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Abstract

Glucose meal response information collected via Continuous Glucose Monitoring (CGM)
is relevant to the assessment of individual metabolic status and the support of personalized
diet prescriptions. However, the complexity of the data produced by CGM monitors pushes
the limits of existing analytic methods. CGM data often exhibits substantial within-person
variability and has a natural multilevel structure. This research is motivated by the analysis
of CGM data from individuals without diabetes in the AEGIS study. The dataset includes
detailed information on meal timing and nutrition for each individual over different days.
The primary focus of this study is to examine CGM glucose responses following patients’
meals and explore the time-dependent associations with dietary and patient characteristics.
Motivated by this problem, we propose a new analytical framework based on multilevel
functional models, including a new functional mixed R-square coefficient. The use of these
models illustrates 3 key points: (i) The importance of analyzing glucose responses across the
entire functional domain when making diet recommendations; (ii) The differential metabolic
responses between normoglycemic and prediabetic patients, particularly with regards to lipid
intake; (iii) The importance of including random, person-level effects when modelling this
scientific problem.

Keywords: continuous glucose monitoring; glucose metabolism; functional data analysis;
personalized nutrition; multilevel models.

1 Introduction

Recent advances in wearable technology and smartphones have revolutionized the collection
of real-time longitudinal physiological data Kellogg et al. (2018), Dunn et al. (2018), Johnson
et al. (2023). For example, continuous glucose monitoring (CGM) devices Rodbard (2016),
Ebekozien et al. (n.d.) are minimally invasive, provide real-time glycemic response data, and
can be used for managing diabetes Battelino et al. (2019), Matabuena et al. (2021, 2022), Beck
et al. (2018), Rodbard (2018), Cui et al. (n.d.), as well as for screening diabetes in normoglycemic
individuals and those with prediabetes Ben-Yacov et al. (2023), Hall et al. (2018a), Matabuena
et al. (2022). This paper focuses on studying postprandial CGM data in individuals without
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diabetes, a key functional biomarker for assessing individual glucose homeostasis and metabolic
health Mozaffarian et al. (2008), Berry et al. (2020), Merino et al. (2022).

There are significant limitations in the existing nutritional literature which can potentially
be overcome by leveraging digital health data using appropriate methodologies, providing ev-
idence for individual dietary recommendations. Historically, much dietary research literature
has focused on subjective and self-reported measurements of diet, which have significant and
unavoidable biases Maynard et al. (2005). Moreover, little is currently understood about the
impact of meal composition on the glycemic response curve, with previous analyses not incorpo-
rating this information Wang et al. (2023). Despite decades of research in nutrition epidemiology,
actual recommendations are highly variable, contradictory, and often confusing for the general
population Archer (2017), Feinman (2019).

CGM devices provide a novel opportunity to characterize how an individual’s glucose responds
to particular diets, but the most popular current statistical methods for analyzing these device
data are insufficient Holzer et al. (2022). There is growing interest and consensus in using CGM
devices to assess and improve personalized nutrition intervention. However, commonly-used
existing methodologies for analyzing CGM data Berry et al. (2020) can be suboptimal for several
reasons. Firstly, they often overlook the dynamics of glucose fluctuations over time—a critical
factor for comparing individual glucose signatures across different people. They often focus
instead on specific temporal points, such as glucose values three hours post-meal, or aggregated
summaries over observation periods. Secondly, statistical inference can be far from ideal because
it fails to incorporate the multilevel structure of the data, where multiple observations per
individual are recorded. Thirdly, the modelling of random effects at the individual level is
essential to accommodate the heterogeneity in postprandial responses between individuals.

Functional analysis techniques Ramsay et al. (2005), Morris et al. (2001), Greven et al. (2010)
can help alleviate these analytical limitations and improve our understanding of how glucose
evolves over time as a mathematical function. To gain a deeper understanding of the advantages
and the need of performing functional analysis, Figure 1 illustrates glycemic response curves over
consecutive days post-dinner for four individuals—two normoglycemic and two with prediabetes.
This figure highlights person-specific distribution patterns, with significant inter-individual and
inter-day variability.

The final goal of this paper is to illustrate quantitative methods for addressing these scientific
problems based on multilevel functional analysis techniques. We seek to investigate statistical
associations between covariate predictors, including meal composition, and functional CGM
postprandial responses. We also propose a new notion of R-square mixed functional coefficients
to assess the time-dependent response function variability explained by the predictors and the
individual-level random effects.

