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Abstract

Motivation: Motility is a fundamental cellular attribute, which plays a major part in processes rang-

ing from embryonic development to metastasis. Traditionally, single cell motility is often studied

by live cell imaging. Yet, such studies were so far limited to low throughput. To systematically

study cell motility at a large scale, we need robust methods to quantify cell trajectories in live cell

imaging data.

Results: The primary contribution of this article is to present Motility study Integrated Workflow

(MotIW), a generic workflow for the study of single cell motility in high-throughput time-lapse

screening data. It is composed of cell tracking, cell trajectory mapping to an original feature space

and hit detection according to a new statistical procedure. We show that this workflow is scalable

and demonstrates its power by application to simulated data, as well as large-scale live cell imag-

ing data. This application enables the identification of an ontology of cell motility patterns in a fully

unsupervised manner.

Availability and implementation: Python code and examples are available online (http://cbio.

ensmp.fr/�aschoenauer/motiw.html)

Contact: thomas.walter@mines-paristech.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-throughput (HT) microscopy and high content screening

(HCS) are state-of-the-art approaches to investigate many aspects of

cellular organization and function, such as protein localization

(Glory and Murphy, 2007), spatial transcriptomics (Battich et al.,

2013) or drug screening (Perlman et al., 2004).

In particular, when combined with a loss-of-function strategy,

these approaches are now widely used to study the molecular basis

of biological processes by monitoring the phenotypic consequences

of downregulation or overexpression of genes of interest (Pepperkok

and Ellenberg, 2006). When performed at a large and ideally gen-

ome-wide scale, such screening approaches have become indispens-

able tools for functional genomics: they have the potential to

provide us with a close to complete picture of the proteins involved

in the process under study.

Indeed, many large-scale phenotypic screens have been published

previously, shedding light on the regulation of such diverse cellular

processes as protein secretion (Simpson et al., 2012), endocytosis

(Collinet et al., 2010) or cell division (Neumann et al., 2010). Such

screens do not only provide lists of candidate genes for further fol-

low-up studies and for computational modeling approaches, they

also generate large image databases. Those can turn out to be a pre-

cious scientific resource—as a collection of experimental data for

punctual queries or as a basis for systematic and potentially integra-

tive computational analysis. Although it has always been a strength

in bioinformatics to rely on rich publicly available data sources, the

use and re-use of image data is not straightforward. On the one

hand, this is due to the lack of standardized data formats (Sommer

et al., 2013) and ontologies (Hoehndorf et al., 2012). On the other

hand, the computational tools which are necessary to perform such
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analyses are often not available. As a consequence, studies based on

remining existing phenotypic screens have only recently started to

appear (Ostaszewski et al., 2012; Pau et al., 2013; Suratanee et al.,

2014). We hypothesize that remining these rich phenotypic re-

sources can help to increase our understanding of many basic cellu-

lar functions, such as cell motility.

Cell motility plays a key role in many physiological processes

including embryonic development or immune response (Friedl and

Weigelin, 2008), and is also involved in pathological processes such

as fibrosis and metastasis. The latter is dependent on the ability of

cancer cells to migrate, both as single cells and collectively

(Decaestecker et al., 2007; Yilmaz and Christofori, 2010).

Many in vitro assays have been specifically designed to study cell

motility (Decaestecker et al., 2007; Kramer et al., 2013). Examples

include semi-automated analysis of single cell traces on bead-coated

layers (Naffar-Abu-Amara et al., 2008) and wound healing assays

measuring collective cell migration (Simpson et al., 2008).

However, single cell motility studies on live cell imaging data

have so far been limited to low-to-medium (Lara et al. 2011)

throughput. There are two bottlenecks that currently explain the

non-existence of such studies in an HT setup: acquiring large-scale

data is expensive, and the relevant computational tools are often ei-

ther non-existent or not easily scalable.

