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Abstract

Because drug‐induced interstitial pneumonia (DIP) is a serious adverse drug reaction,

its quantitative risk with individual medications should be taken into due considera-

tion when selecting a medicine. We developed an algorithm to detect DIP using

medical record data accumulated in a hospital. Chest computed tomography (CT) is

mainly used for the diagnosis of IP, and chest X‐ray reports, KL‐6, and SP‐D values

are used to support the diagnosis. The presence of IP in the reports was assessed

by a method using natural language‐processing, in which IP was estimated according

to the product of the likelihood ratio of characteristic keywords in each report. The

sensitivity and the specificity of the method for chest CT reports were 0.92 and

0.97, while those for chest X‐ray reports were 0.83 and 1, respectively. The occur-

rence of DIP was estimated by the patterns of presence of IP before, during, and

after the administration of the target medicine. The occurrence rate of DIP in cases

administered Gefitinib; Methotrexate (MTX); Tegafur, Gimeracil, and Oteracil potas-

sium (TS‐1); and Tegafur and Uracil (UTF) was 6.0%, 2.3%, 1.4%, and 0.7%, respec-

tively. The estimated DIP cases were checked by having the medical records

independently reviewed by medical doctors. By chart review, the positive predictive

values of DIP against Gefitinib, MTX, TS‐1, and UFT were 69.2%, 44.4%, 58.6%,

and 77.8%, respectively. Although the cases extracted by this method included

some that did not have DIP, this method can estimate the relative risk of DIP

between medicines.
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1 | INTRODUCTION

The quantitative risk for adverse reaction associated with individual

medications should be strongly considered when selecting a medi-

cine. The risks of adverse reactions for medicines are evaluated in

clinical trials before the drugs are introduced into the market.1-3

However, because the number of subjects in clinical trials is limited,

information regarding adverse reactions generated in clinical trials

may be inadequate.4-6 Therefore, postmarket pharmacovigilance is

required to ensure drug safety. At present, spontaneous reporting is

the major method for gathering information about adverse events.

This method is effective for detecting signals of adverse reactions of

medicines; however, it is impossible to estimate the rate of occur-

rence of each adverse reaction because the denominator cannot be

acquired.7-12

Recently, many hospitals have introduced electronic medical

record (EMR) systems. Some of these systems include a clinical

data warehouse (CDW) for the secondary use of the clinical data,

which includes data relating to drug safety.13-20 Several researchers

have attempted to detect adverse drug events using long‐term
inpatients’ laboratory or pharmacy data in EMR.21 For example,

Cheetham et al. developed an automated causality assessment algo-

rithm to identify drug‐induced liver injury in EMR data using the

Roussel Uclaf Causality Assessment Method (RUCAM).22 In our

previous study, adverse events were detected based on the

changes in the blood test results, and the adverse reactions of a

designated drug were estimated by the chronological relationship

between the occurrence of the events and the drug administra-

tion.23 However, the occurrence of adverse events that can be

assessed by numeric data, such as blood test results, is relatively

infrequent. Many of them must be assessed by analyzing free‐text
data in EMR.

Interstitial pneumonia (IP) is one of the most serious drug‐
induced adverse reactions and can potentially lead to the death of

the patient.24 Chest computed tomography (CT) is mainly used for

the diagnosis of IP. Chest X‐ray can diagnose IP in severe cases

but not in the early stage. The sialylated carbohydrate antigen KL‐
6 (KL‐6) and surfactant protein D (SP‐D) levels are elevated in

some IP cases. Thus, chest X‐ray findings and the results of KL‐6
and SP‐D are helpful for the diagnosis of IP. Because radiologists

usually write their image reports in free‐text form, natural lan-

guage‐processing (NLP) must be used for their analysis.25-29 In a

previous study, McCowan et al. extracted cancer staging informa-

tion from pathology reports using support vector machines

(SVMs).30 Dublin et al. identified pneumonia from radiology reports

using logistic regression,31 while Pham et al. detected thromboem-

bolic diseases or pulmonary embolism from radiology reports using

Naive Bayes.32

In this study, we developed an algorithm to estimate the occur-

rence rate of drug‐induced IP (DIP) of a designated medicine by

assessing the certainty of IP from imaging reports and blood test

results in EMR before, during, and after the administration of the

medicine.

