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Abstract

Mild traumatic brain injury (mTBI) represents a significant public healthcare concern, accounting for the majority of all head
injuries. While symptoms are generally transient, some patients go on to experience long-term cognitive impairments and
additional mild impacts can result in exacerbated and persisting negative outcomes. To date, studies using a range of
experimental models have reported chronic behavioral deficits in the presence of axonal injury and inflammation following
repeated mTBI; assessments of oxidative stress and myelin pathology have thus far been limited. However, some models
employed induced acute focal damage more suggestive of moderate—severe brain injury and are therefore not relevant to
repeated mTBI. Given that the nature of mechanical loading in TBI is implicated in downstream pathophysiological changes, the
mechanisms of damage and chronic consequences of single and repeated closed-head mTBI remain to be fully elucidated. This
review covers literature on potential mechanisms of damage following repeated mTBI, integrating known mechanisms of
pathology underlying moderate—severe TBls, with recent studies on adult rodent models relevant to direct impact injuries
rather than blast-induced damage. Pathology associated with excitotoxicity and cerebral blood flow-metabolism uncoupling,
oxidative stress, cell death, blood-brain barrier dysfunction, astrocyte reactivity, microglial activation, diffuse axonal injury, and
dysmyelination is discussed, followed by a summary of functional deficits and preclinical assessments of therapeutic strategies.
Comprehensive characterization of the pathology underlying delayed and persisting deficits following repeated mTBl is likely
to facilitate further development of therapeutic strategies to limit long-term sequelae.
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Mild TBI (mTBI) patients score 13—15, moderate TBI patients
score 9—12, while severe injuries score <9. Additionally, tradi-
tional neuroimaging techniques such as magnetic resonance
imaging and computed tomography are employed to detect the
presence of gross lesions, allowing a broad differentiation
between focal and diffuse damage.® Patients diagnosed with

Introduction

Traumatic brain injury (TBI) encompasses structural brain
damage or physiological alteration in brain function resulting
from an external force.! Worldwide, the leading causes of TBI
are falls and motor vehicle accidents, resulting in an estimated
10 million deaths and/or hospitalizations annually?; TBI is the
leading cause of mortality and morbidity for persons under
45 y of age.®> TBI is a robust environmental risk factor for
neurodegenerative disorders,” and chronic sequelae may lead
to permanent disability and ongoing care and cost.” Currently,
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therapeutic interventions for TBI are lacking.

TBI can be mechanically induced by blunt or penetrating
impacts, non-impact blast waves, or inertial loading. While
penetrating injuries are typically synonymous with severe TBI,
other causes of injury do not necessarily lead to specific injury
severity or prognosis. As such, classification systems are
employed to delineate TBI severity, based on clinical presenta-
tion and structural findings.® Clinical severity is determined
using the universally accepted Glasgow Coma Scale,” which
scores ocular, motor, and verbal responses on a scale of 3—15.
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moderate or severe TBIs are often grouped together, as they
exhibit gross structural damage on neuroimages. Overt abnorm-
alities are typically focal in nature and can include cerebral
contusions, extra or subdural hematomas, subarachnoid hemor-
rhage, intracranial or intraventricular bleeding, or skull frac-
tures.” On the other hand, patients diagnosed with a mTBI
exhibit normal neuroimaging'®; however, it is important to note
that microscopic damage such as diffuse axonal injury (DAI) is
undetectable using traditional neuroimaging techniques.® As
such, a diagnosis of mTBI is determined on clinical observation
or self-reported symptoms; the term concussion is generally
used interchangeably to define the clinical syndrome.'" Here-
after, mTBI will be used to describe these injuries.

Mild and Repeated mTBI

Epidemiological research indicates that 70-90% of all TBIs are
mild, with incidence likely to be substantially underesti-
mated.'? Mild head trauma is common among professional
athletes engaged in contact and collision sports® and military
personnel?; this review will focus on models of mTBI more
relevant to sports-related injury. The primary cause of mTBI in
sports is the application of both linear and rotational accelera-
tion and impact deceleration forces to the brain, inducing non-
penetrating diffuse rather than focal damage.'*'® Typically,
mTBI is characterized by a transient disturbance in brain func-
tion, with short-lived neurological symptoms including head-
ache, dizziness, and confusion.!” Symptoms for most patients
generally subside within 10 d of injury'®; however, they can
persist with 10-40% developing postconcussion syn-
drome,'*?! associated with long-term cognitive deficits and
white matter changes.”” While a single mTBI may not always
result in behavioral impairments, clinical research suggests
that further injuries induce cumulative effects, by both increas-
ing the susceptibility for further mTBI and progressing to long-
term functional deficits?*** and underscoring the importance
of “return to play” guidelines in sports. In particular, retired
American football athletes with a history of repeated mTBI
show elevated rates of cognitive impairment,? long-term psy-
chiatric illness, and an increased incidence of chronic traumatic
encephalopathy (CTE), a progressive tauopathy.?®® This
review focuses on potential mechanisms of damage underlying
the cumulative and chronic effects of repeated “closed-head”
mTBI, referring to single mTBI in the context of studies explor-
ing subsequent injuries. For more detailed discussion of single
mTBI, the reader is referred to Dewitt et al.>’ for review. The
importance of using clinically relevant experimental models of
mTBI s receiving increasing attention and will be touched upon
here (see Xiong et al.,’* Angoa-Pérez et al.,>' Laplaca et al.,*
Namjoshi et al.,*® and Zhang et al.>* for further insights).

Experimental Models of TBI: Toward
Clinical Relevance

In order to develop therapeutic strategies to prevent or ame-
liorate long-term damage and deficits following repeated

mTBI, an understanding of the pathophysiological cascade
of events and the mechanistic link between acute and chronic
mTBI pathology needs to be elucidated. This can only be
achieved using experimental models that suitably approxi-
mate the forces behind the primary injury, producing struc-
tural and functional deficits akin to human mTBI. Further,
there is a threshold for the generation of injury and its poten-
tial exacerbation by repeated traumatic insults, with impli-
cations for long-term outcome measures. As such, additional
considerations in experimental design include severity and
number of impacts as well as inter-injury interval. As the
majority of studies exploring repeated mTBI have used
young adult rats of 2-3 mo of age, this review will focus
on studies using adult rodents.