The contribution of this article is to present MotIW (Motility

study Integrated Workflow), and its application to motility gene dis-

covery. A generic methodological framework, MotIW enables to

quantitatively study cell motility at single cell resolution in HT time-

lapse data in an unsupervised way. It consists of cell tracking, cell

trajectory mapping to an original feature space and outlier experi-

ment detection according to a new statistical procedure (Fig. 1). We

show the power of our method by applying MotIW to simulated

data, which allows us to estimate recall and precision to be expected

on real data. We then apply this workflow to a previously published

genome-wide screen by RNA interference (RNAi) and live cell imag-

ing, the Mitocheck dataset. Analysis of the screening data reveals

the existence of a cell trajectory ontology in the dataset. Without

any prior assumption on cell motion, we are able to identify eight

types of cell trajectories.

The remainder of this article is organized as follows: after a short

description of the data and the implementation details in Section 2,

we detail MotIW in Sections 3.1–3.3, as well as its application to

simulated data in Section 3.4 and the Mitocheck screen in Section 3.5.

Section 4 briefly discusses broader perspectives of this workflow.

2 Materials and methods

2.1 A genome-wide time-resolved dataset
We used a previously published genome-wide dataset of time-

resolved records of cellular phenotype responses to gene silencing,

which were generated for virtually all protein-coding genes

(Neumann et al., 2010). It is publicly available at mitocheck.org.

For this, arrays of transfection cocktails containing small inter-

fering RNAs (siRNAs) were spotted directly in live cell-imaging

chambers in a 384 format. HeLa cells stably expressing the core his-

tone 2B tagged with green fluorescent protein (GFP) were seeded on

top of the arrays, and imaged 18 h after the transfection for 48 h

with a time lapse of 30 min (Plan10x, NA 0.4; Olympus). Each

microarray contained 8 negative controls (scrambled: not targeting

any gene) and 12 positive controls showing different phenotypes. A

total of 22 612 protein-coding genes have been targeted by at least 2

siRNAs each, in total 51 767 siRNAs. For each siRNA, there are

data from at least 3 technical replicates, which created 182 191

quality controlled time-lapse experiments in total. Because of up-

dates in the genome annotation, some reagents could not be mapped

to the current ENSEMBL version. In total, the dataset contains data

for 17 816 protein-coding genes in144 909 quality controlled time-

lapse experiments.

2.2 Software
We use CellCognition (Held et al., 2010) (cellcognition.org) for

segmentation and feature extraction and CPlex (http://www-01.ibm.

com/software/commerce/optimization/cplex-optimizer/) for opti-

mization in the tracking procedure. To store, manage and access the

screening data, we use a previously published data format CellH5

(Sommer et al., 2013). All scripts are written in the programming

language Python 2.7 using SciPy (Jones et al. 2001) and NumPy,

and all plots were generated by matplotlib (Hunter 2007).

3 Results

In this section, we present MotIW, our workflow for the automatic

and quantitative analysis of single cell motility in video sets from

time-lapse microscopy-based screens. Figure 1 summarizes its differ-

ent steps. Briefly, for each video nuclei are segmented and features

are extracted as published previously (Held et al., 2010; Walter

et al., 2010). Cells are tracked using a new machine learning-based

tracking procedure, described in Section 3.1. The trajectories are

then mapped to a feature space described in Section 3.2. Presented

in Section 3.3, an original statistical procedure then enables the de-

tection of experiments in which single cell motility is significantly

different than that in control movies. Finally, Section 3.4 describes

the simulation of trajectories which allows us to validate the per-

formance of the workflow.

3.1 Cell tracking
There exist two main approaches to cell tracking. The deformable

model approach relies on identifying and modeling objects on the

first frame, and linking them to objects in consecutive frame by

updating the models (Zimmer et al., 2002). On the other hand, the

object association approach associates preidentified objects in con-

secutive frames (Lou and Hamprecht, 2011).

