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Abstract: Currently, observations of an agricultural land system (ALS) largely depend on
remotely-sensed images, focusing on its biophysical features. While social surveys capture the
socioeconomic features, the information was inadequately integrated with the biophysical features
of an ALS and the applications are limited due to the issues of cost and efficiency to carry out such
detailed and comparable social surveys at a large spatial coverage. In this paper, we introduce
a smartphone-based app, called eFarm: a crowdsourcing and human sensing tool to collect the
geotagged ALS information at the land parcel level, based on the high resolution remotely-sensed
images. We illustrate its main functionalities, including map visualization, data management,
and data sensing. Results of the trial test suggest the system works well. We believe the tool is able
to acquire the human–land integrated information which is broadly-covered and timely-updated,
thus presenting great potential for improving sensing, mapping, and modeling of ALS studies.

Keywords: smartphone; human sensing; social sensing; crowdsourcing; agriculture; land use;
citizen science

1. Introduction

Land constitutes the terrestrial component of the earth and stands at the center of the coupled
human and natural systems [1], while agricultural land occupies about 38% of earth’s terrestrial surface:
the largest use of land on the planet [2]. Land systems reflect the state and result of human systems
interacting with the natural system, while the agricultural land system (ALS)—with the functionality
of providing vital resources to society, such as food, fuel, fibers and many other ecosystem services that
support production—is one of the most important land systems for human society [3]. Understanding
the spatial-temporal characteristics of agricultural area, its internal states such as crop allocation,
farm management, and disturbance, as well as the human activities that are relevant to the changes of
the state, have great implications on food security, sustainability, and social development [3–5].

The biophysical features of ALS have been effectively sensed by remote sensing techniques, which
covers a wide range of observation from land cover (i.e., cropland distribution) to crop parameters
(e.g., crop phenology, biomass, and yield), as well as the estimation of soil moisture and drought [6,7].
On one hand, there are a number of existing regional/global land cover datasets derived from
remotely-sensed images, which are able to provide information on cropland distribution and its
changes in both spatial and temporal dimensions [8,9]. In many cases, the preliminary remotely-sensed
images received from satellites—which have not been processed to land cover data yet—have been
used directly to observe the state and changes of cropland, giving particular attention to some hot-spot
areas [10]. These observations help to understand land cover though land use and farm management,
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which change more frequently without any significant change of the land cover, is more difficult to
observe [3]. It implies that untimely cropland information is insufficient to support the multi-faceted
ALS studies. On the other hand, some studies attempt to use remote sensing for partly investigating
agricultural intensification and farm management rather than the mere attention paid to the cropland
mask. For example, Li, et al. [11] mapped the cropland growth stages (e.g., dates of onset/peak/end of
growth, and the length of the growing season) in northeast China by using the SPOT-VGT time-series
data. This type of study promotes the remote sensing application from qualitative classification
to quantitative monitoring that are able to reflect more information of human activities. However,
given that the focus of remote sensing is still the physical objectives on land surface, the integration
of biophysical and socioeconomic features for agricultural land system observation is inadequate.
Consequently, one limitation of Li, et al. [11] was that the results are somehow difficult to link
with real stages of crop growth such as sown, maturity, and harvest to reflect the real activities of
farm management.

From the socioeconomic perspective, a number of studies have tried to understand ALS using
surveys and statistics data [12–14]. However, the linkages between human and land were usually
weak. For example, social surveys are able to acquire human land use activities while few of them
were interested in the location of land and the spatial allocation of land use activities. Moreover,
the statistics are only able to represent the aggregated land use and its related human activities at an
administrative level. This results in difficulties such as explaining how the decisions made by land
managers would change the state of a land parcel and how the changes on land were determined by
land managers. Some other studies combined household surveys with remote sensing by providing
maps to interviewees to acquire information spatially. These surveys commonly focused on human
sentiments toward land use, thus they are good at analyzing the consequences or causes of ALS
change [15,16] rather than the observation itself. A pilot study from Yu, et al. [17] tried to map the
combined biophysical and socioeconomic features of a local level ALS based on a well-designed
household survey. However, the applications of such an approach are extremely limited, because
remote sensing is able to capture large scale information though, field surveys are always limited
to finer scales with huge expense on time, money, and human recourses. Moreover, the traditional
household surveys require respondents to recall the past events, which would lead to a higher data
unreliability when the recall period was long [18]. All these suggest that the traditional survey
approaches have limited potential in observing agricultural land systems.