The majority of mechanistic TBI studies have used mod-
els incorporating stereotaxic head restraint, anesthesia, a cra-
niotomy, and direct impact onto the brain to induce focal
injuries and marked acute behavioral deficits. However,
human mTBI features head movement in the absence of
dural penetration and structural and functional deficits are
subtle. Craniotomies® and anesthesia®® in rodent models of
mTBI likely confound damage, particularly if repeated, and
do not reflect the human injury. While there are no univer-
sally accepted criteria for validity in mTBI models, non-
penetrating mechanical input, without acute focal damage
and incorporating linear and rotational forces, is intuitively
desirable. Indeed, confirming the absence of skull fracture,
hemorrhage and acute cell death, and/or neuronal degenera-
tion following mTBI is becoming commonplace.”” An
absent or mild acute behavioral phenotype and the capacity
for repeated injury are further useful attributes of a suitable
model of repeated mTBI.

However, given the heterogeneity of TBIs in humans, and
inherent lack of face validity of animal models, no single
experimental model can mimic the entire complexity of TBI-
induced pathology. While closed-head models incorporating
both linear and rotational forces are more appropriate to
model single and repeated mTBI, it is nevertheless important
to consider “open-head” models causing moderate and
severe injuries for what they can tell us about mechanisms
of pathology.

Open-head Models of TBI

Open-head experimental models, namely, lateral fluid per-
cussion (LFP)*” and controlled cortical impact (CCI),*® have
been extensively utilized to explore moderate—severe TBI.
Within experiments, direct force onto the brain imparts
highly reproducible focal damage, though changes in cra-
niotomy position translate to variable outcomes between
laboratories.®® In the LFP model, a pendulum strikes a
fluid-filled reservoir, and pressure from a fluid-filled bolus
is forced into the epidural space,>”** The LFP model typi-
cally induces focal damage such as hemorrhage and edema
at the site of impact, with progressive subcortical cell
death,*'™** thereby replicating many structural,
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pathological, and neurobehavioral features of moderate—
severe human TBIs. LFP has been used to model single**
and repeated mTBL**" by lowering the pendulum height
to reduce the pressure pulse and therefore injury severity.
However, focal cell loss in control animals receiving a
single “mild” TBI may still remain.

In the CCI model, an electromagnetic or pneumatically
driven piston directly penetrates the underlying cortex from
a known distance and velocity.*® Deformation of the under-
lying cortex induces cortical cell loss and subdural
hematoma®’ and leads to more diffuse axonal injuries than
the LFP model.*®* CCI simulates many pathological and
behavioral outcomes characteristic of moderate—severe TBI
in humans, and injury severity can be graded by adjusting
impact depth and velocity.*® Indeed, CCI is extensively
employed to model repeated mTBI,**> including closed-
head variations without focal damage®*~’ and incorporating
acceleration—deceleration forces.”®° However, care must be
taken when interpreting findings referred to in publications
as mild or repeated mild CCI, as head movement upon
impact is still predominantly restricted.

Closed-Head Models of TBI

In addition to closed-head mild CClIs, weight-drop (WD)
models are capable of delivering a diffuse injury through
the intact skull. While the first WD models mainly induced
focal damage, with®® or without a craniotomy,®'-®?
subsequent closed-head models were developed to produce
more diffuse damage.®*** In Marmarou’s WD impact-
acceleration model, a free-falling weight is guided down
a tube, striking a steel disk placed on the rodent’s exposed
skull, preventing skull fracture.®> As the rat rests on a piece
of foam, slight movement of the head is allowed, thereby
transmitting some acceleration forces. The result is
widespread damage of neurons and axons alongside severe
compression of the cranial vault, suitably modeling non-
penetrating moderate—severe TBI.

In recent years, the heaviness of the weight and the drop
height have been modified and titrated to eliminate focal
cortical injury as an acute feature.®>*’ Increasing amounts
of head movement have also been incorporated,’®’* to more
closely approximate human head kinematics following
mTBIL.”® As such, WD models are increasingly utilized to
model repeated mTBI. To incorporate rapid translational and
angular acceleration forces, the animal is rested on a
Kimwipe,”? aluminum foil’®”" or traversable “trap door”’*
suspended on a hole in the center of the apparatus stage. The
impact results in unrestricted movement of the head and
body as the animal readily penetrates the material upon
impact and free falls onto a padded cushion below.

Various other models have been developed to increase
rotational acceleration”> and employ momentum-exchange
principles in a frontal impact model’®”” through the use of a
pendulum striker’®”® as well as projectiles.***! Mechanical
input parameters and subsequent outcomes can be more

variable in closed-head models incorporating rotational head
movement.”> However, resulting tissue strains are greater
than those produced by the pure translational forces that
define open-head models'®*? and are more reflective of
human head movement following impact-related mTBI.

Mechanisms of Pathology Following TBI

TBI is traditionally characterized by primary and secondary
injury phases, both contributing to the extent of damage.®
The primary injury represents acute disturbances and/or
damage induced at the moment of impact, while secondary
injury mechanisms, collectively known as secondary degen-
eration, involve a cascade of downstream interacting patho-
physiological mechanisms.'> In mild and repeated mTBI,
however, there is no clear spatial separation between pri-
mary and secondary injury, and mechanisms of pathology
remain insufficiently characterized. In a single mTBI, a
dynamic restorative process likely underpins the transient
alteration in brain function.®® In contrast, the long-term
sequelae of repeated mTBI are more reminiscent of moder-
ate—severe injuries, suggesting that similar underlying cellu-
lar and metabolic events are occurring in repeated mTBI,
albeit to a reduced degree and in a starkly different temporal
progression.®>%® It remains to be elucidated whether this
worsening of long-term outcome is due to a cumulative
effect of subsequent mTBIs or the independent or synergistic
action of secondary processes exacerbating outcome.
Herein, mechanisms of damage known to occur in moder-
ate—severe TBI are described, with specific reference to
evidence from repeated mTBI literature where available.
Table 1 provides further study-specific information of
known pathology in the various repeated mTBI models.