Fig. 1. Overview of MotIW
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Different datasets usually require different object identification

approaches. For the sake of modularity, we therefore prefer to keep

segmentation and tracking steps independent.

Cell tracking faces several challenges in videos from high content

screens like Mitocheck, including high population density in each

picture, high phenotypic inter-cell variability and possibly low time

resolution between successive images (30 min). Furthermore, the

algorithm has to handle apparitions, disparitions, divisions and

fusions (this event results from occlusion or segmentation errors).

Finally, to be applicable in a screening context, we cannot a priori

model cell motion, as such hypotheses are bound to break in the

presence of phenotypes. Indeed, the impact of chemical exposure on

cell motion is not known. To also avoid dependence on manual par-

ameter tuning, we have extended a non-parametric structured learn-

ing approach from Lou and Hamprecht (2011).

We first characterize each cell in each image by a set of 230

object features including geometric, shape and texture features

(Held et al., 2010; Walter et al., 2010). The goal of cell tracking in

this approach is to match cells in successive images, by assigning

them the most likely instant temporal behavior in the set E¼ {move,

appear, disappear, split in 2 or 3, merge at 2 or 3}. All possible

matches between cells in consecutive frames are exhaustively con-

sidered, subject to distance thresholding. Match features are the

following:

• the absolute difference in object features if the event is move,

split, merge, the object features otherwise
• the geometrical distance between object at time t, Obji;t, and

object at time tþ1, Objj;tþ1, if the event is move, split, merge,

the minimal distance to the image border otherwise
• the maximal angle between Obji;t and the elements of Objj;tþ1, if

the event is a split
• the angle between the main axis of Obji;t and Objj;tþ1 weighted

by their average eccentricity, if the event is a move

The optimal object matching ẑðtÞ comes down to bi-partite

graph matching: it is solved by maximizing a likelihood function L

which depends on the weights w of match features and the match

features f e
i;j, subject to the constraint that all objects are matched in

both frames [cf Equation (1)].

ẑðtÞ ¼ argmax
zðtÞ

LðzðtÞ; wÞ (1)

where

LðzðtÞ; wÞ ¼
X
e2E
Obji;t

Objj;tþ1

<we; f e
i; j > ze

i; jðtÞ

s:t: 8i
X

Objj;tþ1

e

ze
i;jðtÞ ¼1

and 8j
X

Obji;t

e

ze
i;jðtÞ ¼ 1

The weights w are learned by a support vector machine using

annotated trajectories, following the formulation of Lou and

Hamprecht (2011). The likelihood maximization, an integer linear

programing (ILP) problem, is solved by IBM Cplex.

The extension compared with Lou and Hamprecht (2011) lies in

the choice of match features. We also implemented a more efficient

computation of match hypotheses using kd-trees. Furthermore, we

enabled the tracking model to learn from partial annotations of dif-

ferent experiments. (However, this is not learning from partial anno-

tations in the sense of Lou and Hamprecht (2012). Indeed, in our

implementation of Lou and Hamprecht (2011), the user chooses a

subset of cells which has to be annotated on all movie frames. In

Lou and Hamprecht (2012), the user can choose both a subset of

movie frames and a subset of cells (s)he wishes to annotate on those

frames.) This permits the user to integrate examples from both con-

trol and non-control experiments in the training set, which is crucial

to guarantee that the model can efficiently track cells in all condi-

tions. We also added three object division and fusion to E. This is

important in a screening context, where aberrant cell divisions may

occur. In the future, it could be interesting to couple object segmen-

tation and tracking to correct for missing detections.

To validate MotIW’s cell tracking procedure, we compare it

with CellCognition’s constrained nearest-neighbor (CNN) tracking

algorithm, and with Jaqaman et al. (2008) as implemented in

CellProfiler (Carpenter et al., 2006). The latter approach views

tracking as a linear assignment problem (LAP) and uses user-defined

costs for performing merges, splits, appearances and disappearances.

We have chosen these two approaches for benchmarking, as they

are available in popular High Content Screening software.