Given the nature of agriculture–i.e., underpinned by the biophysical environment while affected
by human activities–a better sensing of ALS needs to integrate both its biophysical and socioeconomic
characteristics. Moreover, its rapid changes due to crop growth and disturbance require the timely
observation at a broad spatial coverage and the ability to elicit the heterogeneity at specific sites
to inform better management. Unfortunately, no existing reports or tools were able to address all
these aspects in the observations on ALS. Since the popularization of the internet and advanced data
storage and computing technology, there has been an explosion of interest in using the web to collect,
assemble, and disseminate information, which stimulated the development of citizen science in the
latest decade [19–21]. In this paper, we introduce a recently-developed tool based on the idea of citizen
science, which is able to revolutionize the observation for improving ALS studies.

2. Improving ALS Observation Based on Existing Sensing Technologies

In order to better observe ALS, spatial-temporal characteristics need to be captured timely with
a broad spatial coverage, and to be able to integrate the farmer and their land to better reflect
human-environment interactions. There are a few existing technologies or platforms available in
the relevant disciplines. Although they are indirectly/less related to the observation of ALS, combing
their unique advantages stands a chance at addressing all these requirements together. This stimulates
the development of the new sensing tool for improving the observation of ALS (Figure 1).
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Figure 1. The concept of improving observation of ALS using support from relevant disciplines. Based 
on agricultural remote sensing, new sensing techniques from citizen science such as crowdsourcing 
and human sensing are applied to expand the potential of traditional household surveys in acquiring 
the human-land integrated information. Abbreviations in the figure: VGI: Volunteered Geographic 
Information; SAGI: Satellite, Aerial, and Ground Integrated agricultural remote sensing. The details 
of the concepts are elaborated in this section below. Some elements of the figure are adopted from 
internet. 

2.1. SAGI Agricultural Remote Sensing 

Although satellite imagery has been playing an important role in agricultural remote sensing, 
limitations exist that they may not be able to supply sufficient information with adequate resolution, 
accurate geo-referencing, and specialized biological parameters. A more advanced platform for 
agricultural remote sensing, known as SAGI (Satellite, Aerial, and Ground Integrated agricultural 
remote sensing) has been developed and implemented by the authors’ host institute: Institute of 
Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (IARRP, 
CAAS) to enforce a stronger information integration with respect to joint data processing, image 
sequence registration, and data assimilation [22]. Although SAGI proposed a solution to data 
harmonization that substantially improves observation, it still focuses on the biophysical 
characteristics of agricultural land. 

2.2. Smartphone Sensing in Agriculture 

In pace of the prevalent application of smartphone sensors in industries such as education, 
health care, public communication, and transportation [23–25], the usage in agricultural sector falls a 
little bit behind (e.g., the relevant publications and applications can only be seen in recent years) 
[26,27]. However, it is no doubt that the usefulness, ease-of-use, and affordability of built-in sensors 
have unlimited possibility to help the transformation of traditional agriculture [26]. Advantages 
through the access of cameras, microphones and recording software, geographical information, and 
global positioning systems (GPS), allow a variety of practical applications to be created, in both 
farming and farm management [26,27]. 