Figure 1: Analysis of post-meal functional data trajectories over several days in four distinct
patients with different glycemic condition-normoglycaemic and prediabetes.
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1.1 Summary of Contributions

The main methodological, modeling, and clinical findings of this scientific work are summarized
as follows:

1. Novel Statistical Modeling Strategy:

• We propose a novel statistical modeling approach for analyzing post-meal glycemic
responses in patients. This method employs functional data analysis to expand the
traditional use of classical mixed models for analyzing postprandial glycaemic data
Berry et al. (2020).

2. Methodological Contributions to Multilevel Functional Literature:

• Introduction of a new functional R-squared measure for both function-on-scalar re-
gression and functional principal components models. This measure enhances our
understanding of heterogeneity in the data by both calculating variance explained
across the whole functional domain and facilitating its decomposition between the
fixed and random effect components.

• Development of a two-step, semi-supervised algorithm to derive latent individual rep-
resentations based on the multilevel functional mixed model. These representations
can incorporate other patient characteristics and confounders which influence the
multilevel functional process, e.g. diet, age, and body mass index.

3. Clinical Findings from the AEGIS Study:

• Statistical association analyses between macro- and micro-nutrients and post-meal
glucose response curves in individuals with normoglycemia and prediabetes. These
analyses draw new conclusions concerning differential responses between the normo-
glycemia and prediabetes groups, underscoring the importance of considering the
complete functional trajectory for nutritional recommendations.

• Application of the proposed functional mixed-model R-squared, offering new perspec-
tives on model explanatory capacity over time and emphasizing the importance of
incorporating random effects to capture individual glucose signatures.

• Utilization of functional data collected across different meals to identify unique sig-
natures of glucose homeostasis, potentially useful in predicting long-term surrogate
markers such as HOMA-IR.

1.2 Functional Modelling of CGM Data

The application of functional data analysis (FDA) to CGM data has emerged as a highly effective
approach for various modeling tasks, gaining popularity in diabetes literature and related areas
Matabuena et al. (2021, 2023, 2022), Cui et al. (n.d.), Gaynanova et al. (2020), Sergazinov
et al. (n.d.). An important advancement in this area was introduced by Matabuena et al.
with the concept of the glucodensity Matabuena et al. (2021), a novel representation of CGM
distributions. This functional CGM profile, generalizing traditional CGM time-in-range metrics,
provided novel insights in real-life monitoring scenarios Matabuena et al. (2023, 2022), Cui et al.
(n.d.), Matabuena & Crainiceanu (2024).

In standardized environments, FDA techniques, when integrated with multilevel modeling,
have proven highly effective Gaynanova et al. (2020), Sergazinov et al. (n.d.) in analyzing glucose
patterns overnight in populations with diabetes. However, these types of multilevel models
have yet to be applied in datasets of postprandial glucose responses among populations with
normoglycemia and prediabetes. As highlighted in the introduction, this investigation into the
structure of multilevel functional CGM responses to meals is becoming increasingly important in
the field of personalized nutrition Berry et al. (2020). The reduction in the cost of CGM devices
is expected to lead to their increased use among the general population as an accessible tool for
assessing impacts of dietary choice.
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2 The A Estrada Glycation and Inflammation Study (AEGIS)

The A Estrada Glycation and Inflammation Study (AEGIS) Gude et al. (2017), is a ten-year
longitudinal study focused on changes in blood glucose and their connections to inflammation
and obesity, factors critically linked to the potential development of comorbidities such as dia-
betes mellitus. Unlike traditional studies, AEGIS incorporates CGM for a subsample, providing
detailed glucose profiles at various time points over a period of five years.

2.1 Study Design and Objectives

At the beginning of the study, a random sample from the general population of 1,516 individu-
als underwent extensive medical examinations to construct detailed individual clinical profiles.
These included dietary habits, laboratory biomarkers, and responses to questionnaires assessing
metabolic capacity, mental well-being, and lifestyles. CGM collection was completed for a subset
of 581 participants, which included 516 individuals with normoglycemia and prediabetes, in a
two-sample design. Of these individuals, 377 recorded at least one meal which the participant
labelled as a ”dinner”; we focus on this subset.

The primary goal of our analysis was to examine the statistical association between dietary
intake and associated postprandial glucose response, adjusting for patient characteristics, with a
focus on evening meals identified as ”dinners”. To analyze glucose dynamics six hours post-meal,
we employ a multilevel functional approach using multiple meals per individual over different
days.

2.2 Data Description

The AEGIS trial (NCT01796184) involved a stratified random sample of individuals aged 18 and
older, drawn from the Spanish National Health System Registry, providing a rich, decade-long
longitudinal dataset.

