas virtually iden-
tical for both groups across all gamma thresholds. At gamma = 1.5, it
consisted of eight modules for both groups: module 1: left hemisphere
occipito-temporal and basal ganglia, module 2: medial frontoparietal,
module 3: left hemisphere orbito-temporal, module 4: cerebellar, mod-
ule 5: right hemisphere occipito-temporal, module 6: right hemisphere
basal ganglia, module 7: left hemipsphere temporo-parieto-frontal,
module 8: right hemisphere frontoparietal (Fig. 2). Tables S4a and b in
Supplementarymaterial lists the node compositions of the DTImodules.

3.3. White matter segmentation

There were no significant differences between the two groups in
normalized total white matter and white matter hypointensity vol-
umes. The average total white matter volume was 516,250.9 ±
75,693.3 mm3 in the PD and 512,822.1 ± 70,813.4 mm3 in the HV
group (p = 0.67). The average white matter hypointensity volume
was 3301.7 ± 2651.6 mm3 in the PD and 3385.9 ± 4972.5 mm3 in the
HV group (p = 0.90) (also see Supplementary material Table S2).

3.4. Rs-fMRI data

3.4.1. Local network metrics
The rs-fMRI graph analysis also revealed no significant difference in

the average unthresholded node strength of the whole connectome be-
tween the two groups (p = 0.15). However, we found significantly re-
duced node strength in 31 nodes, clustering coefficient in 55 nodes,
and local efficiency in 52 nodes diffusely distributed across the whole
connectome including the striatal nodes bilaterally in the PD group
compared to HVs. Table 3 shows the MNI coordinates and labels of the
nodes that showed significant differences in rs-fMRI graph metrics be-
tween the two groups.

3.4.2. Modularity
The overall degree of modularity (Q) was also not significantly dif-

ferent between the groups across the whole gamma range for the rs-
fMRI data (p = 0.46). Table S3b in Supplementary material shows the
degree of similarity and numbers of the modules across all gamma
thresholds for rs-fMRI data. Each cell in thematrix reflects the similarity
value betweenmodules. Both groups had very similar average similarity
values across all thresholds. The highest average similarity value was
0.91 at gamma = 1.4, 1.5, and 1.6 for both groups. The HV group had
the highest average similarity value (0.76) for modules at gamma =
1.5, whereas the PD group the highest average similarity value (0.82)
for modules at gamma = 1.4.

Both groups showed a similar modular organization at gamma =
1.3, and the following modules were identified: module 1: parietal
and premotor nodes (sensorimotor network); module 2: temporal
and ventral prefrontal nodes (task-set maintenance network); module
3: medial and lateral temporal and basal ganglia nodes (temporal net-
work); module 4: fronto-parietal nodes (dorsal attention network);
module 5: occipital nodes (visual network); module 6: cerebellar
and basal ganglia nodes; module 7: medial fronto-parietal nodes
(default mode network). The HV group had an additional module of
orbitofrontal and temporal nodes at this threshold.

At higher thresholds, the HV group demonstrated a more fine-
grained modular organization compared to the PD group. For instance,
the HV group continued forming more submodules at gamma = 1.5:
The sensorimotor network was further divided into medial and lateral
parietal/premotor modules. The dorsal attention network was divided
into premotor/prefrontal and lateral frontoparietalmodules. The default
mode network was divided into medial frontoparietal and dorsomedial



Fig. 2. The DTI modules for both groups at gamma = 1.5 are shown as circular graphs using Gephi (Jacomy et al., 2014). In both groups, the same arbitrary threshold for white matter
connection strengths was used for display purposes. BG: basal ganglia, Cb: cerebellum, Fron: frontal, Occ: occipital, Orb: orbital, Par: parietal, Temp: temporal. L: left, R: right,
m: medial. The node contents of modules are listed in Table S4b in Supplementary material.
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prefrontal/temporal modules. There were also additional orbital and
basal ganglia modules. On the other hand, PD group showed two addi-
tional small modules at this threshold: lateral frontal and medial parie-
tal (Fig. 3).

Tables S5a and b in Supplementary material list the node composi-
tions of the rs-fMRI modules for both groups at gamma thresholds of
1.3 and 1.5, respectively. The nodes that were shared by both groups
in each module and the different ones are listed separately.

