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ABSTRACT Pseudomonas aeruginosa is a multidrug-resistant, opportunistic pathogen
that frequently causes ventilator-associated pneumonia in intensive care units and
chronic lung infections in cystic fibrosis patients. The rising prevalence of drug-resistant
bacteria demands the exploration of new therapeutic avenues for treating P. aeruginosa
infections. Perhaps the most thoroughly explored alternative is to use novel treatments
to target pathogen virulence factors, like biofilm or toxin production. Gallium(III) nitrate
is one such agent. It has been recognized for its ability to inhibit pathogen growth and
biofilm formation in P. aeruginosa by disrupting bacterial iron homeostasis. However, ir-
reversible sequestration by pyoverdine substantially limits its effectiveness. In this report,
we show that disrupting pyoverdine production (genetically or chemically) potentiates
the efficacy of gallium nitrate. Interestingly, we report that the pyoverdine inhibitor 5-
fluorocytosine primarily functions as an antivirulent, even when it indirectly affects bac-
terial growth in the presence of gallium, and that low selective pressure for resistance
occurs. We also demonstrate that the antibiotic tetracycline inhibits pyoverdine at con-
centrations below those required to prevent bacterial growth, and this activity allows it
to synergize with gallium to inhibit bacterial growth and rescue Caenorhabditis elegans
during P. aeruginosa pathogenesis.

IMPORTANCE P. aeruginosa is one of the most common causative agents for ventilator-
associated pneumonia and nosocomial bacteremia and is a leading cause of death in
patients with cystic fibrosis. Pandrug-resistant strains of P. aeruginosa are increasingly
identified in clinical samples and show resistance to virtually all major classes of antibi-
otics, including aminoglycosides, cephalosporins, and carbapenems. Gallium(III) nitrate
has received considerable attention as an antipseudomonal agent that inhibits P. aerugi-
nosa growth and biofilm formation by disrupting bacterial iron homeostasis. This report
demonstrates that biosynthetic inhibitors of pyoverdine, such as 5-fluorocytosine and
tetracycline, synergize with gallium nitrate to inhibit P. aeruginosa growth and biofilm
formation, rescuing C. elegans hosts during pathogenesis.

KEYWORDS Caenorhabditis elegans, Pseudomonas aeruginosa, fluorocytosine, gallium,
pyoverdine, tetracycline

P seudomonas aeruginosa is a Gram-negative, multidrug-resistant, opportunistic
pathogen that threatens the lives of hospitalized patients, especially those in in-

tensive care units. P. aeruginosa is one of the most common causes of ventilator-associ-
ated pneumonia (VAP) in these environments and has a high attributable mortality
rate (1, 2). The importance of treating nosocomial VAP has become critical amid the co-
ronavirus disease 2019 (COVID-19) pandemic, particularly since early studies have iden-
tified P. aeruginosa as one of the most common bacterial pathogens in COVID-19
patients (3, 4). P. aeruginosa also frequently infects patients who are immunocompro-
mised due to cancer (5) and is the leading cause of chronic lung infections in patients
with cystic fibrosis (6). Unfortunately, it is becoming increasingly difficult to treat P. aer-
uginosa infections due to the rising prevalence of drug-resistant strains. For example,
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our recent survey of multidrug-resistant P. aeruginosa isolates from pediatric patients
with cystic fibrosis determined that a substantial fraction of the isolates were resistant
to aminoglycosides, third- and fourth-generation cephalosporins, and even carbape-
nems, which are considered antibiotics of last resort for treating P. aeruginosa (7). The
combination of increasing antibiotic resistance and the dwindling rate of new drug de-
velopment is creating an urgent need for new therapeutics to treat these infections.

Recent work has bolstered the concept of targeting virulence determinants as an al-
ternative treatment route. One common target is the siderophore pyoverdine, which is
essential for bacterial growth under iron-restricted conditions, including during mam-
malian infections (8–11). Pyoverdine also regulates the production of secreted toxins
such as the translational inhibitor exotoxin A and the protease PrpL (12). Interestingly,
pyoverdine also disrupts host iron and mitochondrial homeostasis, even in the absence
of the pathogen (13–16). A combination of these factors makes pyoverdine obligatory
for P. aeruginosa virulence in murine lung infection models (9, 11, 17). Treatments that
block pyoverdine biosynthesis (like the fluoropyrimidines 5-fluorocytosine or 5-fluo-
rouridine) or pyoverdine function (like the small molecules LK11 or PQ3c) can substan-
tially improve host survival under these conditions (7, 18–21).