2.2.1 CGM Data Collection Protocol

Participants were fitted with Enlite™sensors and iPro™CGM devices, offering blinded interstitial
glucose measurements every 5 minutes. On the seventh day, the sensor was removed, and data
excluding the first day’s results were downloaded for analysis. Data from any day with more
than 2 hours of data acquisition failure were discarded.

2.2.2 Dietary Variables and Patient Information

Participants recorded their food and drink intake, which was validated by a research dietitian.
To assess dietary intake, participants completed a 6-day food record that coincided with the
CGM period. Detailed information was recorded regarding the types and amounts of foods
and beverages consumed, including preparation methods, ingredients, sauces, and mealtimes.
Data from 516 participants were considered for the final analysis given that 65 individuals were
diagnosed with diabetes mellitus. Of these participants, only a subset of 377 recorded the meal
of interest for these analyses.

2.3 Variables Description for Data Analysis

Table 1 summarizes the scalar predictors used in our functional multilevel regression analysis.
Distribution summaries are provided for all continuous variables to characterize the study popu-
lation. Figure 2 illustrates all functional observations collected across different days from predia-
betic patients, highlighting the significant heterogeneity of the data. This variability underscores
the need for developing specific methods to address the extensive intra- and inter-individual dif-
ferences evident in the repeated functional observations.
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2.3.1 Ethical Considerations

The study procedures adhered to ethical standards, with informed consent obtained from all
participants. The study was approved by the Regional Ethics Committee (Comité Ético de
Investigación Cĺınica de Galicia, registration code: 2012/025) and was conducted in accordance
with the Helsinki Declaration.

Figure 2: Glycemic responses six hours (360 minutes) post-dinner in all prediabetic individuals
of AEGIS study, where color indicates participant.

3 Functional Models for Postprandial Glucose Responses

The AEGIS study provides an opportunity to examine glycemic response to diet in real-time
while accounting for participant characteristics. In this paper, we restrict our attention solely
to meals identified by participants as ”dinners” and to a time window of six hours after the
meal. The clinical outcome is the functional multilevel process Yij(t), t ∈ [0, 360], for participant
i ∈ {1, . . . , n} and day j ∈ {1, . . . , Ji}, where the number of days recorded Ji is specific to
the individual. As not all of the participants without diabetes reported dinners, n = 377 and
Ji ∈ {2, 3, 4, 5, 6} in this application.

3.1 Objectives of the Functional Analysis methods in modeling the
diet glucose response

The goal of our modeling strategy is to provide quantitative methods to answer common scientific
questions that appear in clinical research when trying to understand the dynamics of postprandial
glucose over time.

1. Modes of data variability hetereogenity: We consider a multilevel functional principal
components model (unsupervised) to understanding the functional modes of variability in
glucose trajectories across individuals and days.

2. Functional response regression modeling: We are interested in quantifying the statis-
tical association between individual characteristics e.g. sex, age, diet and glucose response
curves. For this purpose, we consider a function-on-scalar regression model (supervised).
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Variate Description Distribution Summaries
Normoglycemic (N=319) Prediabetes (N=58)

Individual Level
Age (yrs) Participant age at

screening
44.6 (13.7)

44.0 [18.0, 81.0]
58.7 (12.0)

61.0 [23.0, 84.0]
Weight (kg) Participant weight at

screening
73.7 (14.3)

72.5 [41.0, 130]
83.0 (19.6)

79.2 [49.0, 145]
Gender Participant reported

gender
Male: 121 (37.9%)
Female: 198 (62.1%)

Male: 18 (31.0%)
Female: 40 (69.0%)

HbA1c (%) Baseline glycosylated
hemoglobin

5.25 (0.25)
5.30 [3.10, 5.60]

5.86 (0.20)
5.80 [5.70, 6.40]

Meal Level
Carbohydrates (g) Self-reported and dieti-

tion reconstructed meal
carbohydrates

59.9 (40.5)
52.3 [0, 513]

53.7 (37.5)
45.7 [0, 226]

Lipids (g) Self-reported and dieti-
tion reconstructed meal
fats

30.1 (23.8)
25.4 [0, 237]

25.7 (22.3)
21.8 [0, 169]

Proteins (g) Self-reported and dieti-
tion reconstructed meal
protein

27.5 (17.9)
24.2 [0, 200]

25.9 (17.0)
23.1 [0.4, 105]

Fiber (g) Self-reported and dieti-
tion reconstructed meal
fiber

8.8 (6.7)
7.2 [0, 89.3]

9.1 (7.0)
8.1 [0, 63.1]

Initial Glucose (mg/dL) CGM glucose at begin-
ning of meal

103 (15.3)
101 [52, 237]

110 (19.4)
107 [56, 196]

Table 1: Description of the variables used in the AEGIS. Distribution summaries for continuous
variates include first Mean (Standard Deviation), followed by the Median [Min., Max.].