Our training set consists of �32 000 matches, among which

0.5% appear, 0.5% disappear, 1% merge and 2% split. They come

from the Mitocheck dataset. Furthermore, they were taken from

both control experiments and phenotypic experiments according to

Neumann et al. (2010) in order to ensure that the algorithm also

works in the presence of phenotypes. The training set was annotated

using CellCognition’s CNN tracking algorithm followed by manual

correction. As shown in Table 1, MotIW outperforms the other two

methods as measured by the average accuracy on the five movement

types. As can be seen in Figure 2, they show similar performances on

move events and have therefore similar overall (pooled) accuracies.

The contribution of the learning approach is most important for the

other events, such as cell division, when object matching is less

trivial.

3.2 Trajectory features
Once cell trajectories are captured, each trajectory is described by a

set of 15 features. These features were partly taken from previous

publications on quantitative motility analysis, partly newly

designed.

Robust and precise features are needed to account for the partial

stochasticity of cell migratory behavior. We use three types of fea-

tures, as detailed in Table 2. Prior to that, trajectories resulting from

object fusion and trajectories which are shorter than 10 frames are

discarded. This trajectory quality control ensures that cell clusters

are not considered, and increases the dataset robustness.

3.2.1 Particle motion features

This group of features encompasses the diffusion coefficient and the

movement type, which were in the first place used to study particle

motion (see Ferrari et al., 2001; and one of its applications to single

particle motion in Biology—Sbalzarini and Koumoutsakos, 2005).

Table 1. Mean recall and precision on all types of matches E (10-

fold cross-validation)

Algorithm Mean recall (%) Mean precision(%)

CNN 72.7 62.8

Jaqaman et al. (2008) 78.3 73.0

MotIW 91.1 91.5
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Let us note < dp > the moment of order p of a particle or a

group of particles. For large t, it is proportionate to tcp for most

dispersive processes (Ferrari et al., 2001). Assuming that cp is pro-

portionate to p (i.e. the particle movement is strongly self-similar),

the constant c ¼ cp=p (hereafter the particle’s Movement type) quan-

tifies how directed the particle motion is. If c is equal to 1, the

movement is perfectly directed, whereas if c is equal to 0.5, it is per-

fectly diffusive. Between 0.5 and 1, the movement is super-diffusive,

whereas below 0.5 it is called sub-diffusive.

Furthermore, assuming c ¼ 0:5, the constant linking < d2 > [i.e.

the mean squared displacement (MSD)] and t can be computed—it

is the Diffusion coefficient. The Diffusion adequation is the correl-

ation coefficient between < d2 > and t, hence measuring how well

the diffusive model applies to the track at hand.

We have furthermore created two new features to characterize

the alternance between periods of diffusive motion and periods of

directed motion—the track entropy and the englobing ball number.

It has been observed that cell motion in 2D alternates between

diffusive and directed motions (in the absence of any perturbation

or chemical gradient). The feature track Entropy was designed to

measure how the time sequence of 2D cell positions mt ¼ ðxt; ytÞ

distributes in balls of radius r (see also Figure 3). This feature is cal-

culated according to the following procedure, for each track of time

duration T:

1. S ¼ f1; . . . ;Tg
2. while S 6¼ fg:

i. do t?  argmaxS cardðBrðtÞÞ
where BrðtÞ ¼ fi j jjmi �mtjj2�r and

minðjjmi�1 �mtjj2; jjmiþ1 �mtjj2Þ�rg
ii. do S S Brðt?Þ

3. Compute the track Entropy according to the following formula:

Entropyr ¼ �
1

T

X
Br

cardðBrÞ
T

logðcardðBrÞ
T

Þ (2)

The track Entropy measures the entropy of the distribution of

track positions in balls of radius r. To deal with cells whose trajecto-

ries are concentrated in space, but were not concentrated in time,

the constraint is imposed that these balls shall contain only consecu-

tive positions in time.