Gallium(III) nitrate, Ga(NO3)3, has received considerable attention as an antipseudo-
monal therapeutic and has been shown to mitigate P. aeruginosa virulence in several
murine infection models (22, 23). The widespread use of iron for redox biology across
many metabolic pathways makes Ga(NO3)3 an effective antimicrobial (24). The most
common explanation is that gallium(III) competes for binding sites in bacterial proteins
and other molecules that are normally occupied by redox-active iron(III) (25). Since gal-
lium(III) has an almost identical ionic radius but is redox inactive, its occupancy of these
sites dramatically compromises their function.

In this report, we recapitulate previous findings that pyoverdine provides resistance
to Ga(NO3)3 and extend them by showing that preventing pyoverdine biosynthesis
potentiates gallium's antimicrobial activity. We show that the pyoverdine inhibitor 5-
fluorocytosine synergizes with Ga(NO3)3 to inhibit P. aeruginosa growth and rescue
Caenorhabditis elegans. We also demonstrate that this antivirulent maintains its low
selective pressure for resistance even when it indirectly contributes to the inhibition of
P. aeruginosa growth. Finally, we report that tetracycline-class antimicrobials attenuate
pyoverdine production at concentrations lower than those that prevent bacterial
growth, exhibiting synergistic interactions with gallium nitrate in vitro and in vivo.

RESULTS
Pyoverdine production confers gallium(III) nitrate resistance to P. aeruginosa.

By virtue of being a ferric iron mimetic, gallium(III) is subject to chelation by the P. aeru-
ginosa siderophores pyochelin and pyoverdine. Interestingly, this appears to have diver-
gent effects depending upon which siderophore binds the metal. When pyochelin binds
gallium(III), it deposits the metal into the cell where it interferes with cell function.
Consequently, a pyochelin biosynthetic mutant, like P. aeruginosa DpchBA is more resist-
ant to Ga(NO3)3 than wild-type P. aeruginosa (see Fig. S1 in the supplemental material).
In contrast, pyoverdine appears to sequester gallium either outside the bacterium or
within the periplasmic space (24, 26, 27), and P. aeruginosa DpvdF, which has compro-
mised pyoverdine biosynthesis, is more susceptible to Ga(NO3)3 than wild-type P. aerugi-
nosa in iron-limited media (Fig. 1A and B). This effect is abolished under conditions
where pyoverdine is superfluous for survival, such as iron-rich media (Fig. 1C and D).

5-Fluorocytosine synergizes with gallium nitrate to inhibit P. aeruginosa
growth and virulence. Since pyoverdine production confers resistance to Ga(NO3)3,
we predicted that compounds that prevent pyoverdine biosynthesis would potentiate
the antimicrobial activity of gallium(III). Recent work has demonstrated that fluoropyri-
midines (including 5-fluorocytosine, 5-fluorouridine, and 5-fluorouracil) inhibit pyover-
dine production (18, 21). In particular, 5-fluorocytosine (5-FC) has been repeatedly
shown to attenuate P. aeruginosa virulence during murine lung infection without
exhibiting overt antibacterial activity in vitro (7, 18). We tested the interactions
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between 5-FC and Ga(NO3)3 (Fig. 2A). Bacteria were treated with a single concentration
of 5-FC (100mM), which substantially inhibits pyoverdine production but not bacterial
growth (Fig. 2B), and a gradient of Ga(NO3)3. 5-FC increased the bacteriostatic activity
of gallium(III) at concentrations as low as 8mM (Fig. 2A). To eliminate alternative
explanations, we performed this same test with an isogenic DpvdF mutant. 5-FC had
no effect on gallium-mediated growth inhibition in the DpvdF mutant (Fig. 2C), dem-
onstrating that this synergistic interaction is pyoverdine dependent.