Excitotoxicity and Cerebral Blood
Flow-Metabolism Uncoupling

In moderate—severe TBI, the initial impact mechanically dis-
rupts axolemma and neuronal plasmalemma protein chan-
nels, causing immediate depolarization and dysregulated
jonic homeostasis.®” Indiscriminate release of excitatory
amino acids, particularly glutamate, exacerbates potassium
(K™) efflux in a severity-dependent fashion.*® Overactiva-
tion of glutamate receptors and voltage-gated calcium
(Ca*") channels facilitates Ca® " influx, triggering mitochon-
drial Ca>" sequestration, Ca*"-dependent Ca’" release from
intracellular stores, and dramatically elevated cytosolic
Ca?" % Further, excessive Ca®" influx can initiate cell death
pathways’® and lead to compaction of neurofilaments,
microtubule disassembly, and impaired axonal transport,
coupled with eventual swelling and axotomy.”! In moder-
ate—severe TBI, Ca>" accumulation as measured by isotope-
labeled Ca®" can persist for up to 1 wk, concomitant with
memory deficits in the Morris water maze (MWM).”? Addi-
tionally, Ca®"-induced depolarization of the mitochondrial
membrane allows electron leakage to oxygen in the electron
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transport chain, uncoupling oxidative phosphorylation, and
suppressing adenosine triphosphate (ATP) synthesis in a
CCI model.”® ATP-dependent pumps are engaged to restore
TBI-induced ionic imbalances, resulting in a transient
increase in cerebral glucose uptake.”® In a closed-head
model of diffuse TBI, mitochondrial dysfunction, as mea-
sured by ATP and n-acetyl aspartate reductions, positively
correlates with injury severity.”>*® Concomitant with hyper-
glycolysis, acute decreases in cerebral blood flow (CBF)
have been well-documented in experimental models,””-*
and this failure to meet increased energy demands induces
a severity-dependent metabolic crisis.”” A subsequent period
of hypoglycolosis can ensue.”®”'°° While complete recov-
ery typically occurs within 10 d,'®" the precise longevity
correlates with severity,' behavioral deficits,'® and pro-
gressive white matter damage above a certain threshold.”
Interestingly, effects of applying a secondary insult such as
ischemia or bilateral carotid occlusion following
CCI*19%195 and WD'%® suggest that the critical temporal
CBF-metabolic uncoupling period reflects a window of
vulnerability of increased susceptibility. In a repeated
moderate TBI WD study, an inter-injury interval of 1-3 d
induces maximal damage in a range of metabolic outcome
measures.'’” The state of metabolic depression reflects an
altered cerebral state that is associated with functional def-
icits and has been proposed to reflect a “window of
vulnerability” or vulnerable cerebral state.'®’”

CBF-Metabolism Uncoupling Following Repeated mTBI

Aligning with the acute temporal profile of ionic fluxes and
metabolic events characterizing moderate TBIs,”' it has been
suggested that acute ionic imbalances and energy dysregula-
tion following a single mTBI also represent a temporal win-
dow of vulnerability that is associated with acute behavioral
deficits'®”'%® and increased susceptibility to damage with
further insults.”***"! Indeed, while acute cerebral hypome-
tabolism, mitochondrial dysregulation, and cognitive defi-
cits resolve within 1 wk following a single WD mTBI, a
second injury delivered after a 3 but not 20 d interval,
resulted in exacerbated metabolic dysregulation concomitant
with cumulative cognitive deficits.®® While the implications
of these findings on long-term outcome remain unexplored,
it is possible that these earlier chemical vulnerabilities may
be the impetus for longer-lasting metabolic cascades.

Oxidative Stress

There is a highly interactive relationship between gluta-
mate excitotoxicity, intracellular Ca’" accumulation, meta-
bolic depression, and reactive oxygen species (ROS)
production,'®''! and the latter is thought to mediate
neurotrauma-induced secondary degeneration.''? TBI is
characterized by increases in both ROS and reactive nitro-
gen species production as a consequence of excessive''?
intracellular Ca®" as well as decreases in enzymatic or

nonenzymatic antioxidants such as manganese superoxide
dismutase glutathione peroxidase, ascorbic acid, and glu-
tathione.''*!'® When excess ROS and reactive nitrogen spe-
cies overcome endogenous antioxidant capacities, the state of
metabolism is referred to as oxidative stress.'!” Subsequent
oxidation of lipids, proteins, and DNA to toxic metabolites
causes cellular dysfunction''®; ROS-mediated tissue damage
has been positively correlated with TBI severity.''*!%

Oxidative stress after TBI predominantly manifests as lipid
peroxidation, likely attributable to the brain’s high polyunsa-
turated fatty acid (PUFA) content.'?' In a rat focal contusion
model, a progressive increase in lipid hydroperoxides is
observed following an immediate post-traumatic burst in
hydroxyl radical formation.'** ROS-mediated lipid peroxida-
tion, measured by 4-hydroxynonenal'?* and malondialdehyde
concentrations,'?* respectively, is similarly increased follow-
ing moderate CCI and WD TBI. Additionally, lipid peroxida-
tion has been associated with blood-brain barrier (BBB)
damage following CCI TBL'?? Acute increases in protein
nitration'? and DNA damage'** can also occur following TBI,
while excessive ROS may also trigger caspase-dependent'*®
and -independent cell death pathways.'?’

In a repeated moderate WD study, increases in reduced
glutathione/oxidized glutathione, and nitrate and nitrite
stressors, together with decreases in the antioxidant ascorbic
acid were observed 48 h after final injury, when 2 moderate
TBIs were given 1-3, but not 5 d apart.''® While studies are
limited, these findings provide further support for an acute
temporal period of compromised cellular defenses in the
brain, with modulation of oxidative and nitrosative stressors
by injury interval and a cumulative effect of increased ROS
production following repeated moderate TBI implicating
oxidative stress in the proposed window of vulnerability.
Beyond this, oxidative stress following moderate—severe
TBI feeds back to and propagates Ca®-induced glutamate
excitotoxicity and mitochondrial dysfunction. Further,
long-term oxidative stress plays a pivotal role in neurode-
generation'*®'% and potentially in the pathogenesis of neu-
rodegenerative diseases.'*%!3!