3.5. Post-hoc results

3.5.1. Structure— function overlap
There were no differences in the average fNT values between the

two groups in the nodes that showed significantly reduced functional
node strength (p=0.92), clustering coefficient (p=0.74), and local ef-
ficiency (p = 0.66) in the PD group compared to HVs. In other words,
the nodal functional connectivity differences between the groups
were not supported by structural connectivity differences.

The two-way repeatedmeasures ANOVA comparing the average fNT
values of rs-fMRI modules between the groups did not reveal any main
effect of or interaction between group and module type at any of the
gamma thresholds 1.3, 1.4, or 1.5.

3.5.2. Relationship between clinical and modularity data
We did not observe any correlations between the clinical data and

modularity findings. Motor severity and cognitive scores (UPDRS part
III “on” and MoCA) did not correlate with the modular node strength
in the rs-fMRI data (tested at gamma thresholds 1.3 and 1.5) or in the
DTI data (tested at gamma = 1.5).

4. Discussion

The connectome, both in its structure and function, is altered in non-
demented PD patients on medication. Here, we summarize and discuss
the results.

4.1. White matter connectivity

The PD group showed significantly decreased white matter connec-
tivity in the right caudate and hypothalamus, and in a number of
frontoparietal nodes, compared to HVs. Most of these frontoparietal
nodes and the right hypothalamus and hippocampus also showed re-
duced local connectivity.
Whitematter lesions of ischemic etiology are commonly observed in
clinical scans of older individuals and are not routinely reported or
accounted for in DTI analyses. Our cohorts were well-matched in global
whitematter andwhitematter lesion volumes. Therefore, we think that
the differences inwhitematter connectivity between the groups cannot
be explained based on nonspecific white matter disease. Moreover, the
anatomical pattern of reduced white matter connectivity is also consis-
tent with disease-specific pathology in PD. Our findings are in line with
reports of impaired whitematter integrity in animal models and in vivo
imaging studies in PD. TheDTI studies to date demonstrated significant-
ly reduced FA values inmajor tracts (e.g., parietal and frontalwhitemat-
ter) in PD patients withminimal cognitive impairment or dementia, but
not in those with intact cognition (Hattori et al., 2012; Melzer et al.,
2013). Of note, our PD cohortwas not demented andwaswell-matched
to the HV group in cognitive performance. The DTI and graph theory-
based methods used here enabled us to detect local changes in white
matter integrity even at relatively early stages of the disease process
in PD.

Contrary to our hypothesis, the PD group showed virtually the same
modular organization of white matter connectivity as the HV group
which remained stable across multiple resolution thresholds. This indi-
cates that despite subtle connectivity changes, the overall structural or-
ganization of the PD connectome remains robust. However, in later
stages of thedisease processmore pronounced loss ofwhitematter con-
nections might occur and lead to changes in the modular architecture.
This possibility needs to be investigated in longitudinal studies.

4.2. Functional connectivity and the probable role of dopaminergic
treatment

The PD group showed significantly decreased node strength com-
pared to HVs in 31 nodes distributed across the cortex. About twice as
many nodes also showed significantly reduced local connectivity. Criti-
cally, striatal nodes also exhibited these connectivity changes in the PD
group. The PD group also showed reduced functional modularity com-
pared to HVs across higher resolution thresholds. More specifically,
the modular delineation was reduced in the PD group compared to
HVs in the sensorimotor and two core cognitive networks, namely
the dorsal attention and default mode networks, as well as in the
orbitofrontal cortex and basal ganglia.

Several rs-fMRI studies in PD reported reduced functional connectiv-
ity in various networks. Some studies also demonstrated correlations
between the connectivity findings and disease severity and cognitive
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status. There is considerable variability in the results of these studies
that seems to stem from the differences in analysis methods, cohort
characteristics, disease severity, cognitive status (Baggio et al., 2014,
Table 3
Rs-fMRI graph metrics.