2 | MATERIALS AND METHODS

This study protocol was approved by the Ethics Review Board of

Osaka University Medical Hospital (Approval No. 13531, May 8th,

2014).

We initially developed a method for detecting the occurrence of

IP from the text data of chest CT and chest X‐ray reports and the

data of the KL‐6 and SP‐D. Next, we devised a method to estimate

DIP induced by a designated medicine.

2.1 | Method for detecting IP from reports of chest
CT and chest X‐ray

We used the data contained in the CDW of Osaka University Medial

Hospital from January 1, 2010 to December 31, 2013. We selected

400 chest CT reports in patients with IP and 400 chest CT reports

in patients without IP. The diagnoses were made by a radiologist.

Among these cases, 300 reports in each group were allocated to the

learning data, and 100 were allocated to the testing data (test data

1). In addition, we selected 100 chest CT reports at random (test

data 2) that were not being used for the learning data or test data 1.

We also selected the reports of chest X‐ray performed nearest the

examination date for chest CT within 3 months in the same patients

in the learning data, test data 1, and test data 2, respectively. The

allocated numbers for the learning data and test data 1 are shown in

Figure 1, with those for test data 2 in Figure 2.

The chest CT and chest X‐ray reports are written in Japanese

and consist of finding and diagnosis fields, which were independently

assessed. If IP was judged in either field, IP was regarded as having

been diagnosed by the reports.

In the diagnosis field, we searched for the keyword “interstitial
pneumonia.” If IP was definitively diagnosed, a flag for IP was set on

the report. A synonym or detailed diagnosis of IP, such as “usual
interstitial pneumonia (UIP)” or “acute interstitial pneumonia (AIP)”
was regarded as IP. There were some diseases with findings similar

to those of IP, such as “edema of the lungs” and “viral pneumonia.”
There were also cases of IP but not DIP, such as “lymphocytic inter-

stitial pneumonia (LIP)” and “respiratory bronchiolitis‐associated
interstitial lung disease (RB‐ILD).” In these cases, DIP was denied

and the flag for IP removed.

In the finding field, we assessed the certainty of IP based on

Bayes’ theorem. Posterior odds were calculated by the prior odds

and likelihood ratio obtained by the product of the likelihood ratios

of the keywords written in a report on the assumption of indepen-

dence of the appearance of the key words.

Posterior odds ¼ prior odds� likelihood ratio

Because prior odds were a constant, we defined the IP score as

the product of the likelihood ratios of the keywords, representing

the certainty of the reports diagnosing IP.

We extracted keywords from the text data of the chest CT

reports in the learning dataset. For the morphological analysis, we

used the KH Coder to collect keywords.33 Abbreviations and
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detailed words, such as “UIP” and “AIP”, and synonymous words,

such as “frosted glass” and “ground glass” were regarded as the

same keywords. The words that appeared in more than 10 reports

of IP were selected, and the frequency with which each keyword

appeared in the reports of patients with and without IP in the learn-

ing dataset was determined. The positive and negative likelihood

ratios were then calculated. We adopted the same method for the

chest X‐ray learning dataset to obtain the keywords and their likeli-

hood ratios.

When a negative word, such as “not accepted” or “not con-

firmed” appeared within 15 letters of a keyword, the keyword was

regarded as absent. To exclude keywords modifying organs other

than lung (eg, “liver cyst” or “aortic calcification”), we checked

whether or not a different organ name was included within ± 15 let-

ters of the keyword in a sentence.

To evaluate the IP score for detecting reports with IP, we plotted

a receiver operating characteristic (ROC) curve of the score by

changing the cut‐off point and obtained the nearest cut‐off value to

point (0, 1) on the ROC curve using test data 1. We also evaluated

the IP score using test data 2.

2.2 | Detection of DIP caused by anticancer drugs

In this study, we evaluated the risk of DIP with Gefitinib; Methotrex-

ate (MTX); Tegafur, Gimeracil, and Oteracil potassium (TS‐1); and

Tegafur and Uracil (UTF) from the reports of chest CT and chest

X‐ray and the level of KL‐6 and SP‐D. The subjects were patients

treated with these anticancer drugs in the period from January 1,

2000 to December 31, 2014. The reports of chest CT and chest X‐ray
were judged to be IP‐positive or IP‐negative by the above‐mentioned

method. The KL‐6 and SP‐D levels were judged to be positive or neg-

ative according to the upper limit of normal values of each test.

