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ABSTRACT

Epithelial cancer cells rely on the extracellular matrix (ECM) attachment in order to spread to other organs.
Detachment from the ECM is necessary for these cells to seed in other locations. When the attachment to the ECM
is lost, cellular metabolism undergoes a significant shift from oxidative metabolism to glycolysis. Additionally,
the cancer cells become more dependent on glutaminolysis to avoid a specific type of cell death known as
anoikis, which is associated with ECM detachment.

In our recent study, we observed increased expression of H3K27me3 demethylases, specifically KDM6A/B, in
cancer cells that were resistant to anoikis. Since KDM6A/B is known to regulate cellular metabolism, we
investigated the effects of suppressing KDM6A/B with GSK-J4 on the metabolic processes in these anoikis-
resistant cancer cells.

Our results from untargeted metabolomics revealed a profound impact of KDM6A/B inhibition on various
metabolic pathways, including glycolysis, methyl histidine, spermine, and glutamate metabolism. Inhibition of
KDM6A/B led to elevated reactive oxygen species (ROS) levels and depolarization of mitochondria, while
reducing the levels of glutathione, an important antioxidant, by diminishing the intermediates of the glutamate
pathway. Glutamate is crucial for maintaining a pool of reduced glutathione.

Furthermore, we discovered that KDM6A/B regulates the key glycolytic genes expression like hexokinase,
lactate dehydrogenase, and GLUT-1, which are essential for sustaining glycolysis in anoikis-resistant cancer cells.

Overall, our findings demonstrated the critical role of KDM6A/B in maintaining glycolysis, glutamate meta-
bolism, and glutathione levels. Inhibition of KDM6A/B disrupts these metabolic processes, leading to increased
ROS levels and triggering cell death in anoikis-resistant cancer cells.

1. Introduction

locations, this is known as the metastatic stage. However, the metastasis
process is hindered by a cell death known as anoikis, which is cause by

Cancer poses a significant threat to human life globally, with
approximately Death from metastasis accounts for 90 % of all cases of
cancer. Understanding the mechanisms underlying the establishment of
metastasis is of utmost importance (Endo et al., 2020). When cancer
cells split off from the primary tumor and start settling in at new
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loss of the extracellular matrix (ECM) (Guadamillas et al., 2011).

The resistance to anoikis involves a complex network of events,
including alterations in glucose metabolism, maintenance of redox ho-
meostasis, and production of adenosine triphosphate (ATP), which are
critical property of cellular metabolism enabling ECM-independent
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cancer cells survival (Hawk and Schafer 2018). As compare to normal
cells, cancer cells display a distinct metabolic characteristic known as
the Warburg effect, wherein they rely on glycolysis for energy acquisi-
tion. Research on the Warburg effect in the context of cancer has been
considerable (Ward and Thompson 2012). However, whether or not
cancer cells lacking an ECM rely on the Warburg effect for survival is not
well understood.

Glutamate, the most abundant amino acid in the blood, plays a
crucial function in metabolism as a precursor for metabolic in-
termediates via the tricarboxylic acid (TCA) cycle and oxidative phos-
phorylation (OXPHOS) (Cairns et al., 2011). Recent research has
highlighted the significance of glutamine metabolism in the develop-
ment and cancer cells survival, supporting bioenergetics and redox
balance (Zhang et al., 2017). Additionally, matrix-detached cancer cells
often experience hypoxia, which promotes glycolysis, facilitating cell
proliferation and viability (Shait Mohammed et al., 2021).

It is well established that hypoxia can influence epigenetic modifi-
cations. The hypoxia-inducible factor (HIF)-a subunits are influenced
not only by oxygen levels but also by reactive oxygen species (ROS).
Mitochondria, essential organelles involved in various cellular pro-
cesses, including ATP production, cell survival, and cell death, are a
significant source of ROS (Labuschagne et al., 2019). HIF-1a, a hypoxic
transcription factor, modulates chromatin in various ways, mainly by
regulating the levels of expression of many JmjC-Jumonji-domain his-
tone demethylases (KDMs). Our recent studies (Shait Mohammed et al.,
2022) have demonstrated the epigenetic regulation of HIF-la by
KDM6A/B. For better understanding of the contributions of KDM6A/B
to metabolic regulation in ECM-detached cancer cells, we conducted an
investigation using two cell lines in an ECM-detached model, focusing
on the regulation of glycolysis, mitochondrial membrane potential, ROS
production, and expression of glycolytic target genes. Our study pro-
vides the first evidence that inhibiting KDM6A/B affects the metabolic
profile, transcription of glycolytic genes, ROS levels, and mitochondrial
membrane potential in ECM-detached cancer cells.

