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a b s t r a c t

Nowadays, antibiotic resistance has become one of the most concerning problems that directly affects the 
recovery process of patients. For years, numerous efforts have been made to efficiently use antimicrobial 
drugs with appropriate doses not only to exterminate microbes but also stringently constrain any chances 
for bacterial evolution. However, choosing proper antibiotics is not a straightforward and time-effective 
process because well-defined drugs can only be given to patients after determining microbic taxonomy and 
evaluating minimum inhibitory concentrations (MICs). Besides conventional methods, numerous computer- 
aided frameworks have been recently developed using computational advances and public data sources of 
clinical antimicrobial resistance. In this study, we introduce eMIC-AntiKP, a computational framework 
specifically designed to predict the MIC values of 20 antibiotics towards Klebsiella pneumoniae. Our pre-
diction models were constructed using convolutional neural networks and k-mer counting-based features. 
The model for cefepime has the most limited performance with a test 1-tier accuracy of 0.49, while the 
model for ampicillin has the highest performance with a test 1-tier accuracy of 1.00. Most models have 
satisfactory performance, with test accuracies ranging from about 0.70–0.90. The significance of eMIC- 
AntiKP is the effective utilization of computing resources to make it a compact and portable tool for most 
moderately configured computers. We provide users with two options, including an online web server for 
basic analysis and an offline package for deeper analysis and technical modification.

© 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A demi-decade has witnessed the vast evolution of various pa-
thogenic bacteria towards antimicrobial drug resistance by two 
major steps: dissemination and emergence [1]. While bacterial dis-
semination in multiple locations weakens the human body with an 
increased amount of toxins, bacterial emergence accidentally occurs 
to resist drugs and immediately transfer these resistance genes by 

both vertical and horizontal transmission [2,3]. The bacterial emer-
gence partially reveals one of the distinct mechanisms in bacterial 
evolution [4]. The expansion of resistance has been demonstrated to 
be closely associated with prudent practices of antimicrobial drugs 
[5,6]. Therefore, great efforts have been made to effectively use an-
timicrobial drugs in suitable doses with the aim of not only eradi-
cating germs but also strictly controlling any possibilities for 
bacterial evolution [4]. Patients diagnosed with infections must be 
promptly treated with properly-dosed antimicrobial medicines to 
achieve fast recovery, limit unexpected complications, and reduce 
the use of non-specific antibiotics [7–9]. Postponed medications may 
reduce the survival chances of infected patients [9]. However, se-
lecting suitable antibiotics is not a time-effective process. For a 
conventional approach, practitioners can only give precise drugs 
after they correctly determine the microbic taxonomy and evaluate 
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minimum inhibitory concentrations (MICs) [10]. In a more compli-
cated situation, patients may not be infected with one strain only, 
and performing numerous inoculations is unavoidable [11,12]. In 
recent years, the cost and timing of sequencing technologies have 
decreased in parallel with the advancement in accuracy, which has 
facilitated diverse ‘omics’ research and created an enormous source 
of biological data [13]. Additionally, the advent of modern molecular 
assays has sped up diagnostic processes with reduced repetitive 
steps in bacterial culture. These biological assays have now become 
commonly used protocols in laboratories worldwide. To identify 
antimicrobial resistance (AMR) phenotypes, several gene-based 
methods, including polymerase chain reaction, whole-genome se-
quencing (WGS), and microarrays, are frequently employed [14–16]. 
Among these approaches, VITEK 2, a fully automated system, is 
currently a cheaper and more available one that enables the iden-
tification of pathogens and their antibiotic susceptibility in one day 
[17]. Despite important advantages in processing time and accuracy, 
sequence-based assays still have limitations that need to be ad-
dressed. These assays depend on well-curated databases of AMR 
genes, and most of the entries are of well-defined AMR genes 
[18–20]. Besides, distinguishing AMR genes and their nonfunctional 
paralogs using a similarity-based matching method remains chal-
lenging. Additionally, failure in mutation detection in specific re-
gions, such as regulatory and promoter locations, may incidentally 
occur to cause false-negative susceptibility prediction [21]. Also, 
since most of the PCR-based methods compulsorily require well- 
designed primers for chain reactions, annealing processes may be 
inert if complementary regions are found with mutations. Pre-ex-
isting knowledge of AMR regions is indispensable to obtain reliable 
outcomes when using these assays [10]. To predict uncommon re-
sistances whose molecular mechanisms have not been fully explored 
or multifactorial, contemporary assays need to be assisted with 
computational advances to strengthen predictive power.