3. Predict Clinical Outcomes with Multilevel Postprandial Functional Informa-
tion: The postprandial glucose response provides a unique signature of individual glucose
homeostasis Jagannathan et al. (2020). We propose a novel algorithm to incorporate infor-
mation into a participant-level latent representation useful for the prediction of outcomes.

4. Predictive Capacity Assessment: Quantifying how well the model explains the ob-
served data is critical for understanding model limitations and advantages. We propose
a novel concept of R-squared for both supervised and unsupervised multilevel functional
models.

3.2 Unsupervised Functional Models

We first introduce some notation. Denote by Yij(t), t ∈ [0, 360], the functional trajectory for
individual i = 1, . . . , n during period j = 1, . . . , Ji in the standart functional space L2([0, 360]).
For notation simplicity, we assume that Ji = J for all i = 1, · · · , n, though methods can account
for a different number of observations per study participant. Consider the following multilevel
functional principal components analysis (MFPCA) model for Yij(·) from Di et al. (2009).

Yij(t) = µ(t) + νj(t) + Ui(t) +Wij(t) (1)

In this model, µ(t) is the global mean, µ(t)+ νj(t) is the mean during time-period j, Ui(t) is the
subject-specific deviation from the visit-specific mean function, andWij(t) is the residual subject-
and period-specific deviation from the subject-specific mean. Here µ(t) and νj(t) are treated as
fixed functions, and we assume that Ui(·) ∼ GP (0,Σi) and Wij(·) ∼ GP (0,Σij) are mutually
uncorrelated zero mean Gaussian process with positive definite covariance operators Σi and Σij

respectively. These operators are defined in the functional space L2([0, 360)]⊕ L2([0, 360]).
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In the original work by Di et al. (2009), emphasis was placed on estimating the structures
of the random processes Ui(t) and Wij(t) through the Karhunen-Loeve decomposition. This
method involves employing eigendecomposition to analyze within and between-group variability.
For instance, for each individual i, the random function Ui(t) can be expressed as Ui(t) =∑∞

j=1 aijϕj(t), where {ϕj(·)}∞j=1 are the eigenfunctions associated with the individual level, and

{aij}∞j=1 are the corresponding scores for the ith individual.
In the original reference Di et al. (2009), a Bayesian modeling approach using Markov Chain

Monte Carlo (MCMC) was proposed to estimate the scores. In a recent paper, Cui et.al, Cui
et al. (2022), proposed a new scalable algorithm for estimating the eigenfunctions, eigenvalues,
and scores that can be accessed through the mfpca.face function in the refund package by
Goldsmith et al. (2020).

In this study, we focus on describing the diverse modes of glucose trajectory variability in
terms of the eigenfunctions and eigenvalues, facilitating comprehensive understanding of the data
structure.

3.3 Supervised function-on-scalar regression models

In addition to the functional postprandial glucose response Yij(t), we observed covariates such as
demographics, HbA1c, and meal-level dietary information. These predictors can be incorporated
in the model’s fixed and/or random effects structure. To account for these covariates we consider
models of the following type.

Yij(t) =

L∑
l=1

Xij,lβl(t) +

K∑
k=1

Zij,kUi,k(t) +Wij(t), (2)

Within this model, Xij,l are L fixed effects covariates, βl(t) is the fixed effect functional
coefficient over t ∈ [0, 360], Zij,k are K random effects covariates, Ui,k(t) is a random functional
effect corresponding to subject i at time t, andWij(t) is the residual variation that is unexplained
by either the fixed or random effects. We assume that the Ui,k(·) and Wij(·) processes are zero
mean square integrable processes, with Wij(·) being uncorrelated with all Ui,k(t), though Ui,k(t)
can be correlated among themselves.

