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Abstract

Urinary stone disease, particularly calcium oxalate, is common in both humans and cats.

Calcifying nanoparticles (CNP) are spherical nanocrystallite material, and are composed of

proteins (fetuin, albumin) and inorganic minerals. CNP are suggested to play a role in a wide

array of pathologic mineralization syndromes including urolithiasis. We documented the

development of a clinically relevant protocol to assess urinary CNP in 9 healthy cats con-

suming the same diet in a controlled environment using Nanoparticle Tracking Analysis

(NTA®). NTA® is a novel method that allows for characterization of the CNP in an efficient,

accurate method that can differentiate these particles from other urinary submicron particu-

lates. The predominant nanoscale particles in feline urine are characteristic of CNP in terms

of their size, their ability to spontaneously form under suitable conditions, and the presence

of an outer layer that is rich in calcium and capable of binding to hydroxyapatite binders

such as alendronate and osteopontin. The expansion of this particle population can be sup-

pressed by the addition of citrate to urine samples. Further, compounds targeting exosomal

surfaces do not label these particulates. As CNP have been associated with a number of

significant urologic maladies, the method described herein may prove to be a useful adjunct

in evaluating lithogenesis risk in mammals.
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Introduction

Urinary tract stone formation is an ancient disease process with a recently reported prevalence

of up to 20% in adults in developed nations [1]. In many parts of the world, the prevalence of

urolithiasis increased during the latter portion of the 20th century[2,3] and can result in numer-

ous hospital visits, surgeries, and interventional procedures for the patient. Urolithiasis in cats is

also a frequently encountered disease, and the most common urolith type in both cats and

humans is calcium oxalate (CaOx) [4,5]. Relative risk factors for CaOx are similar between the

two species and include male predisposition, decreased fluid intake, and highly acidified urine

[6,7]. Furthermore, humans and cats are reported to have idiopathic hypercalciuria as a meta-

bolic feature in this disease[8,9]. Pharmacologic management strategies for both species have

yielded variable results[10–13]. Overall, high recurrence rates are problems in both species

[14,15].

To date, studies of the physical formation of CaOx have primarily focused on processes

relating to mineral or mineral-organic crystallization, nucleation, crystal growth, and aggrega-

tion. However, protein inhibitors of crystallization can bind mineral in an alternative insoluble

form. These forms represent colloidal suspensions of protein-mineral aggregates that may

have crystalline layers, but are not uniform crystal lattices and form by different mechanisms.

These protein-mineral complexes, or calcifying nanoparticles (CNP), are spherical nanocrys-

tallite material composed of biomineral and are 80–90 nm in diameter in their most stable

(primary) form[16]; larger, less stable, secondary CNP have also been reported to occur under

various conditions. CNP are composed of proteins (fetuin, albumin) and inorganic minerals

[17] and are suggested to play a role in a wide array of pathologic mineralization syndromes

including urolithiasis. CNP have been isolated from uroliths by several groups and are associ-

ated with the presence of renal papillary calcification (i.e. Randall’s plaques) in humans that

form CaOx uroliths[18–24]. CNP formation, size distribution, and stability are all dependent

on chemical factors in solution, many of which are often altered in the urine [17].

The overall small size distribution of primary as well as larger secondary CNP precludes

accurate characterization with traditional flow cytometric methods. Electron microscopy has

been considered the gold standard for visualization of CNP, and several other methods for

detection have also been used including ELISA, immunohistochemistry, immunofluorescence,

immunoblotting, and Ouchterlony immunodiffusion. However, none of these methods are

suitable for detailing both the size and surface characteristics of CNP in urine samples. Nano-

particle Tracking Analysis (NTA1; Malvern Instruments) is a novel method that allows for

the characterization of submicron particulates based on their Brownian movement [25–30].

NTA1 has been applied to exosome research, but the authors are unaware of published studies

in which NTA1 has been used to identify, or characterize CNP. Therefore, the goals of this

study were to demonstrate that feline urine CNP can be characterized, identified, and enumer-

ated using NTA1. We document the development of a clinically relevant protocol to assess

urinary CNP in 9 healthy cats consuming the same diet in a controlled environment.

Materials and Methods

Animals and urine sample collection/processing

The urine of nine (3 neutered male and 6 intact female) specific-pathogen free, healthy, adult

domestic shorthair cats were used in this study. The average (range) age, body weight and

body condition score of the female cats was 8.75 yr (6.5–10.75 yr), 4.32 kg (2.63–5.88 kg), and

6.75 (6.5–7.5 on a 9 point scale), respectively. The average (range) age, body weight and body

condition score of the male cats was 6.54 yr (5.33–7.33 yr), 5.99 kg (5.63–6.48 kg), and 5.2
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(3.5–8 on a 9 point scale), respectively. The urine samples had been saved from a separate,

unrelated study, during which cats were housed at the University of California, Davis. The

facility maintained room temperatures between 18–24˚C and had a 14 h light/10 h dark cycle.