To investigate whether this in vitro synergy translates to the mitigation of bacterial
virulence in vivo, we tested a range of drug combinations in a C. elegans pathogenesis
model (14), where we previously showed that 5-FC rescues C. elegans in a pyoverdine-
dependent manner (21). To explore the effects of gallium- and 5-FC-mediated growth
inhibition in this model, we exposed worms to the pathogen for a longer period of
time (;65-h incubation compared to;42 h) to observe antivirulence (21). Under these
conditions, 5-FC had minimal effect on pathogen virulence except at the highest con-
centration tested, 128mM (Fig. 3A to C). It is important to note that this concentration
is still physiologically relevant. We observed strong synergistic interactions between 5-
FC and Ga(NO3)3 at several concentrations, where the drug combination resulted in
near complete rescue of the host (Fig. 3B and C). To analyze these interactions in a
broader context, we visualized the synergy scores for each drug combination using

FIG 1 Pyoverdine production decreases P. aeruginosa susceptibility to Ga(NO3)3. (A and B) Bacterial growth (A) and pyoverdine
production (B) by wild-type (WT) P. aeruginosa PAO1 and a pyoverdine biosynthetic mutant (PAO1DpvdF) in the presence of Ga
(NO3)3 measured after 12 h incubation in M9 medium. (C) Pyoverdine production (in arbitrary units [AU]) by PAO1 and
PAO1DpvdF in M9 and LB media. (D) Bacterial growth by PAO1 and PAO1DpvdF in the presence of Ga(NO3)3 in LB medium. Error
bars represent standard errors of the mean (SEM) of three biological replicates. Statistical significance (Student’s t test) is
indicated as follows: *, P , 0.01; NS, not significant (P . 0.05).
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SynergyFinder (Fig. 3D) (28). For several drug synergy models, including the Bliss, high-
est single agency (HSA), and zero interaction potency (ZIP) models (29–31), we
observed average synergy scores (d -score) around 12, which corresponds to 12%
greater effect than the expected outcome based on the performance of the individual
drugs (Fig. 3E) (28). In the 3 � 3 concentration window where we observe the greatest
synergy (most synergistic area), the combination of 5-FC and Ga(NO3)3 had an ;22%
greater effect on pathogen virulence than expected (Fig. 3E and Fig. S2), suggesting
that this is a promising drug combination to attenuate P. aeruginosa pathogenesis.

FIG 3 5-FC synergizes with Ga(NO3)3 to mitigate P. aeruginosa virulence. (A) Heatmap of normalized C. elegans death after exposure to P. aeruginosa in the
presence of 5-fluorocytosine (5-FC) and Ga(NO3)3. Fraction host death was normalized to that of the no-drug control. (B) Fluorescent images of C. elegans
stained with Sytox Orange cell impermeant nucleic acid stain. (C) Quantification of normalized C. elegans death. (D) 3-Dimensional synergy map for 5-FC
and Ga(NO3)3 showing synergy scores (d -score) for each drug combination. d -scores were calculated based on the Bliss synergy model. (E) Average synergy
scores and most synergistic area scores were calculated based on three different models. Error bars represent SEM for six biological replicates. Statistical
significance (Student’s t test) is indicated as follows: *, P , 0.01; #, P , 0.05.

FIG 2 5-Fluorocytosine synergizes with Ga(NO3)3 to inhibit bacterial growth. (A to C) Bacterial growth (A) and pyoverdine production (B) by wild-type P.
aeruginosa PAO1 or pyoverdine biosynthetic mutant PAO1DpvdF (C) in the presence of 100mM 5-fluorocytosine (5-FC) and various concentrations of Ga
(NO3)3 measured after 12 h incubation in M9 medium. Error bars represent SEM for four biological replicates. Statistical significance (Student’s t test) is
indicated as follows: *, P , 0.01; #, P , 0.05; NS, not significant (P . 0.05).
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Pressure to develop resistance to 5-fluorocytosine remains low despite the
presence of gallium nitrate. One of the biggest motivations for the development of
antivirulence therapeutics is their low selective pressure for resistance compared to
conventional antimicrobials. Recently, Imperi and colleagues demonstrated that, while
P. aeruginosa can become resistant to 5-FC through mutations in the uracil phosphori-
bosyltransferase (Upp) gene (32), the rate of resistance for 5-FC is orders of magnitude
lower than for the analogous antibacterial compound 5-fluorouracil (33). Even after
long-term exposure, 5-FC-resistant cells represented less than 0.1% of the population,
which was insufficient to reduce the efficacy of pyoverdine inhibition (33).