In recent years, public sources of WGS data, particularly clinical 
AMR data, have motivated the development of computational fra-
meworks to predict AMR phenotypes without requiring prior 
knowledge of AMR genes and mutations [22,23,10]. In 2016, Davis 
et al. [22] built a learning model using k-mer information and the 
AdaBoost algorithm [24] to predict carbapenem resistance in Aci-
netobacter baumannii, beta-lactam and co-trimoxazole resistance in 
Streptococcus pneumoniae, and methicillin resistance in Staphylo-
coccus aureus, beside several types of resistance in Mycobacterium 
tuberculosis. In the same year, Drouin et al. [23] developed four 
prediction models using k-mer features and set covering machines 
[25] towards Clostridium difficile, Pseudomonas aeruginosa, Strepto-
coccus pneumoniae, and Mycobacterium tuberculosis. One year later, 
another prediction model for the MICs of Neisseria gonorrhoeae was 
introduced using single nucleotide polymorphisms (SNPs) from 
various essential AMR genes [26]. In 2018, Nguyen et al. [10] pro-
posed a computational framework to predict the MICs for Klebsiella 
pneumoniae using k-mer features and extreme gradient boosting. 
Also, in other studies, SNPs, AMR genes, and WGS data were selected 
as features to construct prediction models using multiple machine 
learning algorithms [27–30,31]. Although these methods are rela-
tively effective for predicting the MICs of diverse antibiotics against 
bacterial strains, there is still room for improvement.

In this study, we introduce a compact computational framework 
for MIC estimation using convolutional neural networks and k-mer 
counting-based features. Our proposed method was shown to have a 
low computational demand, requiring fewer computing resources 
and a significantly shorter training time. The computational cost- 
effectiveness benefits our model by easily catching up with addi-
tional data. In a scenario of ceaseless expansion of “omics” data, 
good models are expected not only to correctly predict outcomes at a 
contemporary time but also to be simply updatable. Although the 
power of classical machine learning methods has been 

demonstrated in some particular problems, simply updating the 
model is not their strength. While deep learning models need weight 
tuning at several penultimate layers only, classical machine learning 
models demand more computationally intensive tasks (feature se-
lection, hyper-parameter tuning, etc.). Deep learning has now be-
come one of the most robust computational approaches which is 
used to address diverse problems in molecular biology [32–35–38]
and biochemistry [39–42]. Our prediction framework was designed 
to predict the MICs of multiple antibiotics against a typical strain of 
infectious bacteria only to demonstrate the computational and 
timing efficiency of the proposed method. The dataset used to de-
velop the framework was collected from a similar study by Nguyen 
et al. [10]. The framework allows users to obtain predicted MICs of 
20 antibiotics against Klebsiella pneumoniae (K. pneumoniae), a 
leading cause of global fatalities, in a very short time with compe-
titive performances compared to those of Nguyen et al. [10], which is 
a state-of-the-art method. We also deploy our framework as an 
online web server to support the research community. Besides, an 
offline package was provided with all the necessary modules for 
deeper analysis and technical modification.

2. Materials and methods

2.1. Benchmark dataset

We used the dataset in a similar study by Nguyen et al. [10]. 
Between September 2011 and March 2017, the Houston Methodist 
Hospital System cultured Klebsiella pneumoniae isolates from patient 
samples. Using the BD-Phoenix system (BD Diagnostics, Sparks, MD, 
USA), strains were tested for minimum inhibitory concentrations to 
20 antibiotics. Genomes were assembled using the PATRIC (Patho-
systems Resource Integration Center) assembly service [20] to make 
up that dataset. These genomes have labels which are MIC values of 
20 tested antibiotics. There are 32,312 samples for pairs of genome- 
antibiotic and corresponding MIC values. Table 1 provides informa-
tion about the data used for model training and evaluation. Ad-
ditionally, most of the sample files have an average size of 5.5 MB 
and contain numerous contigs of about 300 nucleotides. There are a 
small number of files having from 400 to 5000 contigs (76/1667 
files). The MIC values were rounded up to second decimals (Table 2). 
For valid calculation, all mathematics notations including “  >  ”, “≥ ”, 
“  <  ”, and “≤ ” were removed from the MIC values. The MIC values of 
“  > x” and “  < x” were replaced with “2x” and “x∕2”, respectively, 
while the MIC values of “≥x” and “≤x” were all replaced with “x”. The 
MIC values of paired antibiotics (e.g., Piperacillin/Tazobactam) were 
replaced with the MIC values of the first antibiotic only because 
those of the second ones were constant or dependent on the first 
ones’ doses.