Figure 1. The concept of improving observation of ALS using support from relevant disciplines. Based
on agricultural remote sensing, new sensing techniques from citizen science such as crowdsourcing
and human sensing are applied to expand the potential of traditional household surveys in acquiring
the human-land integrated information. Abbreviations in the figure: VGI: Volunteered Geographic
Information; SAGI: Satellite, Aerial, and Ground Integrated agricultural remote sensing. The details of
the concepts are elaborated in this section below. Some elements of the figure are adopted from internet.

2.1. SAGI Agricultural Remote Sensing

Although satellite imagery has been playing an important role in agricultural remote sensing,
limitations exist that they may not be able to supply sufficient information with adequate resolution,
accurate geo-referencing, and specialized biological parameters. A more advanced platform for
agricultural remote sensing, known as SAGI (Satellite, Aerial, and Ground Integrated agricultural
remote sensing) has been developed and implemented by the authors’ host institute: Institute of
Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (IARRP,
CAAS) to enforce a stronger information integration with respect to joint data processing, image
sequence registration, and data assimilation [22]. Although SAGI proposed a solution to data
harmonization that substantially improves observation, it still focuses on the biophysical characteristics
of agricultural land.

2.2. Smartphone Sensing in Agriculture

In pace of the prevalent application of smartphone sensors in industries such as education, health
care, public communication, and transportation [23–25], the usage in agricultural sector falls a little
bit behind (e.g., the relevant publications and applications can only be seen in recent years) [26,27].
However, it is no doubt that the usefulness, ease-of-use, and affordability of built-in sensors have
unlimited possibility to help the transformation of traditional agriculture [26]. Advantages through
the access of cameras, microphones and recording software, geographical information, and global
positioning systems (GPS), allow a variety of practical applications to be created, in both farming and
farm management [26,27].
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Currently, the smartphone applications in agriculture mainly focus on specific farming activities,
such as water and fertilizer calculation, disease detection and diagnosis, pest and weed control,
chlorophyll content estimation [28], and tractor-navigation, etc. The available apps which are ready
to use include MyPestGuide (https://mypestguide.agric.wa.gov.au/), Di@gnoPlant (http://www.
inra.fr/), WISE (Water Irrigation Scheduling for Efficient Application) [29], Cotton SmartIrrigation
App [30], LCFSS (land consolidation field survey system) [31], among others. Compared with specific
farming activities, the general and comprehensive applications on farmland management are relatively
rare [26]. By using big data on three explanatory variables (household size, number of livestock,
and land area) across the African continent, Frelat, et al. [32] suggested that macro level solutions such
as improving market access to diversifying employment sources would have better consequences on
poverty reduction and food security, rather than focusing on farming and closing yield gaps at the
field level. It implies that application of smartphone sensing may play a more important role, if the
priority is given to big data collection on farmland management.

2.3. Volunteered Geographic Information (VGI)

Goodchild [33] proposed the term VGI and defined it as user-generated content in geography.
A number of technologies made VGI not only possible at the theory level but also practical at the
application level. These enabling technologies include web 2.0, georeferencing, geotags, graphics,
GPS, and broadband communication. Volunteers have been involved in sites such as Wikimapia,
OpenStreetMap, and Geo-Wiki, by either creating a global patchwork of geographic information or
developing interesting applications based on existing data. The main purpose of these tools differ from
each other, i.e., Wikimapia is focused on place descriptions (www.wikimapia.org/), OpenStreetMap
creates user-editable maps [34], and Geo-Wiki collects ground truth to validate global land cover
datasets [35,36]. However, by searching the words of “volunteered geographic information” and
“agriculture” at Google Scholar, it suggests that VGI has been rarely applied for agricultural purposes
(e.g., farmland management), despite site-specification and georeference also being the nature of
agriculture [33].