We were interested in whether 5-FC’s indirect effect on bacterial growth in the pres-
ence of gallium would increase selective pressure for developing resistance. To adapt
P. aeruginosa in the presence of the two drugs, we grew wild-type strain PAO1 on M9
agar plates containing 250mM 5-FC and 150mM Ga(NO3)3. For the first 36 h, we saw no
discernible bacterial growth (Fig. 4A). After this time, we noticed the appearance of
spontaneously resistant colonies (Fig. 4B). Consistent with the synergistic interactions
observed in liquid media, M9 agar containing either one of these two drugs supported
the formation of dense bacterial lawns (Fig. 4A). However, higher concentrations of Ga
(NO3)3 ($300mM) were able to suppress bacterial growth (Fig. 4A). The presence of
300mM gallium triggered the spontaneous emergence of resistant cells (Fig. 4B). At
the same time, the combination of Ga(NO3)3 and 5-FC, even at a lower concentration
of gallium, resulted in approximately half as many resistant colonies (Fig. 4C). The rate
of colony growth was substantially lower on the Ga/5-FC plate (Fig. 4B), likely due to
the pathogen’s inability to produce pyoverdine to alleviate gallium toxicity. From this
plate, we isolated 40 individual colonies and passaged them through drug-free, nutri-
ent-rich medium for further characterization.

Bacteria from all 40 colonies grew better in the presence of gallium than the paren-
tal strain (Fig. 4D and Fig. S3A), indicating that mutants have bona fide resistance and
are not merely persisters. Interestingly, all mutants remained sensitive to 5-FC (Fig. 4E
and Fig. S3B). On the other hand, spontaneously resistant colonies isolated from P. aer-
uginosa grown in the presence of 5-fluorouracil (5-FU) were resistant to 5-FC-mediated
pyoverdine inhibition (Fig. 4E), which is consistent with our observations that 5-FC is
likely to be metabolized through 5-FU to have its effect (18, 21). These results suggest
that the effect of 5-FC is through its role as an antivirulent, even in the presence of gal-
lium. This makes it more likely that treatment will continue to exert low selective pres-
sure for evolving resistance.

Mechanism of gallium nitrate resistance. To elucidate the mechanism of gallium
resistance in the Ga/5-FC-adapted mutants, we first investigated whether increased
pyoverdine production decreased sensitivity to gallium. Interestingly, none of the 40
mutants exhibited increased pyoverdine production (Fig. S3C), suggesting that the
mechanism of resistance was independent of this siderophore. Previous observations
by Garcia-Contreras and colleagues indicated that increased pyocyanin production
could confer resistance to gallium (34), so we measured that as well. Neither the paren-
tal strain nor representative mutants produced detectable levels of pyocyanin in M9
media (data not shown).

To study pyoverdine-independent resistance to gallium(III), a P. aeruginosa DpvdF
mutant was plated on M9 agar containing 100mM Ga(NO3)3. Like its wild-type counter-
part, we noticed the appearance of spontaneously resistant colonies (Fig. S4A), which
remained resistant to gallium after passaging in drug-free medium (Fig. S4B and C). We
subjected one of the mutant strains to whole-genome sequencing and discovered a
single mutation, which was located in the hitA gene (791A!C; H264P) (Fig. 4F). hitA
encodes a periplasmic ferric iron-binding protein belonging to the HitABC class of
transporters that is responsible for the delivery of ferric iron from the periplasm to the
cytoplasm (35). Mutations in hitA and hitB have previously been shown to confer resist-
ance to Ga(NO3)3 in a transposon mutagenesis screen (34).

We sequenced the genomes of three Ga/5-FC-adapted mutants to determine
whether they carried similar mutations. Each mutant exhibited monogenic mutations:
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one mutant had a nonsense mutation in hitB, while the other two mutants carried the
same glutamic acid-to-aspartic acid substitution (E162D) in the PA3538 gene (Fig. 4F).
As Guo and colleagues demonstrated that PA3538, in combination with hitAB, allows
the transport of both iron(III) and gallium(III) into E. coli, which normally lacks this
transport function (35), it is likely that PA3538 represents the missing HitC protein for
P. aeruginosa. Interestingly, none of these mutants carried mutations in upp, while the
5-FU-adapted strain exhibited a 42-bp deletion in this gene (Fig. 4F).

Tetracyclines inhibit pyoverdine production. To test whether Ga(NO3)3 synergizes
with other pyoverdine inhibitors, we turned to bacterial translational inhibitors.
Pyoverdine biosynthesis requires at least 14 enzymes, including 3 large peptide syn-
thetases, PvdL, PvdD, and PvdJ, that produce the 8- to 11-amino-acid side chain