The englobing Ball number is the number of balls of radius r

that contain all track positions. It is normalized by the square root

of T to be independent of the track time length T.

Different radii may be relevant for different data (depending on,

e.g. the experiment time lapse, the pixel size or the cell type). We

chose to use two different radii, r1 and r2 with r1 < r2, to incorporate

information about cell trajectories on two different time scales. r1

and r2 were manually chosen, such that for the Mitocheck dataset,

the corresponding features are neither constant nor too correlated.

They respectively correspond to �2.5 and 12mm. In the following,

the features Entropy i and Ball number i correspond to radius ri.

3.2.2 Other global features

This group of features encompasses further global descriptors of the

cell trajectory, such as the track Convex hull area (normalized by

the square root of its time length) or the cell Largest move on its tra-

jectory. It also contains the average Track curvature, which we de-

signed as follows for each trajectory: for each position t, an

orthogonal regression is performed on fðxi; yiÞji 2 ft; . . . ; t þ Dtgg
using orthogonal distance regression (Dt ¼ 10). The mean curvature

of the trajectory is the average of all regression sums of squares.

3.2.3 Averaged local features

Finally, two features are averaged local features, which are the cell

MSD and its Mean signed turning angle.

Fig. 2. Details of tracking precision and recall according to event types

Table 2. Cell trajectory features and their formulas

Particle motion features

Diffusion coefficient According to Sbalzarini and

Koumoutsakos (2005)

Diffusion adequation Correlation between MSD(t) and t

Movement type According to Sbalzarini and

Koumoutsakos (2005)

Englobing ball number See text

Track entropy See text

Other global features

Convex hull area —

Effective path length L ¼ jjmT �m1jj2
Effective speed L=

ffiffiffiffi
T
p

Largest move —

Straightness index
ffiffiffiffi
T
p

L=P

Track curvature See text

Averaged local features

Mean squared displacement (MSD) 1
T�1

X
jjmt �mt�1jj22

Mean signed turning angle arctanðRsin ðatþ1�atÞ
Rcos ðatþ1�atÞÞ

Note: Notations: ðmtÞt¼1 ... T , time sequence of cell 2D positions; T, track

time duration; P, total track length.
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3.2.4 Feature set evaluation

Track time length is an irrelevant random variable for studying sin-

gle cell motility, which could bias some features. Therefore, we

ensured that they are not significantly correlated with this param-

eter: the correlation between track time lengths and features is max-

imal for the Effective space length, where it is equal to �30% (on a

subset of the Mitocheck dataset, data not shown).

Figure 4 shows the correlation matrix for the extracted features.

One group of highly correlated features is visible in the bottom left

corner of the heatmap, which encompasses speed-related features.

The existence of two feature subgroups within this group can be ex-

plained by the following observation: the first group of features,

from Ball number 1 to MSD, is linked to cell instantaneous displace-

ments, whereas the second group, from Effective speed to Entropy

2, is linked to its displacements on the whole trajectory.

The other correlations can as well be explained by feature defin-

itions. As an example, the anti-correlation between Mean signed

turning angle and Movement type can be interpreted as follows: a

low signed turning angle is indicative of correlated motion, which is

super-diffusive and translates into a high Movement type.

Figure 4 indicates that there are less degrees of freedom than fea-

tures, which was verified by a principal component analysis (PCA).

On the same trajectory subset, �95% of the variance is explained by

the first seven principal components.

3.3 Statistical procedure
HT screening data are organized in batches of experiments which

have been performed simultaneously. Each batch includes a set of

negative controls, that is, conditions where no effect is expected.

Because of a non-negligible batch effect, an experiment can only be

compared with controls of the same batch in most of the cases.

Let us consider an experiment i. Following trajectory feature ex-

traction, it can be summarized as a set of H feature distributions

(H¼15). The comparison of these distributions with those of

controls from the same batch Bi, using Kolmogorov–Smirnov two-

sample test, provides a list of p values ðphÞh¼1 ... H.