2.4. Crowdsourcing and Human Sensing

Crowdsourcing and human sensing are two commonly used concepts siting at the center of
citizen science [37,38]. One of the significant characteristics of citizen science is the wide coverage of
participation of people from the public. It is based on the involvement of a large number of volunteers
in the research process, mainly during the data-collection stage [39]. This phenomenon is referred
as ‘crowdsourcing’, represented by the success of VGI [33]. The other characteristic is that, with
the help of modern sensors, e.g., sensors embedded in a smartphone which mainly reflect human
activities, citizen science is able to expand the coverage of data content that are useful to advance the
understanding of environmental science or human-environmental interactions from a human-centric
perspective [24,25,40]. This methodology can be conceptualized as ‘human-sensing’. Combining these
two advantages, ALS would be better understood if crowdsourcing is applied to expand the coverage
of field survey and human-sensing is applied to integrate human activities into the observation of the
biophysical state of agricultural landscapes.

3. The Development of eFarm

3.1. System Overview

The requirements of improving ALS observation and progress in the relevant disciplines inspired
the development of eFarm, which is designed as a human-land integrated data sensing system
represented by a data collecting app installed in smartphones. It combines agriculture and geography
and allows volunteers to contribute the timely and georeferenced farmland management information to
be integrated to the spatial land parcels derived from high resolution remotely-sensed images (Figure 1).

https://mypestguide.agric.wa.gov.au/
http://www.inra.fr/
http://www.inra.fr/
www.wikimapia.org/
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The overview of the eFarm system is presented in Figure 2: the orange labeled section illustrates
how the smartphone app works; the blue labeled section illustrates how data is exchanged among
different platforms; and the green labeled section shows the how the comprehensive ALS information
will be applied for sophisticated analysis. The app was originally developed based on the Android
tablet system. Its main functionalities include visualization (of basemaps), data management (of land
parcels and users), and data sensing (of land and household information). Detailed elaborations on the
functionalities are described below.
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with the visualized map, and the default visualized map is given to the latest captured one. 

Figure 2. The overview of the eFarm system. The diagram presents a closed loop of information
sensing: remoted-sensed images provide a basemap of land parcel information while the observed
land use information and manager’s characteristics are added to the land parcels thought eFarm.
The illustrated basemap was adopted from Google Map displaying an agricultural area in Qianjiang
City, Central China. See a color-blinded figure in the Supplementary Materials.

3.2. Visualization of Basemaps

In order to observe the human-land integrated information on agricultural landscape, it is
necessary to present high resolution, clearly visible, and georeferenced images as basemaps which
are able to be referred and edited on the app. The Application Programming Interface (API) enables
external maps and images—from a third party such as Google Map (https://maps.google.com/),
Baidu Map (http://map.baidu.com/), and Tianditu (http://www.tianditu.com/)—to be visualized in
the system for a particular region as the basemap (Figure 3). In addition, the basemap could be the
timely acquired UAV (unmanned aerial vehicle) images from the SAGI agricultural remote sensing
system when other images are insufficient (Figure 3). The candidate basemaps are prepared in the
data center (e.g., selection and geometric calibration) before they are visualized in the smartphone
app, and the maps with unclear boundaries of land parcels are excluded at this prescreening stage.
The well-prepared maps in the data center can be freely switched, displayed and zoomed-in/out
when they are ready to be viewed in the app with internet. Visualized maps will be automatically
downloaded locally, so that the internet is no longer required for further visualization. The specific
meta information (e.g., the exact data acquiring time, and the spatial extent) is accessible associated
with the visualized map, and the default visualized map is given to the latest captured one.

https://maps.google.com/
http://map.baidu.com/
http://www.tianditu.com/
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the physical shape of land parcel might be changing, the geodatabase is managed on a yearly basis. 
It means overlapping might exist when the polygons are representing the state of different years. 

Figure 3. Visualization of a basemap in the eFarm app based on a timely acquired UAV image.