Table 1 
Data for model development and evaluation. 

Antibiotics No. samples Antibiotics No. samples

Trimethoprim/ 
Sulfamethoxazole

1667 Cefuroxime 
sodium

1575

Tobramycin 1666 Ceftriaxone 1667
Tetracycline 1667 Ceftazidime 1667
Piperacillin/Tazobactam 1662 Cefoxitin 1645
Nitrofurantoin 895 Cefepime 1571
Meropenem 1660 Cefazolin 1667
Levofloxacin 1666 Aztreonam 1644
Imipenem 1666 Ampicillin/ 

Sulbactam
1664

Gentamicin 1667 Ampicillin 1666
Ciprofloxacin 1664 Amikacin 1667
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2.2. K-mer counting-based features

The K-mer counting (KMC) algorithm was used to compute the 
frequency of each k-mer in a single file. Initially, all frequencies of 
appearing k-mers were first computed file by file. After obtaining 
counts of all k-mers in each separate file, the counts of all k-mers 
appearing in the entire benchmark dataset were then computed. 
Among all possible existing k-mers, the highest count of any certain 
one is considered maximal frequency (F). Several values of k were 
selected to estimate the number of unrepeated k-mer appearing in 
the entire benchmark dataset. The number of unrepeated k-mers (N) 
for k = 10 is 520,000 with a maximal frequency of 4281, followed by 
those of k = 8, 6, and 5, with k-mer counts of 32,896, 2080, and 512, 
and the maximal frequencies of 6690, 30,614, and 85,308, respec-
tively. For k = 5 or 6, great variations between maximal frequencies 
and minimal frequencies are observed. In our experiments, although 
k = 8 was selected, the variation between the maximal frequency and 
the minimal frequency was still large and needed to be solved. The 
frequencies of k-mers, therefore, cannot be directly used as input 
features because large differences will cause biases in informatics 
importance. To address this issue, the logarithmic scale, a non-linear 
mapping scale, was employed to narrow the range of values. To se-
lect the effective size of the input matrix, the base b of the loga-
rithmic scale can be adjusted. The process for the log-scaled 
transformation of KMC-based features is visualized in Fig. 1. After all 
existing k-mers in the benchmark dataset were defined, genome 
files were converted into their corresponding frequency vectors, in 
which each component is the frequency of a particular k-mer. A 
genome file may not contain all existing k-mers, and the values of 
the unfound k-mers were, therefore, filled with ‘0’. All the created 
frequency vectors were same-length vectors. The log-scaled 

transformation was then applied to convert these frequency vectors 
into KMC-based log-scaled matrices. The base b of the logarithm 
function was selected as:

=b F ,M (1) 

where M and F are the number of desired rows and the maximal 
frequency, respectively. For any particular ithk-mer, logb value (using 
the integer part only) of its count is equal to jth column to be filled. 
The value v(i, j), therefore, is assigned ‘1’ while other values of the 
same row (belonging to the same k-mer) are assigned ‘0’. Each row 
vector (corresponding to a specific independent k-mer) of the cre-
ated matrix now becomes a one-hot vector. The other k-mers are 
successively processed in the same manner. A frequency vector 

= … …f F[1, 35, 50, 199, ,690, , ], for example, has its logb(n0 = 1), 
logb(n1 = 35), logb(n2 = 50), logb(n3 = 199), logb(n999 = 690), and logb 

(nN = F) computed as 0, 1.12…, 2.23…, …, 99. 87…, 100.05…, …, M, re-
spectively. n0, n1, n2, n3, n999, and nN are the numbers of counts for k- 
mers ‘AA…AA’, ‘AA…AT’, ‘AA…AG’, ‘AA…AC’, ‘CC…CT’, and ‘CC…CC’, 

respectively. This frequency vector f is then converted into a log- 

scaled frequency vector = … …f M[0, 1, 2, ,99, 100, , ]log . The log- 

scaled frequency vector flog is eventually transformed into a KMC- 
based log-scaled matrix of size N × M. Based on computed results, 
the values v(0, 0), v(1, 1), v(2, 2), v(3, 2), v(999, 100), and v(N, M) are assigned 
1 and the other values v(i, j) are assigned 0 (Fig. 1). In our im-
plementation, the input matrix was designed with a size of 32,896 
(N) × 14 (M), which was equal to the counts of k-mers corresponding 
to k = 8 and the base of 2 for the logarithmic scale.