Oxidative Stress Following Repeated mTBI

Given the progressive nature of pathology and long-term
negative outcomes following repeated mTBI, oxidative
stress is implicated as a driver of damage. However, studies
exploring oxidative stress in the context of repeated mTBI
are scarce. A transgenic mouse model of Alzheimer’s
disease-like amyloidosis has been used to explore the
relationship between repeated mTBI and neurodegenerative
disease.'?>13% A transient increase in isoprostanes, a product
of free radical peroxidation of PUFAs, is reported following
a single mild CCI, and a subsequent injury given after 24 h
results in exacerbated lipid peroxidation that persists to 4
mo. Increased isoprostanes is associated with greater cogni-
tive impairment and accelerated brain amyloid beta (AP)
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protein accumulation and deposition'*?; similar findings
have been reported elsewhere.'

Cell Death

Injury-induced neuronal and glial cell death likely occurs
along a continuum of necrotic (passive) and/or apoptotic
(programmed) mechanisms,'**'*> resulting in removal of
injured and dysfunctional cells, but also progressive neuro-
nal degeneration and exacerbated functional deficits.'*®'3”
Necrotic cell death occurs under conditions of excitotoxicity
and metabolic failure particularly prevalent at the site of
impact immediately following focal TBI, while surviving
cells spatially separated from the primary necrotic injury can
undergo delayed and programmed cell death.® Caspase-3
triggers cell death in CCI'*® and LFP'*® TBI models, while
in a moderate—severe rat CCI study, protein unfolding fol-
lowing endoplasmic reticulum stress activates capase-12'4°
and elevated capsase-12 messenger RNA in a severity-
dependent manner.'*' In a severe CCI model, conditions of
impaired mitochondrial respiration and oxidative/nitrosative
stress are associated with apoptosis-inducing factor mediat-
ing cell death via poly(adenosine diphosphate ribose)
polymerase-1-induced apoptosis, 6 h post-injury in the hip-
pocampus.'*? The maintenance of intact mitochondrial
membrane potential is a critical factor in determining pro-
pensity toward apoptotic instead of necrotic mechan-
isms."**'** It follows that the type, extent, and
temporospatial distribution of cell death is closely related
to injury type and severity.'* Further, significant reductions
in mature oligodendrocytes in white matter tracts are
observed acutely,** subacutely,'**'*7 and persisting to
1 mo'*®!'*® following moderate LFP and CCI TBI. Conco-
mitant temporal and spatial association with increased
caspase-3 expression'*®!*® indicates oligodendrocyte
vulnerability to TBI-induced apoptosis in subcortical white
matter that may underlie dysmyelination and contribute to
secondary axonal injury.

Cell Death Following Repeated mTBI

Histological stains such as cresyl violet, hematoxylin and
eosin, and fluorojade are used to assess cell death as an acute
outcome following mTBI, with cell death is typically absent
following single mTBL>*>%>7% One repeated mTBI study
reported significant acute neuronal death in the entorhinal
cortex and around hemorrhagic lesions, following 5 CCI
mTBI given at 24 h intervals.'>® Findings were deemed an
outcome of both injury number and inter-injury interval, as a
48-h interval prevented neurodegeneration'>’; however, a
study using similar injury parameters and experimental
design did not report neurodegenerative changes.'>! While
a threshold for injury severity exists, the typical absence of
overt neuronal cell death at both acute and chronic time
points suggests that neuronal dysfunction and diffuse axonal
injury are greater contributors to the progressive nature and

chronic sequelae of mTBI and repeated mTBI than death of
neurons; little is known regarding the death of glial cells
following repeated mTBI.

Blood-Brain Barrier (BBB) Dysfunction

The BBB is a highly dynamic system comprising a network
of non-fenestrated endothelial cells connected by tight junc-
tions surrounded by astrocytic end feet and pericytes that
physically separate the intra- and extravascular central ner-
vous system (CNS) content.'>? In response to perturbations
in the neurochemical microenvironment, BBB tight junc-
tions, transporters, and enzymes are regulated to protect the
brain from noxious circulating stimuli while ensuring nutri-
ent supply.'>*'** Following focal moderate—severe TBI, the
BBB is breached, resulting in immediate infiltration of per-
ipherally circulating leukocytes into the brain parenchyma.
Together with the initiation of transcriptional changes in the
neurovascular network, infiltrating cells aggravate the resi-
dent neuroinflammatory response,'>>"'*® culminating in neu-
ronal dysfunction and neurodegeneration and a feed forward
loop of further neuroinflammation.'>” Excessive excitatory
amino acids, ROS, nitric oxide (NO) production,'*® and
upregulated proinflammatory cytokines'>® contribute to and
exacerbate BBB dysfunction and subsequent developing
pathology.'®*-1¢!

Primary mechanical injury may also damage endothelial
cells, leading to capillary albumin extravasation and an
increase in small vessel permeability.'>”'*> Temporal pro-
gression varies between animal models; BBB permeability
increases immediately at the site of LFP injury with a hasty
resolve,'®® while an acute biphasic response is observed in a
CCI model.'®* Further, increased cerebral vascular perme-
ability is reported 4-6 h following focal closed-head WD
injury, with concomitant widespread protein leakage®''®
persisting for up for 4'°° and 7 d.°' Such an extended open-
ing of the BBB can exacerbate posttraumatic invasion of
leukocytes'®” and neutrophils.'>® Detachment of vascular
pericytes and migration into the parenchyma also occurs
within 24 h following a moderate WD injury.'®® While there
are a multitude of factors contributing to the probability,
severity, and longevity of negative long-term TBI-induced
sequelae,'® there is increasing evidence of chronic inflam-
matory states in animal models of diffuse TBI, characterized
by less pronounced leukocyte recruitment,’ and persisting
microgliosis in white matter tracts,'’®!”" implicating dys-
function of the BBB in continuing pathology.