3.3. Management of Land Parcels

Land parcels are the basic spatial units managed in the system and the foundation that sustains
the human-land integrated information. They are identified based on a basemap and representing
a unified farm management inside (while the management might be different among each other).
A layer of land parcels will be created and stored in the geodatabase by looking at a basemap as the
spatial information reference. Any independent land parcel in the shape of a polygon needs to be
created by users one by one: it can be done by either a free-selecting tool to or a manual-drawing
tool (Figure 4). The free-selecting is similar to the polygonal lasso, which is applicable when the size,
location, and boundaries of land parcels are clearly identified. The algorithm of the lasso is developed
in the SAGI system and embedded into the app [22]. The manually-drawing is similar to the process
of creating a closed polygon on top of an area of the image, which starts by tapping at the starting
point for the polygon, then moving the cursor to the next point of the polygon. A closed polygon
representing the shape of an independent land parcel will be created when double-tapping at the
last point. It is a substitute for the free selection when the lasso fails. The physical features of a land
parcel (e.g., X-Y location, size, elevation, etc.) will be automatically captured after it has been created.
Topological relationship will be checked in order to mark out the overlapped polygons. Considering
the physical shape of land parcel might be changing, the geodatabase is managed on a yearly basis.
It means overlapping might exist when the polygons are representing the state of different years.
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3.4. Management of Users

The registered users are the non-spatial units managed in the system and the crowdsourcing
sensors help to observe the state of ALS. There are three groups of users defined in the system: land
managers, interviewers, and volunteers (Figure 2):

1. Land managers are the most important users, because they are the ultimate decision-maker in
ALS and their land use activities will directly affect the state of the land parcel managed by
themselves. Land managers could be either interviewed or volunteered. Thus, the interviewers
are consisting the second group of user, who are responsible for organizing and conducting
interviews toward land managers.

2. Interviewers are also important, given the literacy and incentive might not be sufficient enough
for rural land managers to voluntarily report their land use activities. Moreover, the information
from interviewed land managers are supposed to be more reliable than from the volunteered
land managers. Each interviewer can have the relation with multiple land managers, while each
land manager can manage multiple land parcels. Ideally, the interview processes are similar
to the traditional household surveys, and the interviewer users should be scientific researchers
who are involved in collecting and using the data in relevant researching programs. It is hoped
that the systems can be operated as the LTER (Long Term Ecological Research Network), which
is attracting many researchers and shifting focus from site-specific observations to a broader
synthetic view aimed at searching out general principles that apply to many ALS at many
different scales.

3. In addition to interviewers and land managers, the third user group is volunteers who are willing
to contribute their witnessed land use information on land parcels. However, as they are not
land managers, some information is not required (e.g., the household characteristics). The setup
of volunteer users expands the number of sensors that would further enlarge the coverage of
crowdsourcing. For example, it will make a better involvement of scientific researchers in a form
that they are able to contribute real observing results rather than organizing household surveys.

Each registered user will be given a unique ID, which will be used to build the linkage between
interviewer and interviewed land manager as well as the linkage between human sensor (i.e., land
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manager and volunteer) to the observed land parcels. For implementing a more efficient user
management, any registered user of land, manager, or interviewer can be automatically activated as a
volunteer user, when they are coding the land parcel not owned by themselves or without knowing
the operational owner of the land.

3.5. Sensing of Land Information

Data sensing is followed by the visualization of maps and the development of data management
units. This is a method of basic field information collection in use already—e.g., OpenStreetMap and
Geo-Wiki both have smartphone apps—and the map component and smart phone link is promising.
With unique purposes of data sensing, eFarm aims to identify the location of a land parcel and to acquire
the additional information of the land parcel ranging from ownership to farmland management and to
manager’s characteristics. Specifically, the data sensing procedure falls into two steps: spatial data
management unit (i.e., sensing of land information, elaborated in this section below) and non-spatial
data management unit (i.e., collecting household information, see Section 3.6).