x y z NS CC LE

HV N PD
Occipital

L MOccG −50 −84 −1 ✓ ✓ ✓

Temporal
L ITG −45 −65 −8 ✓ ✓ ✓

R MTG 63 −51 16 ✓ – ✓

59 −27 −8 ✓ ✓ ✓

63 −49 −1 – ✓ ✓

63 −20 −16 – ✓ ✓

L MTG −60 −48 5 ✓ ✓ ✓

−60 −31 −1 – ✓ –
−60 −12 −23 – ✓ ✓

−60 −48 −6 – ✓ ✓

−60 4 −32 – ✓ –
−60 −68 16 – ✓ ✓

R STG 64 −12 5 – ✓ ✓

L STG −60 −26 8 – – ✓

R TP 60 8 −8 ✓ ✓ ✓

L TP −49 9 −8 ✓ ✓ ✓

−27 10 −23 – ✓ ✓

R PHG/amy 24 2 −25 – ✓ ✓

R fusiform 43 −13 −32 – ✓ –
Parietal

R AG 32 −66 49 ✓ ✓ ✓

L AG −48 −65 49 ✓ ✓ ✓

R SPL 24 −63 73 – ✓ ✓

47 −45 60 – ✓ ✓

L SPL −28 −74 55 ✓ ✓ ✓

R SMG 63 −33 27 ✓ ✓ ✓

59 −33 51 – ✓ –
49 −30 27 ✓ ✓ ✓

49 −69 49 ✓ ✓ ✓

60 −54 41 – ✓ –
L SMG −60 −48 31 – ✓ ✓

−47 −51 54 – ✓ –
−60 −25 39 – ✓ –

L post-CG −62 −9 25 – ✓ ✓

Frontal
R MOrbG 31 57 −17 ✓ ✓ ✓

31 47 −22 ✓ ✓ ✓

L MOrbG −50 54 −5 ✓ ✓ ✓

−27 57 −17 – ✓ ✓

R SMA 6 0 57 – ✓ ✓

1 20 55 ✓ ✓ ✓

R SFG 47 27 25 ✓ ✓ ✓

R MFG 44 50 1 ✓ ✓ ✓

47 26 44 – ✓ –
L MFG −28 18 59 ✓ ✓ ✓

−50 42 9 ✓ ✓ ✓

R IFG (p. Op) 53 13 27 ✓ ✓ ✓

L IFG (p. Op) −50 10 19 ✓ ✓ ✓

R IFG (p. Orb) 37 27 −8 ✓ ✓ ✓

28 28 −22 ✓ ✓ ✓

58 24 −8 ✓ ✓ ✓

47 29 −14 – ✓ ✓

L IFG (p. Orb) −49 34 −8 ✓ ✓ ✓

R ACC 4 14 25 – ✓ –
L ACC −3 37 25 – ✓ ✓

L OFI −33 24 −8 ✓ ✓ ✓

L post cing −0 −19 36 ✓ ✓ ✓

L pre-CG −60 12 34 – ✓ ✓

Basal ganglia
L caudate −17 11 15 ✓ – ✓

R caudate 13 10 6 ✓ ✓ ✓

5 9 −5 – – ✓

R putamen 26 7 −2 – – ✓

PD N HV
Cerebellum

L Cb (culmen) −28 −42 −31 ✓ – –
L Cb (vermis) −0 −35 −24 ✓ – –
2015; Lebedev et al., 2014), andmedication state. That said, there is con-
vergence between ourfindings and those of other studies that used sim-
ilar cohorts. For instance, in a study with non-demented PD patients on
medication compared tomatched controls, an aberrant positive resting-
state correlation between the right central executive and default mode
networks was found (Putcha et al., 2015). We think that the relatively
reduced modularity in the dorsal attention and default mode networks
in our PD group is in line with this finding. By definition, reduced mod-
ularity of a network implicates aberrant connections with other
networks.

We think that medication status during scanning also plays a crucial
role. In fact, a recent study investigated the functional reorganization of
ten brain networks composed of 226 nodes in 19 cognitively intact PD
patients on and off medication (Berman et al., 2016). PD patients off
medication did not show a significant change in global efficiency or
overall local efficiency compared to controls. On the other hand, L-
dopa intake led to overall reduced local efficiency, most significantly
in the dorsal attention network in PD patients (PD-on compared to
PD-off). Compared to controls, PD patients onmedication showed a sig-
nificant decrease in local efficiency in the sensorimotor and a significant
increase in local efficiency in the subcortical network (Berman et al.,
2016). The PD cohort in the study by Berman et al. was similar to ours
in size and disease characteristics, but the graph analysis method was
different (unweighted binarized graphs in Berman et al. as opposed to
weighted graphs here) which could explain the discrepancies in our
findings.