BBB Dysfunction Following Repeated mTBI

There are few reports of BBB dysfunction following
repeated impact-related mTBI. Assessment of BBB integrity
via permeability to immunohistochemically detected intra-
cerebral mouse immunoglobulin G (IgG) and has indicated
limited BBB breach. Specifically, following a single mild
CCI, a small focal BBB breach was observed up to 48 h after
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injury, while a second injury given 24 h later resulted in
increased cortical and white matter IgG immunoreactivity,
with associated intraparenchymal serum extravasation that
spread to white matter tracts.* Although not measuring
BBB disruption directly, 5 mild CCI TBIs delivered at either
24- or 48-h intervals revealed major histocompatibility com-
plex class Il-associated antigen-labeled macrophages in
hemorrhagic lesions.'*® Other repeated mTBI studies
revealed no BBB compromise in CCI,59 WD,% or Kim-
wipe/aluminum foil models,”'’* although all analyses were
conducted at acute time points.

Astrocyte Reactivity

Astrocytes are critical early responders to TBI-induced
extracellular changes, becoming reactive in a process known
as astrogliosis and exerting complex heterogeneous
responses including altered gene expression, hypertrophy,
and proliferation.'’® Astrocytes regulate the inflammatory
response and can subdue the spread of damage. Through
membrane protein channels and engagement of ATP-
dependent pumps, astrocytes recycle excitatory amino acids
to reduce glutamate excitotoxicity and restore K, Ca*>", and
Na* ionic homeostasis.'”* Buffering excess extracellular K™,
glutamate and ATP levels allow for provision of substrates
for ATP synthesis and/or neuronal consumption to counter
ROS-induced mitochondrial dysfunction and scavenge free
radicals.'”* However, astrocytes can also release free radi-
cals and proinflammatory cytokines and exacerbate ATP-
induced ATP release, triggering microglial activation and
propagation of Ca’" waves via the astrocytic
syncytium.'”>!”® These dual neuroprotective and neurotoxic
responses have been observed following LFP and CCI TBI
and the balance between responses depends on the nature
and severity of the injury.'””"'”® However, how astrocytes
interact with surrounding cells to influence the progression
of response to repeated mTBI is yet to be fully elucidated.

Astrocyte Reactivity Following Repeated mTBI

While astrocyte responses typically increase with mTBI
severity, number, and decreased inter-injury interval,'>%'>!
there is variability in reported time courses of response. A
single mTBI can lead to a rapidly resolving'®' or mildly
progressive™ ' astrogliosis in a closed-head CCI model.
When 4 mTBIs at 24-h intervals are delivered in both WD
rotational and CCI models, the astrocytic response is exacer-
bated at 1,°>'°° 7,72 and 14 d,”’ persisting to 6 mo, with
concomitant cognitive deficits.”® Increasing the inter-injury
interval to 1 wk results in no observable response,70 indicat-
ing that longer inter-injury intervals may be protective. Inter-
mediate inter-injury intervals of 48 h yield variable
outcomes. > Intriguingly, however, there is relative con-
sistency in the progressive spread of the astroglial response
from cortical to hippocampal to white matter domains in
repeated mTBI.

Microglial Activation

Microglia are spread throughout the brain parenchyma in
their quiescent state and are the primary immune effector
cells of the CNS.'"®! TBI-induced release of astrocyte-
derived ATP triggers microglial recruitment.'”> Microglia
proliferate and infiltrate toward the injury site, phagocytos-
ing necrotic tissue, cellular debris, and toxic substances,182
with the time course dependent upon the nature of injury.'®?
Also depending on the nature of the TBI, microglia upregulate
cell surface marker expression, enhance pro-inflammatary
cytokines (interleukin [IL]-1B, IL-6, and TNF-a)) and oxida-
tive metabolites (NO, ROS) release and increase protease
secretion, thereby exacerbating oxidative stress, neuroinflam-
mation, and axonal pathology.'®* Sustained microglial activa-
tion and chronic inflammatory states contribute significantly
to the spread of secondary degeneration,'® playing a pivotal
role in long-term and progressive axonal injury, neurodegen-
eration and neurological impairments'>>-'80:182.186.187 yq
mechanisms that include lipid peroxidation and apopto-
sis.'®>1%8 Indeed, there is increasing evidence of chronic
microglial activation in the cortex, corpus callosum (CC), and
thalamus up to 1 y after injury following moderate—severe
TBI.'® Alternatively, microglia can assume a reparative role
by releasing anti-inflammatory cytokines such as IL-10 that
inhibit proinflammatory functions.'® Numbers of micro-
glia along the cell death (M1) and repair promoting (M2)
phenotypic spectrum depend on TBI severity and kinetics
of regulation. 819

The “immunoexcitotoxicity” theory suggests an alterna-
tive to the traditional and functionally distinct M1-M2 phe-
notypic polarization. Microglia are said to move from their
resting and ramified state to one, where they swell with
proinflammatory cytokines, remaining “primed” for action
in the absence of inflammatory resolution.'”’ With further
triggers, microglia become increasingly aggressive in their
pro-inflammatory cytokine and free radical release, propa-
gating downstream cascades that exacerbate damage and
deficits, resulting in increased vulnerability to subsequent
stimuli.'”! The immunoexcitotoxicity theory may therefore
provide a potential mechanistic link between the progression
of acute to chronic pathology following repeated mTBI.