A final statistic Si combining the p values of all features is ob-

tained by Fisher’s formula:

Si ¼ �2
X

h

lnðphÞ (3)

As shown in Figure 4, the features are not independent.

Therefore, the distribution of this statistic under the null hypothesis

does not follow a chi-squared law with 2H degrees of freedom. To

assess which values of this statistic should be considered as indica-

tive of altered motility, a sample of the distribution of S under the

null hypothesis is then computed by comparing the control experi-

ments which were not used in the experiment–control comparisons,

with the other controls from the same batch.

In the absence of an explicit form for the null distribution, this

sample allows to quantify the intra-batch variations of single cell

motility features. The variations can be due to technical artifacts or

biological variability. Then, the comparison of the distribution of S

statistics obtained from control–experiment comparisons, to the dis-

tribution obtained from control–control comparisons, permits the

computation of empirical p values. This enables the detection of hit

experiments with regard to single cell motility. False discoveries are

controlled using the Benjamini–Hochberg procedure (Benjamini and

Yekutieli, 2001). This procedure is repeated n times to ensure that

the final p value of an experiment i does not depend on the choice of

a specific subset of control experiments in its batch. Here is its for-

malized description:

1. Compute a sample of statistic (3) under null hypothesis from con-

trol-control comparisons.

For each batch b,

For k in f1; . . . ;CbðCb � 1Þ=2g, where Cb is the number of controls

of batch b that passed the quality control

a. Randomly split the control experiments in two groups Ab;k

of cardinal 2, and Bb;k of cardinal Cb � 2

b. For each control j of Ab;k, compute the statistic S0
b;k;j (3) by

comparing it with the pooled group of controls Bb;k

2. Compute statistics from experiment–control comparisons. For

computation time feasibility, only n¼5 repetitions corresponding

to n splits of the controls set ðAb;k;Bb;kÞ are selected on each batch

for experiment–control comparisons.

a. For each repetition k in f1; . . . ;ng:
For each experiment i belonging to a batch b, compute the

statistic Sk;i(3) by comparing it with the pooled group of con-

trols Bb;k

b. Combine distinct iterations: To be conservative, we chose

the following approach:

Si ¼ max
k2f1 ... ng

Sk;i (4)

3. For each experiment i, compute the p value pi:

pi ¼ max
cardðfðb; k; jÞjS0

b;k;j� SigÞ
cardðfðb;k; jÞgÞ ;

1

cardðfðb; k; jÞgÞ

 !

4. For each experiment i, compute the adjusted p value p
0
i to control

the false discovery rate (Benjamini–Hochberg procedure;

Benjamini and Yekutieli, 2001)

3.4 Validation on a simulated screen
3.4.1 Screen simulation

To evaluate the performance of our workflow on data for which the

ground truth is known, we designed a process to simulate an HT

screening experiment.

In a first step, five types of single cell movements were designed,

in agreement with qualitative observations from the dataset: ran-

dom, fast random, curbed directed, flip directed and stop-and-go

(Fig. 5).

Let ðdt;/tÞ be the polar coordinates of the difference vector mt�1

�mt of any two consecutive points. For random movement, /t is

chosen at random and the distance dt ¼ jjmt �mt�1jj2 is drawn

from a normal distribution, whose parameters are estimated from

the data. The same holds for fast random with increased distance dt.

For the curbed-directed movement type, dt follows again a normal

distribution as for random movement, but the angle is calculated as

/t þ � with /t ¼ /t�1 þ D/t, where D/t and � follow normal distri-

butions, whose parameters are set manually to visually match some

observed trajectories.