Nevertheless, it is important to note that despitemethodological dif-
ferences between studies in PD, the results indicate that dopaminergic
treatment does not improve or normalize the functional network prop-
erties unanimously to the degree of those observed inmatched controls
(Berman et al., 2016; Göttlich et al., 2013; Putcha et al., 2015; Tessitore
et al., 2012). We think that our rs-fMRI nodal and modular findings are
also related to these differential effects of dopamine.

It is known that dopamine exerts a dose-dependent influence on
performance in different tasks in PD. For example, performance in stim-
ulus-reward association learning tasks that recruit the ventral striatum
and orbitofrontal cortex worsens with dopaminergic treatment in PD
(Cools et al., 2002; Cools et al., 2006; Peterson et al., 2009). On the
other hand, performance in cognitive tasks that recruit the dorsal stria-
tum and dorsal frontoparietal cortex (e.g., working memory, planning,
task-switching), improve with dopaminergic treatment in PD (Cools
et al., 2001;Macdonald andMonchi, 2011). According to the “dopamine
overdose” hypothesis, this discrepancy can be explained by the different
degrees of pathology affecting the dorsal and ventral parts of the stria-
tum and the associated cortical circuits (Kish et al., 1988). The more af-
fected dorsal part is more severely deprived of dopamine and functions
more optimally with dopamine replacement, whereas the less severely
affected ventral part is overwhelmed by dopamine replacement and
functions suboptimally (Cools et al., 2001, 2003; Gotham et al., 1988).
However, the dose-dependent influence of dopamine is not necessarily
linear and dopamine levels can also exhibit an inverted U-shaped rela-
tionship between behavioral performance and BOLD response (Cools,
2006; Rowe et al., 2008).

Neuroimaging studies have also provided evidence for differential
effects of dopaminergic states on striatal functional connectivity pat-
terns. In a study with drug naive de novo PD patients, the striatal dopa-
mine levels correlated differentially with the resting-state whole-brain
functional connectivity patterns of the caudate and putamen seeds.
Notes to Table 3:
ACC: anterior cingulate cortex; AG: angular gyrus; Amy: amygdala; Cb: cerebellum; Cing:
cingulate; IFG, MFG, SFG: inferior, middle, superior frontal gyrus (p: pars, Op: opercularis;
Orb: orbitalis); OFI: orbitofrontal insula, SPL: superior parietal lobule; ITG, MTG, STG: infe-
rior, middle, superior temporal gyrus; MOccG:middle occipital gyrus; MOrbG: middle or-
bital gyrus; PHG: parahippocampal gyrus; pre/post-CG: pre/postcentral gyrus; SMA:
supplementary motor area; SMG: supramarginal gyrus; TP: temporal pole. L: left;
R: right; Post: posterior. NS: node strength; CC: clustering coefficient; LE: local efficiency.



Fig. 3. The rs-fMRI modules for both groups at gamma= 1.5 are shown as circular graphs using Gephi (Jacomy et al., 2014). In both groups, the same arbitrary threshold for functional
connection strengths was used for display purposes. BG: basal ganglia, Cb: cerebellum, Fron: frontal, Occip: occipital, Orb: orbital, Par: parietal, PF: prefrontal, PM: premotor, Temp:
temporal, d: dorsal, l: lateral, m: medial, v: ventral. The node contents of modules are listed in Table S5c in Supplementary material.
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For instance, functional connectivity between the anterior putamen and
mesial frontal areas correlated negatively with striatal dopamine levels,
whereas functional connectivity between the dorsolateral prefrontal
areas and the anterior and posterior putamen correlated positively
with striatal dopamine levels (Baik et al., 2014).