2. Materials and methods
2.1. Cell cultures and treatment

In this study, we used ATCC (United States) HCT116 and 22Rv1 cells.
All cell lines were grown in 10 % foetal bovine serum (FBS; Gibco one-
shot, Brazil), penicillin (50 U/mL) and streptomycin (50 mg/mL) sup-
plemented DMEM (Gibco, Invitrogen) at 37 °C and 5 % CO2.. For ECM
detachment experiments, Poly-HEMA(P3932-Sigma) 8 mg/mL in 95 %
ethanol was used to coat 6 well tissue culture plates, which were sub-
sequently incubated at 37 °C until dry for maximum period of 5 h. Media
was changed every two days until the cells reached 70—90 % conflu-
ence. The1X10° cells were grown in a poly-HEMA coated plate at 5 %
CO2 and 37 °C. The ECM detached cells were treated for sixe days with
GSK J4 (Abcam-144396, Cambridge, MA USA) at varying doses we used
GSK-J4 5 pM for 22Rv1 and 10 pM for HCT116 to treat the ECM de-
tached cells (Shait Mohammed et al., 2022).

2.2. Extraction of metabolites

Metabolites were isolated from ECM detached and attached cells and
followed with GSK J4 KDM6A/B inhibitor treatment. ECM cells were
lysed within 30 s using a tissue homogenizer with a 2:1:1 v/v of ice-cold
methanol, acetonitrile, and water mixture. Incubated at — 20 oC for 60
min and for 15 min at 4 degrees Celsius, 13,000 rpm they were spin.
Samples were analyzed in LC-MS/MS.. (Alzahrani et al., 2021) (Tim-
merman et al., 2013).

2.3. Mass spectrometry

The samples have been analysed using a linear ion trap mass
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spectrometer (LC-MS/MS LTQ XLTM; Thermo Fisher Scientific). Pa-
rameters for MSn, with complete scanning mode covering 100-1000 m/
z. For run 40, arbitrary units were established as flow rate, and Helium
was employed as the buffer gas while Nitrogen was used as the sheath
gas. We used a spray voltage of 3.0 kV and a capillary voltage of 4.0 V.
The capillary temperature was fixed at 270C.

2.4. Data analysis

The raw data is available in the form of a file that was manipulated in
the freely available XCMS online database. Peaks have been cross-
referenced with the Human Metabolome Database to identify human
metabolites. Metaboanalyst was used for statics and pathway analysis.

2.5. Real-time qPCR

A Reverse Transcription kit (applied biosystems) was used to tran-
scribe RNA isolated from all cell lines after diverse experimental set-
tings. Using gene-specific primers (Table-1), cDNA (1-100 ng) was
amplified three times. The fold change of each mRNA was determined
using CT data from the instrument’s software. The difference between
the CT value of the housekeeping gene and the mRNA of interest was
used to determine CT. The difference between the control and experi-
mental CT values was then used to determine CT for each mRNA. The
formula for determining the fold change was 2 — AACT (Livak KJ,
Schmittgen TD, et al., 2001).

2.6. Determination of ATP content

To assess the level of ATP intracellularly, the ATP determination kit
(Invitrogen-A22066, USA) was used. The equal protein concentration of
protein was loaded in 96 well plates and followed as kit protocol. Via
microplate luminometer Relative luminescence units have been
measured (SpectraMax i3). Protein concentrations were used as a stan-
dard to normalize all data..

2.7. ROS assays

The concentration of ROS in living cells was determined using the
CELLROX (Invitrogen). The ROS assay was carried out by cells grown as
monolayer and ECM detached condition and treated with GSK-J4. In
culture medium Cells were grown with 500 nM CELLROX for 60 min
plate at 37 °C and 5 % CO2 and Immediately via flow cytometry analyze
the samples.