Fig. 3. A cell trajectory with notations
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Flip directed and stop-and-go are two composite types of move-

ment, where the cells alternate between different states. The dwell-

ing times in the two states are random integers with manually fixed

ranges (which can be different for the two states) and are drawn

independently for each trajectory. Flip-directed movement corres-

ponds to directed movement (/t is drawn from a normal distribu-

tion) with a 180� flip for every state transition. Finally, stop-and-go

movement alternates between slow random movement (where /t is

drawn from a uniform distribution) and fast-directed movement

(where /t is drawn from a normal distribution).

In a second step, we want to simulate movies (controls and ex-

periments), that is, sets of trajectories. For this, we define five movie

types with different proportions of single cell movement types

(cf supra). Normal movies account both for control movies and

experiments in which cell motility is similar to that of controls.

They contain on average 80% of random trajectories, and a mix of

the four other trajectory types. This reflects our observation that in

real data, experiments and controls typically contain all possible

types of cell trajectories and that phenotypes are characterized in

a shift in percentage. All other movie types contain (on average)

50–65% random trajectories, the rest being completed according to

the movie type. For example, movie type fast is composed of 30% of

fast random trajectories, 60% of random trajectories and a mix of

the three other trajectory types.

The total number of trajectories in each movie was drawn at ran-

dom from real data in the following way: first, a batch is randomly

chosen in the dataset. Then, we assign a permutation of the real tra-

jectory numbers from the experiments of the picked batch to the

simulated positions. In this way, we can include potential batch ef-

fects in our simulated data. The number of trajectories of each

Fig. 4. Heatmap showing trajectory feature similarities on a subset of the Mitocheck dataset (1.1 million trajectories coming from detected motility hit experi-

ments according to MotIW). The dengrograms were obtained using the Ward method and the Euclidean distance between feature correlations

Fig. 5. Simulated trajectories: stop-and-go (green), flip directed (red), random (orange), fast random (purple) and curbed directed (blue)
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movement type in each movie is drawn from the corresponding

movie type multinomial distribution, where the percentages were

defined as described above.

The third step was the simulation of �50 000 experimental con-

ditions, which were distributed on 130 plates, and performed in trip-

licate as in Mitocheck experimental setup (Neumann et al., 2010).

For the sake of simplicity, triplicates were supposed to belong to the

same movie type. On each plate, between 5% and 15% of the ex-

periments were selected to be other than normal movies.

3.4.2 Application to a simulated screen

Our workflow successfully recognized more than 98% of the experi-

ments, as detailed in Table 3.

Our simulation pipeline was also used to estimate how useful the

trajectory feature set is to capture the differences between different

types of trajectory motion. A total of 500 samples of each trajectory

type were simulated, and their features extracted. A PCA was per-

formed, after which we retained the eighth first principal compo-

nents, which explain �95% of the dataset variance. Finally, k-

means was applied to the dataset with k¼5.

Many simulation parameters (e.g. each track length) are chosen

at random, and k-means’ results depend on its initialization: the pro-

cedure was therefore repeated 10 times. The results are presented in

Table 3. Although distinguishing trajectory types is subject to some

errors, it shows that the whole pipeline is robust enough to identify

experiments in which cell motility is significantly different. A rea-

sonable accuracy in terms of trajectory types is also obtained.

3.5 Application to the Mitocheck dataset
After evaluating MotIW on simulated data, we then apply it to the

whole genome-wide screen Mitocheck (Neumann et al., 2010),

which enables us to identify an ontology of 2D cell trajectories.

In the context of the Mitocheck dataset, the identification of an

experiment in which cell motility is significantly different from nega-

tive controls leads to the identification of genes which might be

involved in its mechanisms.

The application of MotIW to the Mitocheck dataset enabled the

identification of the experiments which significantly deviate from

controls (5%; 7 153 of 144 909). It amounts to 1 180 genes (out of

17 816), some of which are known to be involved in cellular motil-

ity, such as RhoA (Ras homolog family, member A) or CDK5 (cyc-

lin-dependent kinase 5).