FIG 4 P. aeruginosa mutants adapted to Ga/5-FC remain sensitive to 5-FC. (A and B) Photographs of P. aeruginosa PAO1 grown on M9 agar plates
supplemented with 5-fluorocytosine, Ga(NO3)3, or both after 36-h (A) or 60- to 84-h (B) incubation at 37°C. (C) Number of spontaneously resistant colonies
counted after 60 h on 300mM Ga(NO3)3 or 84 h on 150mM Ga(NO3)3 and 250mM 5-FC. (D) Bacterial growth in M9 medium supplemented with 64mM Ga
(NO3)3 for PAO1 parental strain (black), resistant colonies from the Ga/5-FC plate (gray), and resistant colonies from the 300mM Ga(NO3)3 plate (red). (E)
Percent pyoverdine production in M9 medium supplemented with 100mM 5-FC for the PAO1 parental strain (black), resistant colonies from the Ga/5-FC
plate (gray), and resistant colonies isolated from a plate containing 1mM 5-fluorouracil (5-FU) (yellow). Pyoverdine production was normalized to that of
the no-drug control. (F) Mutations found in various Ga(NO3)3 or 5-FU-resistant mutants. Error bars in panel C represent SEM for four biological replicates.
Error bars in panels D and E represent SEM for two biological replicates. *, P , 0.01 by Student’s t test. nt, nucleotide.
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attached to the dihydroxyquinoline core (36). The large size of these proteins (each is
greater than 2,000 amino acids) is likely to make them more sensitive to translational
inhibition. We predicted that tetracycline-class antibiotics, which inhibit the 30S ribo-
somal subunit, would limit pyoverdine production, even at concentrations insufficient
to compromise growth. We tested this by inoculating wild-type P. aeruginosa into
media containing various concentrations of tetracycline (Fig. 5A to C) or doxycycline
(Fig. 5D to F) and measured bacterial growth and pyoverdine production. We observed
a decrease in pyoverdine production, even at concentrations where bacterial growth
was unaffected. Higher (but still clinically relevant) concentrations of tetracycline-class
antibiotics exhibited a strong bacteriostatic effect against P. aeruginosa and nearly
abolished pyoverdine production.

We tested whether this was also true for gentamicin, an aminoglycoside antibiotic
that also inhibits the 30S ribosomal subunit. As expected, gentamicin significantly cur-
tailed pyoverdine production at subinhibitory concentrations (Fig. 6A to D). We
extended this finding using P. aeruginosa PA2-61, a tetracycline- and gentamicin-resist-
ant isolate from a pediatric cystic fibrosis patient (7). In this isolate, tetracycline main-
tained its bacteriostatic and pyoverdine-inhibitory activity, while gentamicin had no
effect on bacterial growth or pyoverdine production (Fig. 6E and F). Consistent with
this, we identified a multidrug resistance transposon in the genome of PA2-61 that
encodes the aminoglycoside acetyltransferase AAC(69)-IIc, which confers resistance to
gentamicin, and two copies of an OXA-2 beta-lactamase (Fig. 6G). For cystic fibrosis iso-
lates susceptible to gentamicin but resistant to tetracycline (PA2-72 and PA3-29) (7),
both drugs substantially curtailed bacterial growth and pyoverdine production
(Fig. S5).

One explanation for the discrepancy between the effects of tetracycline and genta-
micin may arise from common mechanisms that provide resistance to these antibiotics.
Tetracycline resistance in P. aeruginosa primarily occurs through the activity of multi-
drug efflux pumps (37, 38), while bacteria often biochemically modify aminoglycosides
to render them inactive (39). Some P. aeruginosa strains carry versions of the

FIG 5 Tetracycline-class antibiotics inhibit pyoverdine production. (A to C) Bacterial growth (A), pyoverdine production (B), and pyoverdine production
normalized to bacterial growth (C) of P. aeruginosa PAO1 in the presence of tetracycline. (D to F) Bacterial growth (D), pyoverdine production (E), and
pyoverdine production normalized to bacterial growth (F) of P. aeruginosa PAO1 in the presence of doxycycline.
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FIG 6 Gentamicin inhibits pyoverdine production only in drug-susceptible strains of P. aeruginosa. (A and B) Bacterial growth
(A) and pyoverdine production (B) of P. aeruginosa PAO1 in the presence of gentamicin. (C to F) Relative bacterial growth and
pyoverdine production of P. aeruginosa PAO1 (C and D) or cystic fibrosis isolate PA2-61 (E and F) in the presence of
tetracycline or gentamicin measured after 12 h of incubation in M9 medium. Values were normalized to those of the no-drug
control. (G) Diagram of the multidrug resistance transposon found in PA2-61. The aac(69)-IIc gene expresses an aminoglycoside
acetyltransferase conferring resistance to gentamicin. oxa-2 encodes a beta-lactamase. Error bars represent SEM for three
biological replicates. Statistical significance (Student’s t test) is indicated as follows: *, P , 0.01; #, P , 0.05; NS, not significant
(P . 0.05).
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tetracycline-inactivating enzyme tet(X) from Bacterioides fragilis (40, 41), which is a
potential alternative explanation. We consider this less probable, however, as posses-
sion of a tetracycline-inactivating enzyme remains a rare, but currently emerging, phe-
notype in P. aeruginosa (42). Of these two mechanisms, inactivation of antibiotics is
more likely to restore translational activity because it permanently reduces the concen-
tration of the compound, rather than simply reducing intracellular concentrations. This
allows tetracycline to continue to inhibit pyoverdine production. For these reasons, in
subsequent experiments, our efforts focused on tetracycline as a better pyoverdine in-
hibitor than gentamicin.