2.8. Mitochondria membrane potential and cell viability assays

Briefly, Adherent or poly-HEMA-coated 6-well plates were used to
seed 1 x 10° cells into each well, and after GSK-J4 treatment, Solution
Guava Mito Potential Kit was added as per manufacture protocol.After
incubation of one hour in a 37 °C and 5 % CO2 and via flow cytometry
immediately the samples were analyze.

2.9. Statistical analysis

We used GraphPad Prism 8.0 (GraphPad Software, La Jolla, CA,
USA) to analyse the data and find statistically significant differences
between the control and GSK-J4 treated groups. P > 0.05 was chosen as
the significance criterion for the tests.

3. Results

3.1. KDM6A/B inhibition alters global metabolic landscape of anoikis
resistant cancer cells

In order to gain insights into the intracellular metabolism of attached



M.A. Alfaleh et al.

cells, matrix-detached cells (representing anoikis resistance), and
matrix-detached cells treated with GSK-J4, we performed LC-MS/MS
analysis of intracellular metabolites. We obtained high-quality spectra
from three replicates of HCT116 and 22Rvl cell lines. The spectral
profiles within each cell line were consistent, indicating reproducibility
of the metabolic profiles of individual replicates. Supplementary Fig. 1A
displays the LC-MS/MS spectral separation of the cellular metabolic
extracts, and a correlation heat map is also provided.

Metabolomic analysis clearly distinguished the different cell groups,
including adherent cells, matrix-detached cells, and GSK-J4 treated
matrix-detached cells, as shown by the PLS-DA score plot and VIP scores
(Fig. 1A, B). The PLS-DA analysis demonstrated clusters of metabolites
with the highest VIP scores (FDR correction q < 0.05 and p < 0.05)
(Table 1; Supplementary Table 1). A metabolite heat map was generated
with an FDR-corrected g-value < 0.05, highlighting key differences
between adherent cells, matrix-detached cells, and GSK-J4 treated
matrix-detached cells, as depicted by Ward clustering (Fig. 1C).

To gain further insights into the metabolic pathways involved, we
performed enrichment pathway analysis by mapping the differentially
regulated metabolites to the KEGG database using MetaboAnalyst 4.0.
The top 25 enriched pathways are displayed in Fig. 1D and E, with a
significant p-value < 0.05. These enriched pathways encompass energy
metabolism (like glycolysis, gluconeogenesis, and the TCA cycle), amino
acid metabolism (including tyrosine metabolism, serine and glycine
metabolism), and purine metabolism. These pathways are crucial for cell
proliferation, ATP production, and the biosynthesis of nucleotides, fatty
acids, and lipids. Perturbations in metabolites implicated in these
pathways were observed.

Supplementary Fig. 2 provides the mRNA expression levels of
KDM6A/B in HCT116 and 22Rv1 cell lines.

3.2. KDM6A/B inhibition reduces glycolytic metabolites in anoikis
resistant cancer cells

To investigate the metabolic adaptations promoting survival of
cancer cell during ECM detachment, we examined metabolic changes in
cells cultured in different conditions. Specifically, we compared cells
grown as monolayers (ECM attached) to cells grown on ultralow
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attachment plates that prevent attachment to the extracellular matrix,
forcing cells to grow in suspension (detached condition). We conducted
these experiments using HCT116 and 22Rvl cancer cell lines and
assessed glycolysis and TCA cycle intermediates using LC-MS.

To assess the glycolytic status of ECM-detached cells and ECM-
detached cells treated with a KDM6 inhibitor, we examined glucose
metabolism by analyzing glycolysis and TCA cycle intermediate me-
tabolites. Our findings revealed an increase in phosphoenol pyruvate
levels and LDH activity in detached cells, indicating a more glycolytic
phenotype (Fig. 2A, B). However, when KDM6A/B was inhibited, these
glycolytic characteristics were reduced, suggesting a role of KDM6A/B
in promoting the glycolytic phenotype during ECM detachment.