A related question to motility gene discovery is to know whether

there exists an ontology of cell trajectories. The approach would be

to apply unsupervised clustering methods on the whole trajectory

dataset and try to identify a number of motility patterns for which

the clustering is of good quality. This is measured by cluster quality

indices, which depend on the clustering method (Tan et al., 2005,

Chapter 8; Halkidi et al. 2001). As an example, two common indi-

ces to evaluate the output of k-means are the intra-cluster cohesion

C(k) and the silhouette score S(k). They both compare intra-cluster

distances with inter-cluster distances. A slope change in C(k) and a

maximum in S(k) are expected at the appropriate number of clus-

ters, if it exists.

This approach did not prove to be successful when applied to

pooled trajectories from all experiments, for a wide range of cluster-

ing techniques (k-means, Gaussian mixtures models, spectral cluster-

ing, fuzzy c-means, kernel k-means—data not shown). It succeeded

when all trajectories from the detected experiments were pooled to-

gether. Indeed, this small subset contains only experiments which

have been selected for being significantly different of controls in

terms of single cell motility: it is enriched in rare trajectories. After

retaining the first seven principal components (explaining 95% of

the variance), k-means was applied to the resulting dataset of �1.1

million trajectories.

Figure 6 shows the evolution of intra-cluster cohesion and sil-

houette score with respect to the number of clusters. It points to

k¼8 as being both the best and a good quality clustering on this

dataset. Indeed, a break and a maximum are respectively expected

in the cluster cohesion and the silhouette score curves at the correct

cluster number, if it exists. The cluster characteristics are detailed in

Figure 7. Each column in the heatmap corresponds to one cell trajec-

tory, for which the rows show the standard scores of a subset of

features.

In the first place, it shows that single cell information can be

retrieved by our statistical procedure, which works at the experi-

ment level. Indeed, a result about single cell motility patterns is ob-

tained from experiments which were selected on the basis of their

trajectory feature distributions.

In the second place, it shows that there is more than speed for

differentiating trajectory types. For example, clusters 2 and 3 pre-

sent very similar MSDs and Effective space length. However, trajec-

tory curvatures are different: the features Mean curvature and

Straightness index are quite distinct between the two clusters. This

can be observed in the Supplementary movie, where cells whose tra-

jectory belongs to cluster 2 (green) are much straighter than those

belonging to cluster 3 (red). In this video, cells whose trajectory

passed the trajectory quality control have a dot, whose color corres-

ponds to its cluster as indicated in Figure 7.

4 Discussion

This article presents a generic methodological framework for study-

ing single cell motility in a HT setup. It combines single cell track-

ing, newly designed trajectory features and an original statistical

procedure. Furthermore, its output could be used to obtain an ontol-

ogy of cell motility in an unsupervised manner: cell motion types

were inferred from the data without using any prior knowledge. We

found that clustering procedures might not scale in the presence of

great biological variability, as is typically observed in HT datasets.

We suspect that this is due to highly unbalanced classes and large

biological variability. Taken together, those effects produce continu-

ous looking datasets. However, applying hit detection with the

described statistical procedure prior to clustering solved the problem

for our trajectory analysis. It may be a promising procedure to apply

to other clustering problems in HCS, such as clustering of nuclear or

cellular morphologies.

As cell population migration during metastasis are thought to be

led by some leader cell, it is crucial to study single cell motility. The

workflow we have presented in this article allows to quantify single

cell trajectories. Therefore its application to large-scale datasets will

provide useful insights into the molecular regulation of single cell

motility, thereby complementing previous studies on collective cell

migration.

The application of this workflow is not limited to RNAi data. In

a next step, we are going to apply this workflow to newly generated

Table 3. Results from the application of MotIW to simulated data

Recall (%) Precision (%)

Outlier experiment detection 99.2 98.9

Outlier condition detection 99.5 100.0

Trajectory clustering 91.4 6 2.1 89.4 6 4.8
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Environmental Toxicology data in order to identify environmentally

relevant chemicals which perturb cell motility.
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