For the spatial data management unit, the land use activities observed/recorded by registered
users will be coded to each land parcel to finalize the human sensing of human–land integrated
information. The land parcel ID contains three parts, representing how the land parcel is linked with
the observer: the first part records the time of observation (e.g., yymmdd), the intermediate part
indicates the identity of the human sensor (1 means interviewed land manager, 2 means volunteered
land manager, and 3 means volunteer), and the final part is the ID of the user. This coding scheme
is not only useful for linking land managers with their managed land parcels, but also for quality
control during the crowdsourcing process, especially when a land parcel is multiply recorded. It is
supposed that the data quality is following a descending order from interviewed land managers
to volunteered land managers to volunteers. The basic information required for the newly-created
land parcels includes land ownership and management rights, land quality, crop choice, crop variety,
fertilization, management calendar, and production (Figure 2). All of this land use information in
addition with the physical features of the land parcel (e.g., X-Y location, size, elevation, etc.) can be
visualized in the app, in associating with the visualization of the basemaps (Figure 5).
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In addition to the traditional information inputting approach, ancillary information sensed from
the embedded smartphone sensors such as GPS and camera will also be applied for the observation of
land use activates. GPS is mostly used for location-aware applications. For example, when the app is
opened, it will start searching and displaying the surrounding maps within a buffer zone centered by
the location of the smartphone (the visualization center can be freely reallocated when dragging the
screen). Moreover, it will receive essential environmental information including the location of land
parcels, location of houses and location of land managers, and capture the movement of land managers
when they go to (or work at) their fields. Such trajectories could be further processed in the desktop
systems to analyze the fragmentation and intensity of agricultural land from a labor-input perspective.

Smartphone cameras are important in taking pictures and videos for reflecting the reality or for
further image processing. The camera can be used in some occasions, for example, taking real-time
pictures for the identified land parcels. This is particularly helpful because it is able to provide a sense
of the field that is more straightforward and reliable. Furthermore, the pictures will be taken associating
with other embedded sensors such as accelerometer, gyroscope, and magnetometer to facilitate the
3-D modeling and visualization of land parcels, which will be further integrated into the SAGI remote
sensing system. The cameras will also be used to capture pictures instead of inputting the required
information by words. For example, the personal identity information will be automatically retrieved
based on taking a picture of the ID card. Moreover, the detailed information of used agricultural inputs
such as seed and fertilizer can be acquired by taking pictures on the packing bags.

3.6. Collecting Household Information

For the non-spatial data management unit, household characteristics are required when linking
the land parcel with its manager. This would expand the dimension of observation on ALS as the
manager’s characteristics are integrated. Land managers need to fill such additional information at
the registration stage, while it is not necessary for the other two groups of users, because land parcel
information provided by volunteers can be stored and processed without knowing its owner. The basic
household characteristics include household head’s age and education, household profile, and finances
etc. (Figure 2). This information would be associated with the land parcels through the ID linkages.
Moreover, the linkage between the interviewers and their interviewed land managers will be created
to further improve the data quality control.

There is an additional function reserved for collecting the human sensing data: the survey
questionnaires for both aspects of land use activated and household activities can be changed, edited,
or redesigned according to specific research objectives. For example, the price, brand, and amount of
consumed fertilizer, as well as the average annual production, disasters, and market price, etc. can
be designed into a form for the land managers to fill. All of the extra information will be linked to
the specific land parcel IDs directly or through the land manager ID. Moreover, once the design of
questionnaires is finished at the desktop system, the table can be viewed and downloaded by users
(e.g., land managers) as needed on smartphones via internet. Then land managers are able to fill the
questionnaires and upload the results to the data center within a relatively short period.

4. Potentials for Improving ALS Studies

The understandings on our living environment will be greatly improved if its biophysical and
socioeconomic features can be better sensed in an integrated manner [40]. eFarm was developed
following this idea that it is able to acquire the human–land integrated information which is
broadly-covered and updated timely (Figure 6). It has great potential for improving the observation as
well as the subsequent analysis on ALS.
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4.1. Advanced Data Sensing System for Agriculture

The eFarm app can be used as a unified sensing tool to observe the timely information from
the field, in terms of crop cover, crop growth etc., which would be able to provide abundant and
well-managed ground truth for validating and thus improving the image-based land cover mapping
and agricultural remote sensing. In turn, it would also help to promote data fusion, transmission,
computation, and explanation ability of traditional agricultural remote sensing. At the same time, it can
be used as an open social survey tool for broader purposes to collect household characteristics and
their land use activities as complementary information to the identified land parcels (see Section 3.6).