To validate these observations, we measured intracellular ATP
levels. The results showed that detachment from the ECM led to a
decrease in ATP levels, further confirming the glycolytic nature of de-
tached cells (Fig. 2C). Conversely, KDM6A/B inhibition resulted in
increased intracellular ATP levels, indicating that KDM6B-inhibited
detached cells exhibit an oxidative phosphorylation phenotype.

These findings collectively indicate that ECM-detached cells display
a glycolytic phenotype, which is attenuated by KDM6A/B inhibition.
Furthermore, KDM6A/B inhibition promotes an oxidative phosphory-
lation phenotype in detached cells, as supported by increased intracel-
lular ATP levels.

3.3. KDM6A/B epigenetically regulate glycolysis in anoikis resistant
cancer cells

The observed metabolomic changes prompted us to investigate the
transcriptional perturbations associated with KDM6A/B-H3K27me3
demethylase inhibitor treatment and their impact on detached cell
glycolytic transcripts. The transcriptional changes aligned with the
metabolomic findings, revealing raised glucose transporters (GLUT3 and
GLUT1) expression and key enzymes involved in glycolysis, like hexo-
kinase 2 (HK-2), phosphofructokinase (PFKL), phosphoglycerate mutase
1 (PGAM1), lactate dehydrogenase (LDHA) and enolase 2 (ENO-2),
indicating an elevation in glycolytic activity. Conversely, elevated levels
of pyruvate dehydrogenase kinase 1 (PDK1) suggested a reduction in the
conversion of glycolytic metabolic intermediates into the TCA cycle
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CATCCCATGGTTCATCGTGGCTGAACT
TTTTGAGATTGGCCCTGGCCCCAT
GCCATCCTGCAACACTTAGGGCTTGAG
GGAGAAGCTGCGCGAGGTTTAC
AGGCCATGCTTGCACTCAGAAGT
TTCCGTGTCCCCACTGCCAACGT
ATGTCGCTTTCTAACAAGCTGA
GGAAACGTGTACTGATTGCAGCCC
GACTTGGCTGGCAACTCTG
TCATGGTGAGTCATCGCTCAGGAG
GCCCGTGAGGCAGAGGCTGC
ATGGCAACTCTAAAGGATCA
TCATGTCCTTAATGTCCTATCATG
AGGAAGAGCAAAGACCCTTGGGTG
TGGGATTACAGGCGCACACCACC
GATCAGCCTGACCAACATGGTGAAA

GAAGTAGGTGAAGATGAAGAACAGAAC
C TCAGGTACTCTTAAGAAGGTGAAG
GTGAGGATGTAGCTTGTAGAGGGTCCC
ATTGTGCCAGCATCTTCAGCATGAG
AGGGCCCAGGGCTTCAGCAGG
CAAAGGTGGAGGAGTGGGTGTCGC
GCGGAGGTTCTCCAGCA
TTCCATGGCTTTGCGCACCGTCT
GGTCATCGGGAGACTTGAA
ATGTCCGGCAAAGCGAGCTTCATC
TGGTGAGGACGATTATGGCCC
GCAACTTGCAGTTCGGGC
CCCGTTTGTGAGCCAAGCCTTGCT
GCCACTCACCCTCACAGCCAGTC
AACACAGGCTGGGCGCAGTGGCT
TGAAACGGAGTCGCTCTGTCGCC
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(Fig. 3A). Importantly, KDM6A/B inhibition resulted in a significant
decrease in glycolytic genes expression.

To investigate whether KDM6A/B transcriptionally regulates the
expression of glycolytic genes, we examined putative KDM6A/B binding
sites within the promoter regions of these genes, spanning approxi-
mately 3 kb (Buchheit et al., 2014). Results of CHIP assay shows that
KDM6A/B was attracted to the areas where the binding sites are and
enhanced the promoter-reporter activity of HK-2, LDHA, GLUT-1, and
PFKL. However, KDM6A/B inhibition with GSK-J4 treatment dimin-
ished the binding of these sites and altered the promoter-reporter ac-
tivity (Fig. 3B). These findings suggest that KDM6A/B promotes the
glycolytic genes transcription via promoter sites attachments.