Tetracycline synergizes with gallium nitrate to inhibit P. aeruginosa. Unlike 5-
FC, tetracycline exhibits antimicrobial activity, so we tested a gradient of concentrations
of both tetracycline and Ga(NO3)3 (Fig. 7A). The combination of 18mM (8mg/ml) tetracy-
cline and 32mM gallium was able to effectively curtail P. aeruginosa growth (Fig. 7A). We
used SynergyFinder (28) to more accurately evaluate the interactions between tetracy-
cline and gallium. We observed modest, concentration-specific, synergistic interactions
between the two drugs in wild-type P. aeruginosa (d -score. 5) with the combination
performing on average ;6% better than the expected outcome based on the Bliss syn-
ergy model. While this average score was below the customary cutoff for strong synergy
(d -score. 10), the drug combination narrowly exceeded this standard in the area of max-
imal synergy (Fig. 7C). We observed similar results for the highest single agency and zero
interaction potency synergy models (Fig. S6). As anticipated, no synergy was seen in the
pyoverdine biosynthetic mutant, where we observed generally antagonistic interactions
between the two compounds (Fig. 7B and D and Fig. S6).

It is a well-established paradigm that pyoverdine supports biofilm formation by
facilitating iron acquisition (43, 44), so we also tested whether the combination of tet-
racycline and gallium(III) was able to effectively inhibit P. aeruginosa biofilm formation.
As anticipated, the combination strongly compromised biofilm development (Fig. 7E
and F). Finally, we tested this drug combination in a C. elegans pathogenesis model.
While tetracycline and Ga(NO3)3 exhibited a modest attenuation of virulence on their
own, the combination of the two provided essentially complete rescue (Fig. 8).

DISCUSSION

The rise of antimicrobial resistance is universally recognized as a critical threat to
humanity. Despite this looming danger, antimicrobial development has waned, receiv-
ing little support from disinterested pharmaceutical programs or governments with
other legislative priorities. The most effective governmental programs that have arisen
involve stewardship and aim to stem further development of drug resistance by
restricting the use of particular antibiotics. Unfortunately, these programs will not lead
to the development of new treatments, and their efforts are stymied by regulatory apa-
thy in other nations.

One popular alternative to the development of completely new chemical entities is
to repurpose or reposition drugs that are already approved for other uses (45–47). For
example, we recently reported that cancer chemotherapeutics (21) and the insulin mi-
metic demethylasterriquinone B1 (48) have some potential for being repurposed as
antimicrobials. Since the biological characteristics are already known for compounds
approved by the U.S. FDA, preliminary safety studies are much simpler, and scientists
can move directly into efficacy studies.