In addition to providing the ground truth, eFarm is able to innovate the traditional image-based
remote sensing from a human-centric perspective. For example, it could be applied for disaster
monitoring, as challenges still exist in using satellite imagery, especially for damage assessment and
diagnosis [41,42]. It could be done in a new way: farmers voluntarily report the damage in their fields
with detailed information of location, real-time photos, and descriptions. After diagnosing at the
desktop system interacting with other supportive data as well as expert knowledge, the treatment
suggestions will be available immediately through the information pushing channel. This information
pushing mechanism could also be applied for early-warning before damage actually happens or for
advanced production predictions.

4.2. Advanced Land Systems Mapping, Modeling, and Comparison

Although remote sensing and spatial modelling have transformed the way we observe global
land-use patterns, anthropogenic systems are not directly observable from space and cannot be
modelled without a grasp of how humans interact with the environment locally [43]. The improved
observation will further advance the mapping and modeling studies of ALS. For example, the land
use intensity and field size was difficult to be monitored with the traditional measurements [44–46],
while the mapping of agricultural intensification could be substantially improved with the support of
the detailed human–land integrated data. It is able to provide information on the fragmentation of
cropland (represented by the size of the land parcels), the scale of farming (represented by the total
land area managed by each land manager), as well as the input-output of the ALS.

Moreover, the detailed and geotagged land use information sensed from individual farmers
would facilitate advanced ALS studies, such as agent-based land system modeling [17], by linking
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together the different research perspectives (micro and macro respectively) and the different aspects of
datasets (human-sensing and remote sensing, respectively) (Table 1). At such an initial development
stage, a well conceptualized agent-based land system change model called CroPaDy [47] has been
linked with the database of eFarm, which enables a direct modeling work given the required data such
as household characteristics and land use decisions are available (Figure 7).

Table 1. Advanced ALS studies by integrating deferent research perspectives.

Micro Perspective (Actor-Based) Macro Perspective (Spatial Map-Based)

Land transfer Agricultural enlargement
Crop choice Crop pattern

Farm management Agricultural intensification
Crop yield Food production
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It is worthy to notice that the heterogeneities across regions due to the site-specific characteristics
of ALSs [48]. However, the traditional household surveys are somehow impossible for large-scale
application of cross-site comparison because of its high cost during data collection. Applying the
unified and timely data collecting procedure in different regions from various users would help to
extend the coverage of data collection thus getting more insights from the analysis, which are always
difficult to be carried out with traditional measurements such as household surveys [49,50]. With
the help of the crowdsourcing technique, it will have great potential to compare local scale studies
across regions.

5. Discussion and Conclusions

Humans are low-cost, effective sensors that could potentially contribute to scientific
research [33,40]. While great progress has been made in smartphone sensing and VGI by regarding
humans as sensors, the application of such sensing techniques are inadequate in ALS studies.
We present a new smartphone-based tool to crowdsource the human–land integrated information from
a human-centric perspective, in combining the biophysical land parcel information observed from
traditional agricultural remote sensing. The main functionalities of the app include visualization of
maps, data management of land parcels and users, and data sensing of land and household information.