3.4. KDM6A/B inhibition modifies glutamine metabolism and reduces
cellular GSH level in anoikis resistant cancer cells

Glutamine metabolism intermediates play a crucial role in support-
ing cellular antioxidant defense mechanisms. Glutamate-glutamine
conversion contributes to the biosynthesis of glutathione (GSH) (Li
et al., 2018). Cancer cells surviving in ECM detachment exhibit signifi-
cant alterations in the reductive carboxylation of glutamine metabolism
within the mitochondria, which helps limit mitochondrial reactive ox-
ygen species (ROS) production. To assess the impact of KDM6A/B in-
hibition on glutamine metabolism, we examined the levels of glutamine
and other TCA cycle intermediates in ECM detached cells and ECM de-
tached cells treated with a KDM6 inhibitor. The results demonstrated an
raise in glutamate, glutamine and a-ketoglutarate in detached cells,
which was reduced upon KDM6A/B inhibition (Fig. 4A). This suggests
that ECM detached cells experience a decrease in mitochondrial ca-
pacity, leading to an increased reliance on glycolysis maintained via
carboxylation of glutamine to malate conversion (Fig. 4B). Glutamine
metabolism in detached cells plays a significant role in repressing
oxidative stress mechanisms through GSH and superoxide dismutase
(SOD) (Fig. 4C and D). Supporting this hypothesis, measurements of
GSH and SOD activity revealed increased antioxidant levels in detached
cells, which were significantly reduced upon KDM6A/B inhibition
(Fig. 4C and D).
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. 22RV1_J4
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To further investigate the relationship between KDM6A/B inhibition
and the regulation of redox mechanisms, We looked at how redox-
maintenance enzymes’ genes were expressed. The results showed
increased expression of glutaminase (GLS), glutaminase-2 (GLS-2), and
glutamine synthetase (GS) in ECM detached cells, indicating an
enhancement in antioxidant activity (Fig. 3D). Importantly, KDM6A/B
inhibition significantly decreased the genes expression related with the
regulation of redox mechanisms. These changes in gene transcript levels
correlated with the observed alterations in metabolomics.

To explore whether KDM6B transcriptionally regulates redox gene
expression, we conducted CHIP assays using primers targeting the pro-
moter regions of the respective genes. The CHIP assay results revealed
that KDM6B was recruited to the regions containing the binding sites
and enhanced the promoter-reporter activity of GLS2 and GLS1. How-
ever, KDM6B inhibition with GSK-J4 treatment reduced the binding of
these sites and altered the promoter-reporter activity (Fig. 4E). These
findings suggest that KDM6B promotes gene transcription by binding to
the genes promoter sites involved in the glutamine pathway.

3.5. KDM6A/B inhibition increases intracellular ROS and mitochondrial
depolarization in anoikis resistant cancer cells

Moreover, ECM detached cells treated with a KDM6A/B inhibitor
exhibited a notable raise in levels of reactive oxygen species (ROS)
(Fig. 5A) and a noticeable decrease in the ROS scavenger superoxide
dismutase, as indicated by a reduced glutathione (GSH) ratio (Fig. 4C
and D), contrast to untreated detached cells. This elevation in ROS was
accompanied by raise in cell death in KDM6A/B inhibited detached cells
(Fig. 5B). These findings highlight the involvement of KDM6B histone
demethylase in the metabolic alterations associated with oxidative stress
in detached cells.

To understand the mechanism underlying the ROS burst in KDM6A/
B inhibition, we focused on mitochondria, which are organelles
responsible for producing reactive oxygen species (mROS) and signifi-
cant amounts of ATP. Mitochondria possess a regulatory mechanism that
can prevent excessive ROS production, and mitochondrial depolariza-
tion triggers a rapid increase in ROS generation. Supporting this
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Fig. 3.

hypothesis, we observed a significant increase in mitochondrial depo-
larization in response to KDM6A/B inhibition, leading to oxidative stress
(Fig. 5C). Consequently, KDM6A/B inhibition resulted in enhanced ROS
production and induced apoptosis. To further investigate this observa-
tion, we treated ECM detached cells with both the KDM6A/B inhibitor
and mitoTEMPO, a mitochondria-targeted antioxidant. Remarkably, the
ECM detached cells treated with the KDM6A/B inhibitor and mito-
TEMPO exhibited reduced ROS levels and an increase in the population
of healthy cells (Fig. 5D and E).