Models such as (2) have been proposed in the literature before and are easy to write down,
but they are difficult to fit in larger data applications. To address this problem, we adapt
the recently proposed fast univariate inference (FUI) for longitudinal functional data analysis
proposed by Cui et al. (2021). This approach can be implemented by fitting many pointwise
mixed effects models and then smoothing the fixed effects parameters over the functional domain.
An important advantage of the approach is that it generalizes the intuition of fitting mixed effects
models at every point over the domain of the temporal glucose trajectories. The core steps of
the algorithm are indicated bellow:

1. For each point t ∈ Tm, fit a separate point-wise linear mixed model using standard multi-
level software, that is

Yij(t) =

L∑
l=1

Xij,lβl(t) +

K∑
k=1

Zij,kUi,k(t) +Wij(t).

2. Smooth the estimated fixed-effects coefficients β̃l(t) using a linear smoother β̂l(t) = Slβ̃l,
where Sl is a smoother that may or may not depend on l.

3. Use a bootstrap of study participants to conduct model inference:

(a) Bootstrap the study participants B times with replacement. Calculate β̂b
l (t), the

estimator of βl(t) conditional on the b = 1, . . . , B bootstrap sample.

(b) Arrange the β̂b
l (t) estimators in a B × P (bootstrap samples by probabilities) and

obtain the column mean β̄l(t) and variance vl(t) = Var{βl(t)} estimators.
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(c) Conduct a Functional Principal Component Analysis (FPCA) on the B × P dimen-
sional matrix, extract the top Q eigenvalues λ1l, . . . λQl and corresponding eigenvec-
tors γ1l, . . . γQl.

(d) For n = 1, . . . , Ns do

• Simulate independently ξnq ∼ N (0, λql) for q = 1, . . . , Q. Calculate β̂l,n(p) =

β̄l(p) +
∑Q

q=1 ξnqγql.

• Calculate unl = maxt∈[0,360]

{∣∣∣β̂l,n(t)− β̄l(t)
∣∣∣√vl(t)

}
(e) Obtain q1−α,l the (1− α) empirical quantile of the {u1l, . . . , uNsl} sample.

(f) The joint confidence interval at t is calculated as β̂l(t)± q1−α,l

√
vl(t).

3.4 Predicting Clinical Outcomes using Latent Representations

After fitting the models discussed in Section 3.3, residuals were used to define latent clusters of
patients according to outlier behaviors. First, we outline the method employed to compute the
residuals.

Consider a patient i = 1, . . . , n, with their corresponding repeated observations j = 1, . . . , J .
The functional residual for each patient and observation was defined as:

ϵ̂ij(t) = Yij(t)− Ŷij(t), (3)

where Yij(t) denotes the observed glucose levels at postprandial time t ∈ [0, 360], and Ŷij(t) is
the estimated glucose level using only the fixed effects in the multilevel regression model:

Ŷij(t) =

L∑
l=1

Xij,lβ̂l(t). (4)

We endeavored to categorize the functional trajectories into three distinct cases based on
these residuals: (i) Stable Residuals—ϵ̂ij ≈ 0, for all t ∈ [0, 360], indicating that the patient’s
behavior is close to the conditional mean value; (ii) Positive Deviations—functional residuals
with significant positive deviations suggest that the glucose values are larger than predicted, sig-
nifying potentially inadequate glucose management; (iii) Negative Deviations—trajectories
with negative deviations leading to glucose levels below the expected range early in the post-
prandial window. Generally, this could be viewed as beneficial, indicating better glucose control,
but it could also result in episodes of hypoglycemia.

As ϵ̂ij(t) = Yij(t)− Ŷij(t) are random functions in L2([0, 360]), we apply multilevel functional
PCA (as discussed in Section 3.2) to form a vector representation of the functional residuals,
facilitating clinical outcome prediction.

For ϵ̂ij(t), we consider a model with components akin to (1):

ϵ̂ij(t) = µ(t) + νj(t) + Ui(t) +Wij(t), (5)

where Ui(t) =
∑∞

j=1 aijϕj(t), with {ϕj(·)}∞j=1 representing the random participant-level eigen-
functions, and {aij}∞j=1 being the associated scores for participant i.

In practice, it’s crucial to estimate and truncate these coordinates to a finite number,
âi = (âi1, . . . , âim) in Rm. These coordinates succinctly encapsulate the functional infor-
mation for each individual, and the associated eigenfunctions indicate the types of features
present in the residuals (stable, positive, negative). Given a scalar outcome Z ∈ R (e.g., the
HOMA-IR surrogate marker for insulin resistance) and other fixed-effect patient characteristics
X = (X1, . . . , Xp) ∈ Rp, we consider a regression model:

Z = g(â, X) + ϵ, (6)

where ϵ is the random error with E(ϵ) = 0, and g(·) is the conditional mean function. In our
case, we assume g(â, X) =

∑m
i=1 γiâi+

∑p
j=1 βjXj for coefficients γi, βj . Other functional forms,

such as additive or non-parametric models, could also be adopted.
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3.5 Conditional and Unconditional R2 in Multilevel Functional Models

The r-square coefficient, denoted as R2, is the classical metric in statistical literature used to
quantify the proportion of variance explained in a response variable by a set of corresponding
predictors. Here, we focus on extending the R2 coefficient for mixed functional models, consider-
ing pointwise marginal and conditional versions for supervised models as well as both pointwise
and global versions for unsupervised MFPCA.