Microglial Activation Following Repeated mTBI

Microgliosis has been observed predominantly in the CC in
closed-head models of single and repeated mTBI. Mild
microgliosis in the CC is seen in the first 2 wk following a
single mTBI*>*-*"-7%; longer-term outcomes were not
assessed. However, 2 injuries delivered at 24-h intervals
result in prominent acute microglial responses that persist
in white matter until 7 wk.>® Interestingly, when 4 mTBIs are
given, exacerbated microglial hypertrophy and increased
immunoreactivity are observed at acute'>® and subacute,’’
but not chronic’® time points. No acute or subacute micro-
glial inflammation is observed when inter-injury interval is
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increased to 48 h in both CCI'*® and WD aluminum foil
models.”* In contrast, persisting microglial responses are
described in more severe, albeit still mTBL.> 3,180

Diffuse Axonal Injury (DAI)

DAI is a hallmark of TBI of all severities, in part due to
anisotropically arranged axonal projections in white
matter tracts being particularly susceptible to compression,
tension, and torsion forces during rapid acceleration/
deceleration.'”!'?%!9% The degree of axonal injury is
dependent on injury severity'®> and correlated with the
plane of mechanical loading and decelerating force.'** Dif-
fuse axonal injury is typically characterized by axonal
stretching, mitochondrial swelling, and transport dysfunc-
tion."”* In moderate—severe TBI, the mechanical loading
induces focal perturbations in the axolemma'®® that can
disrupt voltage-gated sodium (Na') channels, reverse the
Nat/Ca®*" exchanger, open voltage-gated Ca*" channels,
and facilitate excessive Ca®" influx.'”” Secondary messen-
ger cascades activate protein kinases, phospholipases, and
proteases, which within 6 h leads to either neurofilament
instability via phosphorylation or neurofilament collapse via
calpain-mediated proteolysis of side-arms.'*® Ca®"-mediated
microtubule disassembly ensues,'”® and cytoskeletal disor-
ganization often persists,”* with silver staining used to
visualize the punctate structures and argyrophilic fibers that
are observed. Proteins accumulate, leading to multifocal
axonal swellings that hinder axonal transport,' often
detected as accumulations of amyloid precursor protein
(APP).** Protein accumulation can initiate downstream cas-
cades associated with secondary disconnection of the axon
cylinder.'®” While the detached distal segment undergoes
Wallerian degeneration, the proximal axonal segment and
associated neuronal soma of origin swells, but does not
necessarily die.”*® In contrast, ionic restoration can lead to
axonal recovery,”®® while a host of secondary injury
mechanisms likely contribute to progressive axonal degen-
eration.’*?%5 Hyperphosphorylation of tau also occurs in
TBIL> resulting in reduced microtubule binding,*” which
causes disassembly of microtubules and thus impaired axo-
nal transport, leading to compromised neuronal and synaptic
function.”®® Increased tau aggregation into insoluble fibrils
and larger aggregates in the form of insoluble fibrils,
tangles, and neuropil threads are also observed”® and have
been associated with subsequent neurodegenerative
disease.”’

Diffuse Axonal Injury Following Repeated mTBI

DALI is considered to be a key feature of pathology following
mTBI?' and is typically exacerbated with repeated
injury.’*?!'! Repeated mTBI in adult mice worsens diffuse
axonal injury and cognitive function with inter-injury inter-
vals of 1-5, but not 7 d."**'*!*!> Reducing the inter-injury
interval to hours rather than days results in axonal injury,

providing the injury severity is not sub-threshold.?!" Simi-
larly, motor function and spatial learning deficits, as well as
increases in cytoskeletal damage and axonal injury indicated
by increased APP, are more prominent in animals with
repeated mTBI separated by 3 d than following single mTBI
or a 7 d inter-injury interval.?'? Following 2 CCI mTBIs
given 24 h apart, increases in APP develop subacutely, sub-
siding by 56 d.>* Further, 5 repeated CCI mTBIs, with a 48-h
inter-injury interval, also result in increased APP-
immunoreactive axonal profiles in the CC>® that persist
chronically.'®® Increases in microtubule-associated protein-
2 are observed following 2 mTBIs with a 24-h inter-injury
interval, persisting chronically.">! However, no chronic axo-
nal pathology is observed following 5 closed-head mTBIs
delivered using the Kimwipe model at 24-h or 1-wk inter-
vals, despite persisting cognitive deficits.”%"!

Axonal degeneration detected by silver staining has been
observed following 4 CCI mTBIs given at 24-h intervals,
acutely?'® and subacutely.’” Further, acute cytoskeletal
abnormalities and intra-axonal organelle compaction detected
by ultrastructural analysis, that persist long-term in white
matter tracts, is temporospatially coincident with a prominent
microglial response following 2 CCI mTBIs,*® with similar
outcomes in a model featuring rotational acceleration.”
Activated microglia form extended cytoplasmic processes in
direct contact with injured axons to form a potential barrier
between the healthy and injured tissue, suggesting that micro-
glial activation is a response to the axonal damage.>®'”>

Phosphorylated tau and AP have been explored in
repeated mTBI studies,*’*'>! particularly using trans-
genic animal models,'**2'*2!5 given their associations
with CTE.?®2!'® Although repeated mTBI is thought to
exacerbate secondary injury mechanisms that accelerate
the development of chronic neurodegenerative diseases, the
mechanistic link between repeated mTBI and CTE patho-
biology is yet to be elucidated, and further prospective and
longitudinal studies are required.?® Indeed, cognitive defi-
cits after repeated mTBI can occur in the absence of
increased tau phosphorylation or AB,”® and transgenic stud-
ies of specific tau isoforms indicate further complexities.*'”
Table 1 provides further information on studies assessing
CTE-like pathology in repeated mTBI.

Dysmyelination

While axons and myelin forming fiber tracts are consangui-
neous, it is suggested that their pathologies following TBI
are distinct,"*”*'® although studies exploring TBI-induced
myelin pathology are relatively limited. Demyelination can
occur as a result of several mechanisms, including primary
axonal damage and subsequent Wallerian degeneration, or
death of myelinating cells. Subacute loss of myelinated
axons'’"?!"” and myelin decompaction and redundancy*'®
have been reported following moderate TBI in rats. In con-
trast, transient subacute axonal dysfunction has been
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observed in the absence of myelin abnormalities, following
moderate TBI (referred to as mild in the literature).***-**?