The guaranteed data quality is always concerned by data users and most people believe that
the credibility of those public voluntary contributions is crucial [36,51]. A quite successful data
controlling procedure is to let the entries be, to some extent, monitored by volunteers and be open
to public editing [52,53]. This can be applied to the current system, for example, the information
provided by land managers to be checked with information provided by volunteers, and the sequence
of reliability of different users is specified in the previous text (e.g., Section 3.5). Moreover, given its
close relationship with SAGI, a more reliable and objective measurement can be applied: to let the
crowdsourced information cross-checked with the results of agricultural remote sensing. For example,
the reliability of crowdsourced information will be low if there is inconsistency found between
crowdsourced information and remote-sensed information. However, due to all of the experiment data
being deliberately acquired for system development and the large-scale and long-term crowdsourcing
application not yet being available, the accuracy-checking practice will have limited significance at the
moment. The more advanced data accuracy-checking approaches or even specialized workers [54] are
supposed to be involved for eFarm in the future, especially when it is applied for operational use.

The implementation and adoption of modern technologies always faces challenges and barriers
outside of the technologies themselves [55]. For example, incentives are a big issue for persuading
people to be involved into the citizen science projects [33,36]. Why is it that volunteers who have no
obvious incentive are nevertheless willing to spend large amounts of time creating the layers and
content of land parcels? Goodchild [33] stated that self-promotion is the key for VGI, however, it may
not be applicable in the current case, especially given the majority of farmers commonly receives less
education. This is associated with another issue: the ethics of big data in big agriculture. There is
increasing concern about how the use of big data could be more equitable, given the major power
is shifting from farmers to corporations in the current era of industrial agriculture. An example is
Monsanto, who is also crowdsourcing data from agricultural field [56]. The best solution might be
sharing information based on analysis to the data provider in turn, while the open source data remains
anonymized to prevent the deleterious exploitation of data as well. Moreover, while crowdsourcing is a
promising approach to share knowledge and observe the world at a large scale and with relatively low
cost, it also raises some critical security and privacy issues that impede the application [57]. Although
the attempts to pollute user contributed data have been rare, but this seems unlikely to remain true
for long [58]. Since eFarm wants to acquire and store tracking data about the users and their work in
the field, security and privacy challenges need to be appropriately addressed, because the same holds
for the acquisition of the household data that can be considered personal data. As a result, how to
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build an effective information feedback and secured service system for the volunteers is as equally
important as the sensing technique itself, but it is apparently out of the scope of this paper.

eFarm is designed to support the human-land integrated data sensing at a county-level basis,
while information can be exchanged for regional level applications. It means the system should be able
to, at least, cover all the cropland parcels in a county and to store/visualize all the basemaps, created
data management units, and sensed land use information in an independent database. The workload
of a county level database is about 2.31 terabyte (based on the trial data, details can be found from
Supplementary Materials). A successful operational running system not only requires a well-designed
framework, and a few essential technologies, but it also needs sound maintenance, timely updates,
and well-established communications between data users and data providers. The authors’ host
institute (IARRP, CAAS) has been successfully running a national level agricultural remote sensing
monitoring system over 20 years [59,60]. It is committed in the next decade to upgrade the existing
system into the “big data system of smart farming” by integrating various technologies and data
sources together, while the development, application, and maintenance of eFarm are the priorities.
Although the large-scale and long-term crowdsourcing application has not been carried out yet, the
results of the trial test suggest the system works well, which shows the potential in promoting the
sensing, mapping, and modeling of ALS studies. Moreover, the current available version of the app
is developed for tablet use only, considering the feasibility of use—e.g., farmers/volunteers may not
always carry a tablet—the development and tests of small screen cellphone fitted app versions will
be carried out subsequently. In addition to this generalized introductory paper, the application of
the tool and results of detailed case studies will be published gradually. We welcome comments and
suggestions from the community to co-design and co-apply the tool, not only for improving the tool
itself, but also for the broad applications in ALS studies.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/17/3/453/s1.
Figure S1: Estimated workload for a county level database, Figure S2: A color-blinded figure describing the
overview of the eFarm system, Table S1: Estimated coverage of cropland area, number of land parcels, and number
of farmer household at an average level for each county, Table S2: Estimated data volume of basemaps (unit: byte),
Table S3: Estimated data volume of created household and land parcel (unit: byte), Table S4: Estimated data
volume of sensed land use information (unit: byte).
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