All cats had been fed the same dry maintenance diet (Science Diet1 Adult Light; Hill’s1 Pet

Nutrition Inc. Topeka, KS, USA) to maintain appropriate body condition for 4 weeks prior to

urine collection by natural voiding. The experimental protocol was approved by the Institu-

tional Animal Care and Use Committee at the University of California, Davis (Animal Welfare

Assurance Number A3433-01) and the Royal Canin Ethics committee complied with the rec-

ommendations of the 2011 National Research Council Guide for the Care and Use of Labora-

tory Animals (The National Academies Press, Washington DC).

Voided urine samples were collected from the cats during individual housing and then

placed into sterile centrifuge tubes and maintained at 4 deg C until analysis. Urine was centri-

fuged at 1500 xG for 5 minutes then sterile filtered through a 0.22 um syringe filter prior to

storage. Aliquots were stored at 4, -20, and -80 deg C. Refrigerated samples were split into two

with one fraction having no additives and another containing 109 mmol/L of the dihydrate

form of trisodium citrate Na3C6H5O7 2H20 as a calcium-chelating agent.

CNP Stock Solution Standards-In vitro generation

Positive control suspensions consisted of CNP stock solutions generated using previously pub-

lished protocols[16]. In brief, CNP can be generated on the benchtop by the careful mixture of

three stock solutions: Stock solution 1 was a NaCl solution: 140 mM NaCl, Stock solution 2

was a calcium solution: 40 mM CaCl2 +100 mM Hepes +140 mM NaCl pH-adjusted with 10

M NaOH to 7.40 at 37˚C; Stock solution 3 was a phosphate solution: 19.44 mM Na2HPO4 +

4.56 mM NaH2PO4 + 100 mM Hepes + 140 mM NaCl pH-adjusted with 10 M NaOH to 7.40

at 37˚C. Calcified nanoparticle formation was induced by mixing reagents in the following

sequence at 37˚C: (1) NaCl solution: 20 volumes, (2) fetuin-A [0.1%]: 80 volumes, (3) shaking

for 1 minute, (4) phosphate solution: 50 volumes, (5) shaking for 1 minute, and (6) calcium

solution: 50 volumes and shaking for 1 minute. All chemicals, including lyophilized fetuin-A

derived from fetal calf serum, were purchased from Sigma-Aldrich (St. Louis, MO, USA).

Nanoparticle Tracking Analysis

Calcified nanoparticles in the whole urine samples and in vitro generated CNP suspensions

were analyzed using the NanoSight LM10HS-48814TS instrument (Malvern Instruments,

Worcestershire, UK) with a 488 nm wavelength laser, fluorescent filter (505 nm long pass),

and both temperature control and syringe pump modules. The analysis settings were opti-

mized and kept constant between samples, and each video was analyzed to give the mean,

mode, median, and estimated concentration for each particle size. Advanced script control

options were used for each analysis which encompassed an 80 uL syringe pump driven cham-

ber-priming interval, a 30 second pause to minimize vibration artifact, three 60 second video

capture periods with constant syringe pump-driven sample delivery, and automated laser and

pump shutdown after video acquisition. Samples were analyzed with fluorescent filter in-line

only when fluorophores had been applied to the sample for surface labeling. Following pub-

lished methods for NTA characterization of urine exosomes[31] and initial pilot studies com-

paring whole urine samples and 1:1000 dilution, all experiments were carried out at a 1:1000

dilution, yielding particle concentrations in the region of 1 x108 particles/ml in accordance

with the manufacturer’s recommendations. All samples were analyzed in triplicate.

Fluorescent labeling was performed with four distinct strategies. Firstly, Exo-FITC (SBI;

Mountain View, CA) was employed to quantitate urine exosomes amongst our particle
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populations. Exosomes are a type of extracellular microvesicle (EMV) with a diameter range

(30–200 nm) that overlaps with the size range of CNP (80–500 nm). Exosomes are generally

defined as being endocytic in origin, produced by the inward budding of multivesicular bodies

(MVBs). They are released from the cell into the microenvironment following fusion of MVBs

with the plasma membrane. Exo-FITC is a commercially available universal and reversible

exosome label that relies on the unique surface characteristics of exosomes to achieve binding.

Exosome positive controls, derived from cultured human cells, were generously donated by

the Nolta Lab (Center for Regenerative Cures, UC Davis School of Medicine, Davis, CA,

USA). Secondly, Fluo-4 (CNP) and Fluo-4-AM (exosomal controls) were used to selectively

label particulates with high calcium content as has been previously reported by others[32].

Labeled calcium indicators are molecules that exhibit an increase in fluorescence upon binding

Ca2+. Fluo-3 has long been used to image the spatial dynamics of Ca2+ signaling in cell biology.