If the nonadministration period of the designated medicine in the

order data was within 30 days, the order records were combined,

and the start date of the initial order data was set as the start date

of the medicine, while the end date of the last order data was set as

the end date. The preadministration period was defined as the day

F IGURE 1 Dataset for learning data
and test data 1. The same numbers of CT
reports for the IP and Non‐IP groups were
selected by a radiologist from clinical data
warehouse data. The CT reports in each
group were allocated to the learning
dataset and test data 1. Reports for X‐ray
performed on the day nearest to the CT
examination within 3 months were
selected in the same patients in the
learning data and test data 1

F IGURE 2 Dataset for test data 2. One hundred CT reports were
selected at random for test data 2. Test data 2 was classified into IP
and Non‐IP Group by a radiologist. X‐ray reports which was
performed on the nearest day from CT examination within 3 months
were selected for test data 2 of X‐ray
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before the start date of the designated medicine. The administration

period was defined as the day from the start date to 30 days after

the end date of the medicine. The postadministration period was

defined as starting the day after the administration period.

The presence of IP was assessed by the CT reports drafted in

each period. If CT was not performed, X‐ray findings and the level

of KL‐6 or SP‐D were used. If the diagnosis of these examination

matched that determined by chest CT in the same period, and if the

diagnosis with the same examination was different in other periods,

we adopted this diagnosis (Figure S1). The occurrence of DIP was

estimated by the “positive,” “negative,” and “not available” patterns

of the preadministration, administration, and postadministration peri-

ods (Table 1). The confident degree was categorized in “definitive,”
“strongly suspected,” “weakly suspected,” “negative,” and “not
determined.” Cases that were IP‐positive in administration period

and IP‐negative in pre‐ and postadministration period were judged to

be “definitive” DIP. Cases that were IP‐negative in preadministration

period and IP‐positive in administration period with no available pat-

tern in postadministration period, or cases that IP‐positive in admin-

istration period and IP‐negative in postadministration period with no

available pattern in preadministration period were estimated as

“strongly suspected” DIP. Cases that were IP‐positive in administra-

tion period but with no available pattern in pre‐ and postadministra-

tion periods were judged to be “weakly suspected” DIP.

To evaluate the results of the algorithm, 3 doctors checked the

medical records of the patients estimated as suffering from more

than “weakly suspected” DIP. Each doctor independently judged the

cases in the category of DIP, not DIP, or not determined. If 2 or

more doctors made a diagnosis in the same category, this category

was adopted as the overall judgment. If the judgments of the 3 doc-

tors were all completely different, the overall judgment was set as

“not determined.”

3 | RESULTS

3.1 | Analyses of chest CT and chest X‐ray findings

The list of the keywords selected from the chest CT reports with

positive and negative likelihood ratios calculated from the data in

the learning dataset are shown in Table S1. Those from the chest

X‐ray reports are shown in Table S2.

The sensitivity and specificity of this method applied to CT

reports were 0.92 and 0.97, respectively, using the cut‐off value

0.06 (Table 2). When applied to chest X‐ray reports, the sensitivity

was 0.83 and the specificity was 1 using the cut‐off value 0.012.

When this method was applied to the test data 2, the sensitivity and

specificity were 0.89 and 0.99 for chest CT, and 0.67 and 0.97 for

chest X‐ray.

3.2 | Detection of DIP caused by anticancer drugs

The numbers of patients who received Gefitinib, MTX, TS‐1, and

UFT were 217, 390, 2088, and 1333, respectively (Table 3). When

“definitive,” “strongly suspected,” and “weakly suspected” statuses

were deemed to be DIP, the occurrence rate of DIP for Gefitinib,

MTX, TS‐1, and UFT was 6.0%, 2.3%, 1.4%, and 0.7%, respec-

tively.