2.3. Model architecture

Multiple empirical experiments were conducted to finally come 
up with the best-performing architecture for model development. 
Our proposed models were designed with two convolutional blocks 
and one fully-connected block (Fig. 2). Two convolutional blocks 
were similarly built of one 2-dimensional convolutional (Conv2D) 
layer, one max-pooling layer, and one batch normalization (Batch-
Norm) [43] layer while the fully-connected block comprises of three 
fully-connected layers (FCs). The rectified linear unit (ReLU) was 
used as the activation function for all blocks. The kernel size of 3 × 3 
and the pooling window of 2 × 2 were applied in both the convolu-
tional blocks. The matrices of sizes 32,896 × 14 were initially passed 
through the first convolutional block to turn into the smaller 

Table 2 
Minimum inhibitory concentrations of 20 antibiotics for all genome samples. 

MIC No. samples MIC No. samples MIC No. samples

0.02 1 4.00 4459 19.00 12
0.03 1 6.00 2 20.00 15
0.09 1 8.00 3737 21.00 4
0.13 282 11.00 2 23.00 1
0.25 120 12.00 2 32.00 10802
0.38 1 14.00 2 50.00 5
0.50 784 16.00 3896 64.00 1834
1.00 3118 17.00 4 128.00 1833
2.00 1775 18.00 11

Fig. 1. The processing steps in converting KMC vectors to a KMC-based log-scaled matrices. 
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matrices of size 16,448 × 7 using 64 feature maps. The second con-
volutional block then converted these matrices into ones of size 
8224 × 3 using 128 feature maps before being flattened as the first 
layer of 8224 × 3 × 128 = 3158,016 nodes in the fully-connected block. 
The second fully-connected layer rendered outputs with a size of 64, 
followed by a batch normalization layer before being ReLU-activated, 
dropped out with a rate of 0.5, and finally returning the outcomes. 
The model was optimized with the Adam optimizer [44] to minimize 
the mean square error as the model loss function.

In addition to MIC estimation, we also predict if a sample is re-
sistant to an antibiotic in the dataset. The architecture of the models 
for this problem are similar to that in Fig. 2, except for the binary 
cross-entropy loss was used when training the models.

2.4. Evaluation Metrics

For the MIC estimation problem, the accuracy within ±  1 two- 
fold dilution factor (or 1-tier accuracy) of the actual MIC was used to 
evaluate the model performance. This evaluation metric was ap-
proved by the U.S. Food and Drug Administration and is in agree-
ment with current standard criteria at laboratories worldwide. Fig. 3
illustrates the 1-tier accuracy.

For the prediction of resistance problem, the models were eval-
uated based on multiple metrics, including the accuracy, sensitivity, 
specificity, F1-score, area under the receiver operating characteristic 
curve (AUC-ROC), area under the precision-recall curve (AUC-PR), 
the very major error rate (VAE), defined as the percentage of re-
sistant samples that are incorrectly predicted to be susceptible, and 
the major error rate (ME), defined as the percentage of susceptible 
samples that are incorrectly predicted to be resistant by the model. 
In this problem, VAE = 1 - sensitivity, and ME = 1 - specificity.

3. Results and discussion

3.1. Model development and evaluation

The processed benchmark dataset was randomly split into a 
training set, a validation set, and a test set, which accounts for 80 %, 
10 %, and 10 % of total samples, respectively. All models for MIC 
prediction of 20 antibiotics were preliminarily trained over 200 
epochs. In our experiments, all the deep learning models were im-
plemented using Tensorflow version 2.0 and trained on an i5 8400 
CPU, 32 GB RAM, and one NVIDIA 1080Ti GPU. It took about 30–35 s 
to train one epoch and about 10 s to complete testing. For predicting 
MIC for each antibiotic, the model at the epoch where the validation 
loss was minimum was selected as the optimal model. Most of the 
models converged around epoch 150. For predicting resistance, each 
model was trained with a learning rate of 1e − 3 and the early 
stopping technique. After the best model was selected based on the 
minimum value of the validation loss, the model was trained in two 
more epochs with a learning rate of 1e − 4 and the combination of 
the training set and the validation set.