Because gallium(III) is already FDA approved for some indications, it has been
explored for repurposing as an antipseudomonal agent. This led to discoveries that
gallium effectively treats P. aeruginosa infections in mice (22, 23). However, several
obstacles limit the potential of this treatment, such as the relatively straightforward ac-
quisition of resistance via mutation of hitAB (a ferric iron transporter), loss of pyochelin
[which is involved in gallium(III) import], or the development of gallium efflux activity
(26, 34, 49). Pyoverdine production is also known to decrease the efficacy of gallium(III)
treatment (24), as we demonstrated here as well. This is likely to be a consequence of
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FIG 7 Tetracycline synergistically potentiates Ga(NO3)3. (A and B) Heatmap of PAO1 (A) or PAO1DpvdF (B) fraction bacterial growth in the presence of
specified concentrations of tetracycline (Tet) and Ga(NO3)3 measured after 12 h of incubation in M9 medium. Values were normalized to those of the no-
drug control. (C and D) 3-Dimensional synergy maps for tetracycline and Ga(NO3)3 showing synergy scores (d -score) for each drug combination for wild-
type PAO1 (C) and PAO1DpvdF (D). d -scores were calculated based on the Bliss synergy model. (E) Photograph of P. aeruginosa biofilms stained with
crystal violet after 20-h growth in M9 medium. (F) Quantification of crystal violet staining after acetic acid solubilization. Error bars represent SEM for three
biological replicates. *, P , 0.01 by Student’s t test.
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irreversible sequestration of the metal by pyoverdine. While both pyoverdine-gallium and
ferripyoverdine translocate into the bacterium, pyoverdine-gallium accumulates in the
periplasm (27). In the periplasm, iron(III) is reduced, lowering pyoverdine’s affinity and
allowing the ferrous iron to be transported into the cytoplasm and the pyoverdine to be
exported for reuse. Since gallium is redox inactive, the affinity is unchanged, and the
metal cannot be released. Pyoverdine-gallium is also less efficiently translocated into the
cell than ferripyoverdine (50) though similar observations were also made for pyochelin-
gallium (51). The difference between the two siderophores is likely due to their affinities
toward ferric iron and gallium. Pyochelin exhibits lower affinity toward ferric iron and is
presumed to release the metal in its oxidized state, allowing pyochelin to function as a
gallium shuttle rather than as a sink. On the basis of these principles, Frangipani and col-
leagues have demonstrated that the pyochelin-gallium complex is actually a more effec-
tive growth inhibitor than gallium nitrate alone (26). Similar observations have been pre-
viously made for the pyochelin-vanadium complex (52).

Another potential method to improve gallium(III) effect is to combine it with a con-
ventional antimicrobial. This approach has also been documented, as Goss and col-
leagues investigated the interactions between gallium nitrate and a panel of antipseu-
domonal antibiotics. Gallium synergized with colistin and piperacillin-tazobactam but
had no effect on the inhibitory effects of ceftazidime, ciprofloxacin, or aztreonam (22).
Most notable, however, was that gallium exhibited antagonism with tobramycin, par-
tially restoring bacterial growth inhibited by the antibiotic (22). This finding challenges
the potential of gallium(III) as an antipseudomonal agent since tobramycin is currently
the standard of care drug for inhaled antibiotic therapy in cystic fibrosis patients (53).
Thus, the identification of additional therapeutics that exhibit either synergistic or
additive interactions with gallium would be crucial for its clinical applicability. For
instance, Halwani and colleagues demonstrated that the liposomal delivery of gallium
and gentamicin is substantially more effective in inhibiting P. aeruginosa than the free
drug treatment, even in a highly resistant clinical isolate (54).

In this report, we have demonstrated that pyoverdine inhibitors may be useful in
combination with gallium(III). 5-Fluorocytosine (5-FC) and tetracycline synergized with
gallium(III) to inhibit bacterial growth in vitro and mitigate P. aeruginosa virulence in
vivo. Antivirulents such as 5-FC are considered a promising new class of therapeutics
due to their presumably low selective pressure for resistance compared to conven-
tional antimicrobials (55). However, this advantage remains controversial since infec-
tion conditions can provide selective pressure for pathogens to develop resistance
against these drugs and become more pathogenic. This is likely the case for 5-FC
because the molecule reduces pyoverdine production, interfering with iron uptake. P.
aeruginosa can also easily acquire resistance through mutations in upp, its uracil phos-
phoribosyltransferase (32). However, we observed low pressure for resistance to 5-FC
in the presence of gallium, even when 5-FC indirectly contributes to growth inhibition,

FIG 8 Tetracycline and gallium effectively mitigate P. aeruginosa virulence against C. elegans. (A) Heatmap of fraction C. elegans death after exposure to P.
aeruginosa in the presence of tetracycline and Ga(NO3)3. (B) Fluorescent images of C. elegans stained with Sytox Orange cell impermeant nucleic acid stain.
(C) Quantification of fraction C. elegans death. Error bars represent SEM for three biological replicates. Statistical significance (Student’s t test) is indicated
as follows: *, P , 0.01; #, P , 0.05.
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suggesting that therapeutics that do not directly and overtly exhibit antibacterial activ-
ity may indeed have a longer shelf life than antibiotics.