Taken together, dopaminergic treatment might differentially influ-
ence various frontoparietal-striatal circuits. It is conceivable that this
differential influence results in less correlated BOLD signal between
these regions and the rest of the network as our reduced nodal function-
al connectivity findings indicate. Moreover, reduced modularity in the
dorsal attention, sensorimotor, and default mode networks as well as
lack of modular distinction in the orbitofrontal and basal ganglia
nodes in the PD group also implicate loss of local specificity in the com-
munity organization of these networks probably due to less correlated
BOLD signal amongneighboring nodes. Nevertheless, the differential in-
fluence of dopamine is likely determined by additional factors. Inter-in-
dividual differences and disease severity would also be expected to
effect the neurovascular response to dopamine. By itself, this study can-
not determine whether these connectivity differences are due to the
disease state itself or the interaction between medication and the dis-
ease state. Therefore, the specific role of dopaminergic treatment in
functional modularity should be tested directly by assessing the same
PD cohort on- andoff-medication.Moreover, in addition to the neuronal
effects, the direct vascular effects of dopamine in neurovascular cou-
pling might also be an important factor (Choi et al., 2006; Zaldivar et
al., 2014) affecting the functional connectivity patterns.

4.3. Structure-function relationship

There is evidence from experimental and network modeling studies
suggesting that structural connectivity shapes and constrains functional
connectivity (Hagmann et al., 2010; Hermundstad et al., 2013; Honey et
al., 2007, 2009). The results of our study and others add another layer of
complexity to this organizational principle.We foundmanymore nodes
that showed significant functional as opposed to structural connectivity
differences in the PDgroup in the “on” state, and theywere not precisely
co-localized. In addition, at the large-scale network level, the functional
modularity changes in the PD group were not supported by structural
modularity. Another study in patients with schizophrenia demonstrat-
ed altered functional connectivity in three spatially distinct large-scale
networks compared to controls (Cocchi et al., 2014). Co-localized alter-
ation of functional and structural connectivity was found in two of the
three networks, yet the relationshipwas in opposite directions, namely,
reduced structural and functional connectivity in one network, and re-
duced structural but enhanced functional connectivity in the other
(Cocchi et al., 2014).

These observations indicate that the structure-function relationship
in the connectome of patient populations may be nonlinear. A possible
explanation for this nonlinear relationship specifically in PD could be
synaptic dysfunction and changes in synaptic plasticity. Growing
evidence suggests that neurodegeneration in PD is more likely to start
at the synapse (Bellucci et al., 2016; Picconi et al., 2012; Schulz-
Schaeffer, 2010). The highest percentage of alpha-synuclein aggregates
in PD are localized at the presynapses. Several other PD-associated pro-
teins (e.g., LRRK2, parkin, DJ-1, PINK1) also alter the dopaminergic pre-
synaptic site (Beccano-Kelly et al., 2015; Kitada et al., 2009;Madeo et al.,
2014; Scherfler et al., 2004). The presynaptic changes and depletion of
dopamine in turn alter the postsynaptic plasticity (Day et al., 2006).
These changes lead to severe synaptic dysfunction that may result in
retrograde axonal damage and ultimately neuronal cell body death
(Anichtchik et al., 2013; Zaltieri et al., 2015). It is plausible that in the
relatively early disease stages, synaptic dysfunction results in relatively
subtle axonal losswithout a significant change in structural connectivity
pattern, but leads to more robust functional connectivity changes by al-
tering the BOLD signal as we observed in this study. This hypothesis
needs to be tested further in longitudinal studies.

4.4. Relationship between modularity and behavior

Finally, in our post-hoc analyses, we did not observe any correlation
between theMoCA and UPDRS part III (motor exam) scores and rs-fMRI
and DTI modularity findings in PD. Since the DTI modularity was unaf-
fected in PD, the lack of a structure-behavior correlation is probably
not surprising. As for the lack of a function-behavior relationship; the
functional modularity probably reflects a complex combination of dis-
ease-related long-term and medication-related transient (re)organiza-
tion, and may thus not correlate with rather temporary measures of
cognitive and motor function. We think that the cognitive and motor
consequences of the functional modularity changes warrant further in-
vestigation in larger patient cohorts on- and off-medication, stratified
based on the level of motor dysfunction and cognitive deficits.

In conclusion, our results provide additional evidence regarding
changes in white matter and functional connectivity in non-demented
PD patients compared to matched healthy controls. The regional reduc-
tion in white matter connectivity, along with the reduction in regional
functional connectivity and functional modularity in cognitive and
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motor networks, provide important information regarding the patho-
physiology of PD. Our results can also be extended tomonitoring the ef-
fects of therapeutic interventions on the whole connectome in PD.
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