Table 3 summarizes the model performances of the MIC pre-
diction models for 20 antibiotics. There are 7 models with 1-tier 
accuracy of over 0.90 and 9 models with 1-tier accuracy of 0.74–0.90. 
Models for MIC prediction of Cefepime, Meropenem, Piperacillin/ 
Tazobactam, and Tetracycline have 1-tier accuracy of 0.49, 0.59, 0.63, 
and 0.68, respectively.

Table 4 presents the model performances of the resistance pre-
diction models for 19 antibiotics. Ampicillin was excluded from our 
experiment as there were only 4 susceptible samples corresponding 
to that antibiotic in the dataset. Table 4 also includes the average 
values of VME and ME from 10-fold cross-validation in Nguyen et al. 

Fig. 2. Model architecture. 

Fig. 3. The accuracy within ±  1 two-fold dilution factor. 
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[10]. Although this is just a cursory comparison, it can be seen that 
the performances of our models were not much different from those 
of Nguyen et al. [10]. Some VME values (for Cefazolin and Tri-
methoprim/Sulfamethoxazole) and ME values (for Aztreonam, Cef-
triaxone, and Levofloxacin) of our models are still better than the 
corresponding metrics in Nguyen et al. [10].

3.2. Strengths and limitations

In this study, our prediction framework was significantly opti-
mized in terms of training time and computing resources compared 
to the state-of-the-art method proposed by Nguyen et al. [10]. To 
complete the training, only about one hour is needed. The size of the 
framework is only 2.4 GB, while Nguyen et al.’s framework requires 
up to 148 GB of disk space. During the training process, a GPU of 
11 GB was used with a small requirement of random access memory 
(RAM), while Nguyen et al.’s framework needed a RAM of 1.5TB. 
Besides, their framework was trained using the XGB algorithm, 
which usually demands a longer time for both hyper-parameter 
tuning and model training. The effective use of computing resources 
makes our framework compact and portable for most computers 
with moderate configurations. Moreover, since genome data is being 
accumulated to become big data in genetics and biology, Nguyen 

et al.’s framework is bulky for updating or retraining. On the con-
trary, updating our model with additional future data is a simple 
task supported by exceptionally strong deep learning platforms.

According to Nguyen et al.’s report [10] on the model perfor-
mance, their framework does not work significantly better than ours 
because the to-be-given antibiotic’s dose must be properly adjusted 
based on patients’ physiological conditions (e.g., age, sex). Therefore, 
the slight differences in performance between the two frameworks 
are very unlikely to result in any better or worse predicted MIC 
values. In particular, both methods only aim to recommend suitable 
doses to physicians to finally decide given doses based on each 
particular condition. Physicians can use these predicted MIC values 
as references and then combine them with other factors to give 
precise doses to patients. Although the feature extractor of eMIC- 
AntiKP is highly effective and fast, it is undeniable that our feature 
extraction method may partially affect the prediction accuracy. In 
the future, we will look into how to make a better feature extractor 
so that we can not only get important sample information but also 
speed up all the training processes.

We developed computational models to predict the minimum 
inhibitory concentrations of 20 antibiotics towards Klebsiella pneu-
moniae because of its prevalence in causing bacterial infection in 
humans. Klebsiella pneumoniae is an opportunistic bacterial strain 
normally living in human intestines and feces. They can cause di-
verse infection types with increased tendencies to become anti-
biotic-resistant. For patients with background diseases, the infection 
may permanently impair an organ’s functions (e.g., the lung, the 
kidney, etc.). On the other hand, in our study, the size of the data on 
antibiotics treating Klebsiella pneumoniae was sufficiently large to 
develop a computation model using deep learning. The proposed 
method can be applied to other species of bacteria with minor ad-
justments, as long as there is sufficient data available.

There are several models for predicting resistance to Klebsiella 
pneumoniae, for example, the AMR-Diag model [45]. However, their 
datasets are much smaller than the one used in our study, in terms 
of both the number of samples and the number of antibiotics. In the 
future, we will look for larger datasets for improving our models and 
for cross-checking to find out how the models would perform on the 
isolates from a different dataset.

3.3. Software availability

Our online web server was designed with a user-friendly inter-
face to support not only expert users but also novice users. Users can 
freely download benchmark datasets from the website since the 

Table 3 
Model performances of the MIC prediction models. 