For each t ∈ [0, 360] and i = 1, . . . , n, j = 1, . . . , J , we denote Ỹij(t) and Yij(t) as the predicted
and observed functional trajectories, respectively. At any given time point t ∈ [0, 360], the

pointwise R̃2(t) for supervised models can be estimated using the standard univariate approach
as follows:

R̃2(t) = 1−

∑n
i=1

∑J
j=1

(
Yij(t)− Ỹij(t)

)2

∑n
i=1

∑J
j=1

(
Yij(t)− Y (t)

)2 , where Y (t) =
1

nJ

n∑
i=1

J∑
j=1

Yij(t). (7)

We distinguish two scenarios in our modeling framework: supervised and subject-level unsu-
pervised R̃2. In the supervised framework, we define the marginal R̃2, which includes only fixed
effects, and the conditional R̃2, which also incorporates random effects. The respective fitted
values used to estimate R2 are:

Ỹ marginal
ij (t) =

L∑
l=1

Xij,lβ̂l(t) (8)

Ỹ conditional
ij (t) =

L∑
l=1

Xij,lβ̂l(t) +

K∑
k=1

Zij,kÛi,k(t). (9)

In multilevel regression models, direct estimation of individual random effects is not always
possible, especially in frequentist modeling. Nevertheless, leveraging their mean-zero property,
as per structural assumptions, allows for the orthogonal decomposition of the mean square
estimator. This approach facilitates the application of the standard R2 formula, utilizing overall
variance estimators for each random component. Generally, this is the method considered in
standard univariate mixed-effect software.

For Bayesian multilevel models, the estimation of R2 is direct and straightforward, as it
circumvents the need to adjust for non-Gaussian random effects, a requirement in frequentist
methods heavily reliant on traditional computational libraries for mixed effect modeling.

For individual unsupervised R̃2, for an arbitrary patient ith and based on the Karhunen-Loève
expansion, we define:

R̃2
i,k(t) = 1−

∑J
j=1

(
Yij(t)− Ỹ k

ij(t)
)2

∑J
j=1

(
Yij(t)− Y ij(t)

)2 , (10)

where Ỹ k
ij(t) = µ̂(t)+ ν̂i(t)+

∑k
j=1 âij ĉi(t). The model estimation strategy provides direct access

to individual random effects, essential for our general fitting framework (refer to Cui et al. (2022)
for technical details).

The global estimator of R̃2 for both supervised and unsupervised models is defined as the
average of pointwise estimates over the time interval [0, 360]:

R̃2 =
1

360

∫ 360

0

R̃2(t), dt. (11)

4 Application of Multilevel Functional Models to AEGIS

4.1 Unsupervised analyses

Following the methodology outlined in Section 3.2, we decomposed the postprandial glucose
response functions for AEGIS individuals without diabetes into principal components. Figure
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3 displays the primary eigenfunctions derived from the spectral decomposition of the random
functions Ui(·) and Wij(·). These functions represent the first and second levels of the hier-
archical structure, respectively. Given the symmetry of the associated scores about zero, the
eigenfunctions could equivalently be negated.

Figure 3: Eigen-Functions of the Meal Data at Both Levels

The first two eigenfunctions at the individual and meal levels in Figure 3 accounted for
a substantial portion of the total variability — more than 80%. The first eigenfunctions at
both levels suggested an almost time-invariant absolute level, with a relatively shallow concavity
peaking at around 100 minutes. The second eigenfunctions contained a more pronounced peak
at around 60-80 minutes after the meal. These were very similar across levels, not unexpected
given mutual orthogonality not being enforced between levels.

Figure 4 shows the CGM raw trajectories for four randomly selected individuals – two with
prediabetes and two who are normoglycemic – along with their projections onto the first and
second hierarchical levels of the fit MFPCA model. In the projected space of the first three
components, we observe pronounced data heterogeneity, particularly among the participants
with prediabetes. This variability underscores the necessity of employing multilevel models to
properly account for the data structure.