However, it is also important to note that the synergy between gallium(III) and 5-FC
or tetracycline depends on effectively limiting pyoverdine production. Unfortunately,
P. aeruginosa clinical isolates constitute a highly diverse set of strains with often heter-
ogeneous phenotypes. For instance, we recently reported that approximately one-third
of P. aeruginosa cystic fibrosis isolates we tested from pediatric cystic fibrosis patients
lost the ability to produce pyoverdine (7). Martin and colleagues have made similar
observations from cystic fibrosis patient sputum samples (56). Others have taken this a
step farther and demonstrated that P. aeruginosa adapts its iron acquisition strategy
within the cystic fibrosis lung by transitioning from pyoverdine-mediated ferric iron
uptake toward heme assimilation/utilization (57, 58).

Nevertheless, pyoverdine remains a critical acute virulence factor in a majority of P.
aeruginosa clinical isolates. Pyoverdine production can also be rapidly measured from
bacterial cultures or directly detected from patient samples using spectrophotometric
tools due to its distinct spectral properties (56), allowing personalized pyoverdine-
based treatments to be used. Identifying additional pyoverdine inhibitors (e.g., fluoro-
pyrimidines, twin arginine translocase inhibitors [59, 60], quorum-sensing inhibitors
[61–63], etc.) and investigating their interactions with gallium may help optimize gal-
lium nitrate as an antipseudomonal therapeutic.

MATERIALS ANDMETHODS
Bacterial strains and growth conditions. P. aeruginosa strain PAO1, pyoverdine biosynthetic mu-

tant (PAO1DpvdF), and pyochelin biosynthetic mutant (PAO1DpchBA) were provided by Dieter Haas.
Deidentified P. aeruginosa isolates from pediatric cystic fibrosis patients were provided by Carolyn
Cannon (7). For all experiments, P. aeruginosa was grown in modified M9 medium (1% 5� M9 salts
[Difco], 3% low-iron Casamino Acids [Difco], 1mM MgSO4, 1mM CaCl2) after initial inoculation of 100-
fold diluted overnight culture. Bacteria were grown in 96-well plates for 12 h at 37°C. Bacterial growth
(absorbance at 600 nm) and pyoverdine production (excitation [Ex.], 405 nm; emission [Em.], 406 nm)
were measured using a Cytation5 multimode plate reader (BioTek).

P. aeruginosa whole-genome sequence analysis. Bacterial genomic DNA was purified from over-
night culture using DNeasy UltraClean Microbial kit (Qiagen). Paired-end Illumina sequencing was per-
formed by the Microbial Genome Sequencing Center (MiGS) (Pittsburgh, PA) for at least 40� genome
coverage. For the identification of aminoglycoside-modifying enzymes, raw sequences were first
assembled via SPAdes (64) and annotated via Prokka (65). Mutation analysis in gallium-resistant mutants
was performed using breseq (66).

P. aeruginosa biofilm formation assay. P. aeruginosa bacteria were grown in M9 medium after ini-
tial inoculation of 100-fold diluted overnight culture in 12-well plates (1ml per well) at 30°C for 20 h. P.
aeruginosa biofilms were stained with 1ml crystal violet solution (0.1% crystal violet in 20% ethanol) for
30min after aspirating the culture supernatant. After the biofilms were gently washed in S basal buffer
twice, the stained biofilms were dried at 37°C. To quantify biofilm formation, the crystal violet stain was
solubilized in 30% acetic acid, and absorbance at 550 nm was measured using a Cytation5 multimode
plate reader (BioTek) (67).

C. elegans pathogenesis assay. C. elegans-P. aeruginosa liquid killing was performed as previously
described (68). In brief, C. elegans nematodes were treated with P. aeruginosa in liquid kill medium (25%
SK medium [0.3% NaCl, 0.35% Bacto peptone in water] in S basal buffer [100mM NaCl, 50mM potassium
phosphate {pH 6.0}]) after initial inoculation of saturated overnight culture to an optical density at 600
nm (OD600) of 0.03 in 384-well plates. After 68 h of incubation at 25°C, all wells were extensively washed
with S basal buffer and treated with Sytox Orange nucleic acid stain for 12 h (ThermoFisher Scientific) to
label dead organisms. Bright-field and fluorescent images were acquired on a Cytation5 multimode
plate reader (BioTek) and analyzed via Cell Profiler (www.cellprofiler.org) using a previously established
pipeline (69).

Drug interaction analysis. Drug interactions and synergy scores (d -scores) were calculated using
SynergyFinder 2.0, an online tool based on the Bliss, highest single agency (HSA), and zero interaction
potency (ZIP) synergy models (28).
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