Antibiotic Validation 1-tier 
accuracy

Test 1-tier 
accuracy

Amikacin 0.88 0.91
Ampicillin 0.99 1.00
Ampicillin/Sulbactam 0.91 0.92
Aztreonam 0.80 0.79
Cefazolin 0.95 0.94
Cefepime 0.46 0.49
Cefoxitin 0.79 0.74
Ceftazidime 0.89 0.90
Ceftriaxone 0.87 0.89
Cefuroxime sodium 0.96 0.97
Ciprofloxacin 0.92 0.89
Gentamicin 0.72 0.80
Imipenem 0.70 0.75
Levofloxacin 0.86 0.89
Meropenem 0.59 0.59
Nitrofurantoin 0.93 0.93
Piperacillin/Tazobactam 0.69 0.63
Tetracycline 0.70 0.68
Tobramycin 0.80 0.80
Trimethoprim/Sulfamethoxazole 0.84 0.83

Table 4 
Model performances of the resistance prediction models. 

Antibiotics Accuracy AUC-ROC AUC-PR Sensitivity Specificity F1-score VME ME VME [10] ME [10]

Amikacin 0.958 0.932 0.763 0.700 0.977 0.700 0.300 0.023 0.298 0.000
Ampicillin/Sulbactam 0.984 0.946 0.992 0.986 0.945 0.991 0.014 0.056 0.003 0.032
Aztreonam 0.871 0.850 0.956 0.901 0.682 0.924 0.099 0.318 0.001 0.398
Cefazolin 0.958 0.975 0.998 0.968 0.800 0.978 0.032 0.200 0.060 0.018
Cefepime 0.826 0.862 0.929 0.825 0.829 0.870 0.175 0.171 0.007 0.137
Cefoxitin 0.880 0.925 0.954 0.843 0.925 0.886 0.157 0.075 0.077 0.009
Ceftazidime 0.920 0.922 0.989 0.926 0.857 0.940 0.074 0.143 0.005 0.123
Ceftriaxone 0.988 1.000 1.000 0.987 1.000 0.993 0.013 0.000 0.000 0.188
Cefuroxime sodium 0.936 0.981 0.999 0.939 0.889 0.965 0.061 0.111 0.002 0.010
Ciprofloxacin 0.963 0.991 0.999 0.972 0.900 0.979 0.028 0.100 0.005 0.025
Gentamicin 0.907 0.946 0.945 0.853 0.946 0.886 0.147 0.054 0.072 0.009
Imipenem 0.951 0.983 0.952 0.958 0.948 0.920 0.042 0.052 0.040 0.032
Levofloxacin 0.970 0.994 0.999 0.961 1.000 0.980 0.039 0.000 0.016 0.020
Meropenem 0.932 0.963 0.945 0.917 0.939 0.889 0.083 0.061 0.048 0.027
Nitrofurantoin 0.910 0.803 0.962 0.931 0.667 0.950 0.069 0.333 0.018 0.227
Piperacillin/Tazobactam 0.865 0.886 0.923 0.857 0.884 0.900 0.143 0.116 0.025 0.012
Tetracycline 0.854 0.897 0.903 0.805 0.905 0.849 0.195 0.095 0.114 0.008
Tobramycin 0.894 0.926 0.916 0.849 0.949 0.899 0.151 0.051 0.040 0.012
Trimethoprim/Sulfamethoxazole 0.898 0.957 0.983 0.905 0.878 0.931 0.095 0.122 0.119 0.108
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model performance of our proposed method is expected to be im-
proved by users’ contributions. Besides an online tool, we also cre-
ated a Python module for offline analysis and a detailed guideline to 
assist users to appropriately and effectively perform prediction 
tasks. Expert users are highly recommended to download the Python 
module to run on their personal computers for the best experience 
and convenience. Input (bacterial genome) files must be uploaded to 
the server for further processing. The web server supports multi-
faceted options for 20 antibiotics. The interface of eMIC-AntiKP is 
presented in Fig. 4. The data and code used in our study can be 
downloaded from the project web page at https://github.com/ 
ngphubinh/eMIC-AntiKP, and our web server is available at https:// 
homepages.ecs.vuw.ac.nz/~nguyenb5/apps/emic-antikp.

4. Conclusions

Our prediction framework for MIC values of 20 antibiotics to-
wards Klebsiella pneumoniae is a compact and less computationally- 
demanding analytic tool which is suitable for most of the current 
personal computers. Both the online web server and the offline 
package are available with clear instructions and an easy-to-use 
interface.
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