4. Discussion
The metastatic stage of cancer involves the detachment of tumor cells

from the primary site and their attachment to secondary sites. Successful
metastasis requires the ability of cancer cells to adapt to the stress of

extracellular matrix (ECM) detachment and overcome the challenges
posed by this process (Cantor and Sabatini 2012). It has been reported
that regulation of reactive oxygen species (ROS) and cell clustering can
promote cancer metastasis. In this study, we provide insights into the
epigenetic regulatory mechanisms involved in the metabolic adapta-
tions of detached cells.

Building upon our previous research showing the significance of
histone demethylases KDM6A/B in stemness and hypoxia in detached
cells (Shait Mohammed et al., 2022), we expand our understanding of
KDM6A/B as critical regulators of metabolic phenotypes in ECM
detachment cells (Khan et al., 2021). We demonstrated that this epige-
netic regulation of metabolic adaptation plays a crucial role in pro-
moting cell survival. We show that inhibition of KDM6A/B in ECM
detachment affects mitochondrial metabolism significantly, resulting in
more reactive oxygen species being produced. The survival of Cell relies
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Fig. 4.

on the induction of antioxidant mechanisms following detachment,
involving the activation of superoxide dismutase (SOD) and glutathione
(GSH) to counteract ROS generation.

Our previous data revealed that ECM detached spheroids create a
hypoxic environment, consistent with reports indicating the presence of

a hypoxic core in tumor spheroids (Alkhatabi et al., 2022). This hypoxic
tumor microenvironment leads to the stabilization of Hifla and Hif2a,
which trigger mitophagy—a process contributed in the removal of
damaged mitochondria and mitochondrial ROS production regulation.
Our previous study demonstrated that KDM6B transcriptionally
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Fig. 4. (continued).

regulates the expression of Hifla. In this work, we show that KDM6A/B
inhibition leads to an increase in ROS levels, further supporting the
association between KDM6A/B inhibition, mitochondrial depolariza-
tion, mitochondrial damage, and mitochondrial ROS production.
Importantly, we demonstrated that the addition of MitoTEMPO, a
mitochondria-specific ROS scavenger, reduces ROS production and
promotes cell survival in detached cells. The hypoxic conditions in de-
tached cells eliminate damaged mitochondria and limit ROS production.

Our findings indicate that KDM6A/B partially contributes to the
metabolic switch observed in ECM detached cells. We show that
KDM6A/B inhibition in detached cells shifts the metabolic profile to-
wards oxidative phosphorylation (OXPHOS) and raise citrate levels to
maintain high ATP levels. This observation aligns with previous studies
suggesting that citrate can be utilized for mitochondrial NADPH pro-
duction. This metabolic reprogramming is crucial to the development
and sustenance of malignant characteristics. (Saha et al., 2018).

The Warburg effect postulates that enhanced glucose metabolism is
crucial for cell proliferation (Pereira et al., 2017). Our data showed that
ECM detached cells rely on glycolysis and glutamine-mediated reductive

@

carboxylation for energy metabolism (Franchi et al., 2017). We propose
that epigenetic regulation plays a role in governing these metabolic
reprogramming-based survival mechanisms during ECM detachment. A
recent study by Adem P. et al. (2020) supports the notion that KDM6A/B
play a vital part in effector T cells the metabolic reprogramming.

Our data reveal that KDM6B occupies the promoter regions of genes
involved in glycolysis metabolism, of GLUT-1, HK-1, and LDHA,
(Fig. 4B) indicating its transcriptional regulation of these genes. Addi-
tionally, we provide further support for KDM6B'’s role in transcription-
ally regulating genes take part in metabolism of glutamine, like GLS and
GLS-1.

In conclusion, our findings underscore the critical role of KDM6A/B
in detached cells, as they control the metabolic switches important for
ECM detached cells to adapt to environmental stress (Fig. 6). Our results
provide valuable insights into the regulation of glycolysis, reductive
carboxylation, and oxidative stress by KDM6A/B in ECM detached cells.
Further investigations utilizing metabolic inhibitors will help deepen
our understanding of these crucial aspects of metabolic adaptation and
pave the way for potential therapeutic approaches.
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