Oligodendrocytes produce large amounts of ROS?*324
and have low antioxidant capacity.?*> Indeed, oligodendro-
cytes, oligodendrocyte progenitor cells (OPCs), and myelin
are particularly sensitive to glutamate excitotoxicity, Ca*"
overload, oxidative stress, and altered metabolism that
occur following neurotrauma,’?®??® with sensitivity
thought to be maturation dependent.??° Extensive and sus-
tained calpain-mediated degradation of myelin basic pro-
tein was reported in a moderate CCI TBI model, with intact
proteins returning to baseline levels 3—5 d after injury.'”"
Additionally, myelin debris can stimulate inflammatory
cells, and activated microglia and astrocytes can likewise
promote myelin phagocytosis via ROS release®*® and acti-
vate OPC recruitment.”*' OPCs can rapidly respond to
white matter injury and produce matrix metallopeptidase
9 that appears to open the BBB and trigger secondary cas-
cades of cerebrovascular injury and demyelination.'>%-'%?
Indeed, perturbations in the BBB are known to be a critical
part of white matter pathology in a wide range of CNS
disorders.”** However, transient upregulation of mature
oligodendrocyte genes by OPCs'*’ as well as localization
of OPCs to brain regions exhibiting neuronal damage'’®
suggests an acute regenerative response. Nevertheless, dys-
myelination and demyelination persist and progress up to 1
y following injury,”** occurring simultaneously with pro-
longed reactive microgliosis and astrogliosis,'*’*** indi-
cating ongoing stimulation by myelin debris.

Dysmyelination Following Repeated mTBI

Studies exploring myelin abnormalities in animal models
of repeated mTBI are scant. Subcortical white matter tract
damage is seen in single mTBI>*?!%221233:236 4 3 Jong-
term experimental study of mTBI using both single and
repeated injuries reported CC thinning accompanied by
neurological deficits 1 y following injury.'®® Progressive
myelin pathology has been indicated by decreased radial
diffusivity®> and double concentric myelin sheaths®® fol-
lowing 2 CCI mTBIs delivered at a 24-h interval. More
persistent and severe myelin pathology with evidence of
remyelination was observed with a repeated “mild” TBI;
however, acute focal lesions and blood deposition suggest
the injury was of moderate severity.”' These findings likely
reflect cognitive and behavioral dysfunction following
mTBI**7?*%; however, behavioral assessments in these
studies were lacking. Further studies assessing the effects
of injury interval, number and severity on chronic myelin
pathology together with behavior are warranted.

Behavioral Deficits Following Repeated
mTBI

The most commonly used assessments to determine long-
term behavioral outcome in TBIs include neurological

severity tests to assess gross motor deficits; beam walking
and rotarod performance which assess sensory, motor, and
sensorimotor domains; and various MWM paradigms to
assess learning and memory as a correlate to cognitive
function.”?® Tests assessing psychological sequelae have
also been employed to detect anxiety- and depressive-
like behavior. Behavioral impairments have been consis-
tently revealed in closed-head animal models of repeated
mTBI, incorporating various degrees of head movement and
inter-injury intervals. Mice sustaining 2 mTBIs at 24-h inter-
vals had acute learning and memory deficits in MWM>® and
Barnes maze performance’” that persisted to subacute time
points. However, variability exists between studies of similar
design, with some animals exhibiting longer-term balance
deficits in the absence of persisting cognitive impairments.>*
When total injury numbers are increased to 5, transient
balance and motor coordination deficits in the rotarod test
are described, while locomotor hyperactivity persists to
1 mo.”* In similar studies, measurable cognitive deficits per-
sist beyond 3 mo.>”""15! As such, when repeated mTBIs are
delivered within the “window of vulnerability” (described in
Mechanisms of Pathology section), cumulative cognitive
deficits persist and may be permanent.’**>"" Interestingly,
longer inter-injury intervals up to 1 mo produce no deficits,**”!
suggesting that longer time intervals may confer protection
against subacute®'? and long-term functional sequelae.’®
Additionally, studies titrating mechanical input have
revealed a threshold of injury severity required to elicit
deficits.”®°> Thus, it appears that behavioral deficits signif-
icantly associate with the number of mTBIs, inter-injury
interval, and severity of impact.

Toward Clinical Management of Repeated
mTBI

Pharmacological therapies for TBI in humans are lacking.™
Therapeutic strategies in development are targeted toward
secondary injury pathways that are potentially modifiable
and therefore amenable to treatment®® and are generally
focused on facilitating neuroprotection or inhibiting neuro-
toxicity. Given the subtle acute pathology following mTBI,
treatment options for repeated mTBIs hinge on decreasing
the progression of secondary damage and improving long-
term functional outcomes. As described above, the first
injury appears to place the brain in a vulnerable metabolic
state. Therefore, appropriate immediate treatment follow-
ing a single mTBI may facilitate acute physiological recov-
ery and reduce the potential for cumulative damage with
further injury. Further, treatments administered beyond the
acute time point may be useful for targeting specific ele-
ments of secondary degeneration. However, a greater
understanding of the mechanisms of damage following
repeated mTBI is likely to be required to facilitate effective
development of therapeutics as well as inform return to
play guidelines.
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Therapeutic Strategies for Repeated mTBI

Preclinical studies assessing efficacy of therapeutics for
repeated mTBI have been reported, and current targets focus
specifically on reducing inflammation, oxidative stress,
axonal injury, and associated neurodegenerative-like pathol-
ogy. Targeting microglial activation via anti-CD11d,*’
progesterone,”*® and Valganciclovir*'? to ameliorate the
inflammatory response following repeated mTBI has shown
some promise. Rats given 3 mild LFP injuries at a 5 d inter-
injury interval, and treated with anti-CD11d antibody, exhi-
bit reduced neutrophil and macrophage infiltration, lipid per-
oxidation, astrocyte activation, APP accumulation and
neuronal loss, concomitant with improved performance on
cognitive, sensorimotor, and anxiety tasks, relative to con-
trols.*” Using a similar study design, the steroid hormone
progesterone decreases lipid peroxidation and microglial and
astrocytic markers of neuroinflammation, while long-term
cognitive and sensorimotor outcomes are improved.** For
both of these studies however, acute damage and deficits
were potentially dampened given the 5 d inter-injury inter-
val. Valganciclovir-induced macrophage depletion
decreases the microglial population in the CC and external
capsule, as expected, but doesn’t alter the extent of acute
axonal injury after 2 CCI mTBIs at 24-h intervals.*"