4.2 Supervised analyses

We first applied the function-on-scalar regression model introduced in section 3.3 with the co-
variates described in Table 1, a fixed intercept, and individual-level random intercepts, with the
goal of examining time-dependent association between these covariates and the glucose response
Yij(t), t ∈ [0, 360]. We included initial glucose concentration, measured 5 minutes prior to the
recorded meal, to introduce some information related to prior conditions.
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Figure 4: Projections of Raw Data onto Eigen-Functions. Raw Trajectories (Transpar-
ent Blue): These trajectories display the original data collected over consecutive days. Esti-
mated Participant Trajectories (Red Curve): Utilizing the scores and eigenfunctions at
the individual level, these visualizations illustrate the estimated participant-level trajectories.
Smoothed Projected Trajectory for Each Meal (Green Curves): Constructed from the
scores and eigenfunctions at both levels, these curves represent the sprojected meals from each
participant.

Figure 5 displays the fixed effect coefficient functions with associated joint confidence inter-
vals. Note that only those AEGIS participants which recorded dinners were included in these
analyses. The first column indicated the coefficient functions for the entire AEGIS population
which did not have diabetes (n=377), the second included just those labelled as normoglycemic
(n=319), and the final column contained those individuals with prediabetes (n=58). Each plot
was augmented with a dotted line at zero to make it easier to discern where point-wise and joint
statistical significance are achieved. As can be seen in Figure 5, most covariates achieved point-
wise significance over some interval in at least one population, but each had a unique coefficient
function shape and subsequent interpretation.

Examining Figure 5, it was first apparent that estimates within the pre-diabetes populatio
were more variable. This was logical given this subset’s smaller size and greater heterogeneity
in glycemic regulation. With increasing age, there was an increase in postprandial glucose
concentrations peaking at 90 minutes. This effect gradually declined until disappearing 5-6 hours
after ingestion. No significant differences were observed between men and women. Heightened
levels of A1c were associated with increase in glucose concentrations along the continuoum from
normoglycemic to prediabetes, but not within groups. The greatest increase in postprandial
glycemic response was observed in meals with higher amounts of carbohydrates, with greater
effect in participants with prediabetes. An opposite effect was observed in meals with higher
amounts of lipids, where initially (up to 50 minutes post-meal) there is a decrease in glucose
concentrations, followed by a much later and more mild increase in glucose concentration. Again,
this effect was greater in individuals with prediabetes than in normoglycemic individuals. Protein
intake did not appear to have a notable effect on glucose concentrations. The intake of higher
amounts of fiber seemed to have a buffering effect, significantly decreasing glucose concentration
starting 3 hours after the meal. Initial blood glucose concentration had the greatest coefficient
function magnitude, being particularly influential in the time directly after the meal. While this
could be due to high temporal auto-correlation in the CGM data, the observed effect did not
decay to zero over the course of the meal window. The higher initial glucose concentrations thus
seemed to indicate postprandial glucose concentration in more than an autoregressive capacity.
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Figure 5: Relevant Covariate Function Estimates from FUI

4.3 Prediction of Clinical Outcome with Latent Residual Representa-
tions

We used the estimated residuals from a multilevel regression model to predict HOMA-IR after
the baseline study period. HOMA-IR is a key indicator in human metabolism, closely linked to
insulin resistance and the progresion from prediabetes to clinical diabetes mellitus in individuals
with obesity.

Table 2 demonstrates the substantial improvement in predictive accuracy achieved by inte-
grating the first two scores into a linear regression model for this continuous biomarker. The
increase in predictive capacity is more noticable for those with prediabetes, likely due to the
biological relevance of the HOMA-IR biomarker to diabetes progression. The base model here
included baseline HbA1C, lab blood glucose, age, and sex.

4.4 Marginal and Conditional R2 Analysis

We next assessed the explanatory capacity of the multilvel functional model with the new notion
of mixed functional R2, providing an estimate of the variance explained by the model over the
entire relevant functional domain. Figure 6 was constructed to demonstrate both marginal and
conditional R2 functions for the function-on-scalar model. The unconditional R2, representing
variance explained by fixed effects, was plotted in red. The conditional R2 on the other hand,
including variability attributable to both fixed and random effects, was depicted using blue.
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Population
Model Feature Normoglycemic Pre-Diabetes
Score 1 Coef. (SE) −0.386 (0.234) −1.03 (0.431)
Score 2 Coef. (SE) −0.500 (0.244) −0.128 (0.441)
Base Model R2 5.39× 10−3 0.072
Model including Scores R2 4.23× 10−2 0.269

Table 2: Associations and added predictive capacity for residual scores with follow-up HOMA-
IR.