3.3 | The evaluation of DIP according to the
medical records

The results of the evaluation of the algorithm by chart review are

shown in Table 4. Of the 13 patients who took Gefitinib and

were assessed as having DIP, 9 were determined to have DIP and

4 were not, giving a positive predictive value of 69.2%. The

TABLE 1 Detection of DIP based on the pattern of the presence of IP before, during, and after drug administration

Drug administration

Judgment

Drug administration

JudgmentBefore During After Before During After

− − − Negative + NA − Negative

− − + Negative + NA + Negative

− + − Definitive − − NA Negative

− + + Strongly suspected − + NA Strongly suspected

+ − − Negative + − NA Negative

+ − + Negative + + NA Negative

+ + − Negative NA NA + ND

+ + + Negative NA NA − ND

NA − − Negative NA + NA Weakly suspected

NA − + Negative NA − NA Negative

NA + − Strongly suspected + NA NA Negative

NA + + ND − NA NA ND

− NA − ND NA NA NA ND

− NA + ND

NA, Not available; ND, Not determined.
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positive predictive values with MTX, TS‐1, and UFT were 44.4%,

58.6%, and 77.8%, respectively. The occurrence rate of DIP of

Gefitinib, MTX, TS‐1, and UFT calculated from the data ultimately

determined by doctors were 4.1%, 1.0%, 0.8%, and 0.6%, respec-

tively.

To determine the reasons for the incorrect estimation of the

algorithm, we closely checked the medical records of the 22 patients

in whom the results of the algorithm were judged to be incorrect

(Table 5). The diagnosis on the CT report was incorrect in 1 patient

each for Gefitinib, MTX, and TS‐1. Among the other 19 cases, 13

were more likely to be suffering from other diseases, such as carci-

nomatous lymphangiosis, emphysema, or a worsening of the primary

disease, and 6 were deniable because the chronological relationship

of occurrence of IP and drug administration were incompatible with

DIP.

4 | DISCUSSION

In this study, we tried to detect DIP from the data in medical

records. Because chest CT is a key examination for the diagnosis of

IP, reports of chest CT—which are written in free text—had to be

analyzed. We therefore developed a method of detecting such

reports in which IP was diagnosed.

Theoretically, diagnosis data should be sufficient to detect IP. In

actual image reports, however, descriptions about IP are sometimes

written only in the findings field. Therefore, we analyzed both the

diagnosis and findings of image reports. For the field analysis, we

assessed the presence or absence of characteristic keywords for IP

and obtained an IP score. However, to detect the presence of a key-

word in a report, it is not enough to simply check for the existence

of the keyword. For example, if a keyword is followed by a negative

word, the keyword should be assessed as absent. In the preliminary

study, we evaluated the suitable character length between a key-

word and a negative word. Ultimately, a 10‐character length was too

short to include negative words, and a 20‐character length was too

long because it sometimes included a negative word referencing

another word. Therefore, we selected a 15‐character length to check

whether or not a negative word was followed by a keyword. For the

diagnosis of IP, keywords that describe characteristics of the lung

TABLE 2 The accuracy of identifying the presence of IP

Diagnosis by the radiologist

IP Non‐IP Total

Test data 1, chest CT reports

Machine analysis IP 92 3 95

Non‐IP 8 97 105

Total 100 100 200

Test data 1, chest X‐ray reports

Machine analysis IP 25 0 25

Non‐IP 5 43 48

Total 30 43 73

Test data 2, chest CT reports

Machine analysis IP 8 1 9

Non‐IP 1 90 91

Total 9 91 100

Test data 2, chest X‐ray reports

Machine analysis IP 2 1 3

Non‐IP 1 31 32

Total 3 32 35

IP, interstitial pneumonia.

TABLE 3 The number of patients with DIP caused by anticancer
drugs

Detection of DIP Gefitinib MTX TS‐1 UFT

Definitive 3 0 13 2

Strongly suspected 10 2 10 4

Weakly suspected 0 7 6 3

Negatively suspected 27 170 873 170

Negative 149 84 846 430

Not determined 28 127 340 724

Total 217 390 2,088 1,333

DIP, drug‐induced interstitial pneumonia; MTX, Methotrexate; TS‐1,
Tegafur, Gimeracil, and Oteracil potassium; UFT, Tegafur and Uracil.