Rosemary extract (20% carnosic acid) administered fol-
lowing 3 mTBIs at a 24-h inter-injury interval reduces astro-
cytosis, oxidative stress, inflammatory cytokines, and
degenerating neurons in the hippocampus and restores cog-
nitive deficits.”® However, significant numbers of degener-
ating neurons in the hippocampus following the repeated
mTBI suggest that a more severe injury was induced. The
immunosuppressant FK506 (Tacrolimus) or moderate
hypothermia (32-33°C for 1 h) following 2 impact-
acceleration mTBIs at a 3-h inter-injury interval signifi-
cantly attenuates axonal and cerebral microvascular changes
by inhibiting calcineurin, free-radical and metabolically
mediated cascades.”*' Following 2 closed-head mTBIs
incorporating rotational acceleration, given on consecutive
days, the liver X receptor agonist GW3965 improves cogni-
tion, axonal integrity, and A clearance in an Apolipoprotein
E (ApoE)-dependent manner.®’

Preventing tauopathy or decreasing the risk of develop-
ing neurodegenerative disease has been attempted using
various models and treatment targets. Vitamin E, a potent
exogenous antioxidant, was administered for 12 wk to aged
transgenic mice, exhibiting Alzheimer’s disease-like amy-
loidosis. Prevention of AP peptide accumulation and reduc-
tion in brain lipid peroxidation and behavioral deficits
following 2 CCI mTBIs'*? suggest antioxidants may reduce
the putative risk of repeated mTBI-associated Alzheimer’s
disease. Following 3 closed-head CCI mTBIs given at 24-h
intervals, inhibition of monoacylglycerol lipase, an endo-
cannabinoid 2-arachidonoylglycerol metabolizing enzyme,
significantly reduces CTE-like neuropathological changes,
proinflammatory cytokines, astroglial reactivity, and

cognitive deficits.*** Additionally, using transgenic and
knockout tau mice in a Kimwipe mTBI model, cis p-tau
antibody treatment prevents the temporospatial progression
of tauopathy and cognitive decline by blocking axonal
microtubule and mitochondrial disruptions.?*? Finally,
sodium selenate treatment of 3 LFP mTBIs at a 5 d inter-
injury interval results in tau dephosphorylation and amelio-
rates cognitive decline via protein phosphatase 2A 55 kDa
regulatory B subunit upregulation.?**

Effects of pre-treatment of repeated mTBIs using fish
0il**> and androgenic steroids**® have also been explored.
Rat chow enhanced with 6% omega-3 fatty acids was pro-
vided for 4 wk prior and 2 wk following 2 LFP mTBIs at a
24-h inter-injury interval; recovery of body weight was
improved, with a trend toward increases in hippocampal
neurons and cognitive performance.?*® Interestingly, a com-
bination of testosterone, nandrolone, and 17a-methyl testos-
terone increases axonal injury and microgliosis,**°
suggesting athletes who use these agents may suffer from
detrimental effects following mTBI.

Barriers to Clinical Translation

. . 247,24 2492
While swine?*”**® and cell culture approaches®***>° have

recently been used to model repeated mTBI, the majority
of studies use rodents. There are, however, inherent struc-
tural and behavioral differences in rodents that challenge the
emulation of human mTBI, in terms of mechanical input,
and structural and behavioral output. Mass, white to gray
matter proportions, cerebral convolutions, presence of cere-
brospinal fluid and craniospinal angle influence the nature of
TBI-induced tissue strain.?’! Choosing the intervals between
injuries in experimental models is confounded by difficulties
relating rat age to humans,”' which is important when deter-
mining return to play time frames following sports-related
mTBI. Additionally, strain-dependent behavioral and histo-
logical responses have been revealed in rodents.>>* Further,
studies using non-transgenic female rodents are lacking.
While acute neuroprotective effects of oestrogen have been
suggested in a rodent WD impact-acceleration model,*>*
exacerbated outcomes following repeated mTBIs in female
soccer players indicate complexities.>>* Finally, pediatric
populations exhibit different responses to adults experien-
cing a similar head trauma,” and limited studies have been
conducted assessing younger populations.?*>236-236-257

Conclusions

Long-term cognitive impairments following CNS injury
and in neurodegenerative diseases have been associated
with prolonged oxidative stress conditions'*!***® and
impaired signal conduction along dysmyelinated axons.*>’
Further, persisting behavioral deficits after TBI have been
associated with progressive activation of astrocytes*®® and
microglia.?®' While mild and repeated mTBI can impair
long-term function,”®? studies are yet to simultaneously
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measure behavioral, oxidative, neuroinflammatory, and
myelin integrity outcomes at acute and chronic phases.
As such, key mechanistic insights needed to design thera-
pies tailored to limit chronic deficits following repeated
mTBI are lacking. Therapies designed to stabilize and
improve metabolic status in the acute time period after
injury may protect neurons and glia, translating to signifi-
cant improvements in long-term functional outcome. As
more is learned about BBB regulation following repeated
mTBI, further opportunities may emerge to target the brain
endothelium to maintain health and facilitate recovery. Dif-
fuse axonal injury and white-matter damage is increasingly
understood to underlie progression of cognitive impair-
ments and better understanding of myelin pathology using
both advanced imaging and ultrastructural analyses follow-
ing repeated mTBI will also likely contribute to improved
therapeutic opportunities. While elucidating the mechan-
isms of damage underlying cell dysfunction following
repeated mTBI is crucial to develop therapeutic strategies,
it is also important to appreciate cell regenerative processes
known to occur in moderate—severe TBI.?®® The hippocam-
pus is implicated in persisting memory deficits following
repeated mTBI and complex forms of hippocampal-
mediated learning require adult-born neurons.?** Following
repeated LFP mTBI, long-term potentiation deficits and
failed N-methyl-p-aspartate-receptor-mediated hippocam-
pal synaptic excitation suggest a lack of adaptive plasti-
city.*> Therefore, therapeutic strategies designed to
enhance neurogenesis and functional plasticity following
repeated mTBI may also be required.
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