Figure 6: Marginal and Conditional R2 vs. PCA

For normoglycemic participants, conditional and marginal R2 values aligned closely in the
first 50 minutes, indicating minimal influence of individual random effects post-adjustment for
baseline glucose levels. Beyond this period, R2 values stabilized with random effects contributing
to a more than 50% increase in variability explained.

In prediabetic individuals, conditional and marginal R2 diverged earlier in the postprandial
period, potentially a result of the increased glycemic heterogeneity (or smaller sample size) of
the participants with prediabetes.

Even including participant-specific random effects, the proportion of functional variability
explained by our models remained limited, indicating the existence of more complex structure
not captured by the covariates we have collected. In order to explain a greater degree of variability
in the data by the model, incorporating additional variables or more complex random component
structure maybe be necessary.

4.5 Summary of Results

Our models illustrated the impacts of different dietary and participant characteristics on post-
prandial glucose response curves over the entire temporal domain, including the importance of
individual-specific random effect structures. These findings could facilitate the creation of per-
sonalized nutritional recommendations based upon the difference between an individual’s usual
postprandial response and the ideal one. This could potentially be extended to populations with
type 2 diabetes mellitus, given that the associations observed for individuals with prediabetes
appear to be more extreme analogs to those for normoglycemic participants. The core scientific
findings discussed in this section are outlined in Table 3.
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Table 3: Summary of Findings

Result Implication
There is substantial heterogeneity in level
and shape of postprandial glucose curves
both between and within individuals

Appropriately accounting for the hierarchical
structure of the postprandial responses is
required for adequate explanation of the
observed glucose patterns

The functional beta coefficients for different
macro and micro-nutrients are not
time-invariant, and they vary in intensity
and direction.

Postprandial glucose response is influenced
by the composition of macro and
micro-nutrients in distinct ways, with
interactions between dietary components.

The functional beta coefficients diet
components differ between normoglycemic
and prediabetic individuals.

Metabolic responses to the same diet differ
between normoglycemic and prediabetic
patients, indicating the importance of
glycemic capacity in formulating diet
recommendations.

The participant-level eigenfunction scores
contribute substantially to the variability
explained in HOMA-IR over a model
including just demographic features, though
the final R-square is still somewhat low.

Embedding postprandial glucose responses
shows promise as a means of forming latent
subgroups which are predictive of
metabolism-related outcomes, but a further
modelling may be required.

The R2 functional mixed model
explainability metrics are not time-invariant,
showing a decline over time, and random
effects significantly increase the variability
explained in the predictions 50 min after
post-meal intake.

Post-meal functional response analysis
indicates significant individual heterogeneity,
necessitating alternative, perhaps more
personalized, model structures.

5 Discussion

This paper introduces a functional data analysis framework for studying postprandial CGM
response curves. Applying this framework to the AEGIS study yielded novel insights, particularly
the differential glycemic response to increased lipid intake between normoglycemic participants
and those with prediabetes.

An important strength of our modeling framework is that the methods are computationally
scalable and can be applied in large medical cohort studies, such as those currently ongoing
in Israel and the USA Shilo et al. (2021), The “All of Us” Research Program (2019). Another
strength is that we analyze a random sample of the general population, unlike the mentioned
studies, which are observational in nature and involve specific participants with risk of selection
bias.

The methods discussed here could also be used to model oral glucose tolerance test data
Jagannathan et al. (2020). However, our use of CGM data addresses the scientific question with
a greater deal of generality, as CGM monitor patients in more realistic, free-living conditions.

There is a large body of literature modeling glycemic responses to food intake. Many existing
models are based on large systems of differential equations or time series models where the
functional form of the model is specified with expert biological knowledge Bergman (2021),
Urbina et al. (2020), Maas et al. (2015), Shi et al. (2020), De Gaetano et al. (2021), Eichenlaub
et al. (2021), Zhang et al. (2016), Eichenlaub et al. (2019), Trajanoski & Wach (1996), Holtschlag
et al. (1998). In contrast, our approach is fully data-driven with time-dependent semi-parametric
associations. A potential advantage of our semi-parameteric models is that we can interpret
the impact of meal intake with a β− functional coefficient, and have robust estimation and
inference within the multilevel data structure. For future work, we propose a new extension of
the glucotype concept Hall et al. (2018b) based on multilevel functional models, modeling the
conditional variability response rather than the conditional mean response.
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