TABLE 4 Number of patients determined as having DIP by a
chart review

Machine analysis Result by chart review

Judgment
Total number
of the patients DIP

Non‐
DIP

Not
determined

Gefitinib (Diagnostic accuracy: 69.2%)

Definitive 3 1 2 0

Strongly suspected 10 8 2 0

Weakly suspected 0 0 0 0

Total 13 9 4 0

MTX (Diagnostic accuracy: 44.4%)

Definitive 0 0 0 0

Strongly suspected 2 0 2 0

Weakly suspected 7 4 3 0

Total 9 4 5 0

TS‐1 (Diagnostic accuracy: 58.6%)

Definitive 13 8 5 0

Strongly suspected 10 7 3 0

Weakly suspected 6 2 4 0

Total 29 17 12 0

UFT (Diagnostic accuracy: 77.8%)

Definitive 2 1 0 1

Strongly suspected 4 3 1 0

Weakly suspected 3 3 0 0

Total 9 7 1 1

DIP, drug‐induced interstitial pneumonia; MTX, Methotrexate; TS‐1,
Tegafur, Gimeracil, and Oteracil potassium; UFT, Tegafur and Uracil.
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should be assessed. In the reports there were some words whose

object was not the lung. To exclude these words, we set a rule that

if a different organ name was written near a keyword, then its object

was regarded as not the lung. In the preliminary study, we evaluated

the suitable character length between a keyword and an organ

name, resulting in a ±15‐character length in a sentence being

deemed suitable for this assessment.

We needed to differentiate DIP from IP caused by other dis-

eases. If IP occurred during the administration of a target medicine

but not in the pre‐ or postadministration periods, this case is plausi-

bly DIP. However, chest CT was not frequently performed in the

patients. Therefore, we used chest X‐ray findings and SP‐D and KL‐6
data to determine the presence of IP during the period in which

chest CT was not performed. Because the diagnostic accuracy of

these parameters is not high, we focused on the changes in their

results between periods.

The occurrence rate of DIP in cases administered Gefitinib, MTX,

TS‐1, or UFT estimated by the algorithm was 6.0%, 2.3%, 1.4%, and

0.7%, respectively, and after the medical records were evaluated by

the medical doctors, the rates became 4.1%, 1.0%, 0.8%, and 0.5%,

respectively. The accuracy of the algorithm was 63.3% overall.

According to the data included in the packaging insert, the occur-

rence rates are 1%‐10%, 0.1%‐5%, 0.3%, and <0.1% for Gefitinib,

MTX, TS‐1, and UFT, respectively. Thus, our data for Gefitinib and

MTX were in the range of the data included in the packaging insert,

while our data for TS‐1 and UFT were higher.

Among the 60 cases extracted from 4028 cases as DIP, 22 were

found not to have DIP. Among them, 3 misdiagnoses were due to esti-

mation error of IP in the reports. In 13 cases, other diseases more

likely caused IP. This was inevitable because the grounds of our

method for the detection of DIP are only the chronological relation-

ship between the occurrence of IP and the administration of the target

medicine, which is a necessary condition but not wholly sufficient. DIP

was able to be denied by detailed observation in 6 cases, with IP found

to be recovered during the administration period in 4 cases and other

medicines more likely the cause of DIP in 2 cases.

This method was useful for efficiently extracting candidate cases

in which DIP might occur. Although this method was unable to

assess the absolute risk of DIP for an individual medicine accurately,

the actual risk of DIP could be said to be less than the rate proposed

by this method. Furthermore, the relative risks of DIP with Gefitinib,

MTX, and UFT based on the risk of TS‐1 ultimately determined by

the doctors were 5.1, 1.3, and 0.7, and those obtained by this algo-

rithm were 4.3, 1.6, and 0.5, which were almost the same with the

actual relative risks. This method therefore seems able to estimate

the relative risk of DIP between medicines.

The accuracy of IP estimation by this NLP might be different if

this method is applied to other hospitals. However, as radiologists

tend to write reports using the same keywords, this method may be

valid in principle.

5 | CONCLUSION

Using the method described in this study, we successfully detected

DIP for 4 anticancer drugs using the accumulated data in the EMR.

Although the cases extracted by this method included some that did

not have DIP, this method can estimate the relative risk of DIP

between medicines.
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