Fluo-4 is an analog of Fluo-3 with the two chlorine substituents replaced by fluorines, which

results in increased fluorescence excitation at 488nm and consequently higher fluorescence

signal levels. Lastly, two different molecules that selectively and specifically bind to calcium-

phosphorus surfaces (alendronate, osteopontin) were conjugated to a fluorophor. Fluorophor

labeling was performed with a commercially available kit (Lightning Link1 Rapid Dylight1

488 conjugation kit; Innova Bioscience, Babraham, UK) designed for this purpose according

to the manufacturer’s recommendations. Alendronate sodium hydrate was obtained from

Cayman Chemicals (Ann Arbor, MI, USA) and recombinant mouse osteopontin was obtained

from R&D Systems (Minneapolis, MN, USA).

All samples were diluted in 0.9% saline (Baxter) that had been sequentially filtered thru 0.8,

0.2, 0.1, and 0.02 syringe filters (Whatman) to remove background particulate matter. Each

sample was analyzed under two conditions. On the first run through the NTA the fluorescent

long-pass filter was left out of the path to the camera. Thus, one first captured the characteris-

tics of all the suspended particles in the 30–2000 nm size range. Next, the long-pass filter was

placed in line and the characteristics of only the fluoro-labeled sub-population (i.e. CNP) was

captured. All plasticware was rinsed with this same saline prior to usage. NTA was used to con-

firm the absence of detectable particulates after each saline batch was generated. NTA calibra-

tion was performed monthly according to manufacturer’s recommendations.

All data files were compiled and maintained using an open-source office suite (LibreOf-

fice5). Because transmission electron microscopy (TEM) is considered the gold standard for

the identification of CNP, TEM was performed on the in vitro synthesized CNP stock solutions

as described above. TEM studies were also performed to identify CNP formed in vivo in the

urine of healthy, colony cats. In each case 5 microliters of samples were applied to a coated

copper mesh and excess fluid wicked away. After complete air-drying, each prepared mesh

was inspected with electron microscopy at 80KV.

Results

Submicron particulates in normal feline urine

Using laser light-scatter mode, the NTA consistently identified a population of submicron par-

ticles within the CNP size range. Summary results from the 9 cats are presented in Table 1 and

a representative histogram is shown in Fig 1.

As shown in Table 1, the mode of the diameter measurements is typical for what has been

reported for primary CNP by other modalities such as dynamic light scattering[16] and the

size range (10th to 90th percentile) lies well within the reported size range of CNP [33]. The his-

togram is suggestive of a sample in which a subset of CNP has undergone transition to larger

forms (secondary CNP) and the size of the larger forms is consistent with prior reports[16].
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As the size of this particle population is also consistent with exosomes, it is important to

exclude these extracellular vesicles from the analysis. Staining of feline urine samples with

Exo-FITC1 resulted in no detectable particle population using NTA fluorescence mode. As a

positive control, exosomes derived from cultured human cells and concentrated with precipi-

tation methods (ExoQuick1) were readily identified at concentrations as low as 1 x107 parti-

cles per milliliter (data not shown). Moreover, the number of presumptive CNP identified in

light-scatter mode is orders of magnitude larger than has been previously reported for urinary

exosomes in humans[30]. Lastly, the refractive index (RI) of exosomes in human urine is

reported to be on the order of 1.37 [27] whereas the particles identified in feline urine have an

RI that is 3–10 times greater.

To determine whether the particle populations observed contained a calcium-rich outer

shell as is typical of CNP, we repeated NTA analysis in the presence of Fluo-4-AM at a final

concentration of 1 mM. In each sample, the predominant particulate population was strongly

positive for Fluo-4-AM indicating calcium content well in excess of background levels. A rep-

resentative summary histogram (left) and individual analyses from the triplicate assessment

for cat #1 is shown in Fig 2.

One of the defining features of CNP has been their ability to increase in number under suit-

able, cell-free conditions [34]. This spontaneous formation in cell-free culture media was one

of the original features that led to them being named nanobacteria and presumed to be living

organisms. In cell culture media, this expansion in number occurs slowly taking a matter of

Table 1. Characteristic of submicron particulates in healthy cat urine (n = 9).

Diameter Diameter Diameter Diameter Diameter Concentration

(nm) (nm) (nm) (nm) (nm) (1010 per mL)

mean mode 10th 50th 90th

Mean 165.22 68.78 51.56 114.11 340.67 2.75

SE 9.90 8.44 4.32 11.44 31.72 0.24

Mean and mode as well as values for the 10th, 50th, and 90th percentile are shown. In addition, concentration in particles (x1010) per mL of undiluted urine is

presented.

doi:10.1371/journal.pone.0166045.t001

Fig 1. Representative histogram showing size distribution and cumulative percentage (left) of submicron

particulate matter in urine from healthy cats. A representative frame from the captured video analyzed by NTA is shown

as well (right).

doi:10.1371/journal.pone.0166045.g001
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weeks. In previous in vitro studies, CNP numbers (and average size) have been shown to

increase substantially within a matter of hours. For each of our 9 urine samples, analysis was

repeated after a 4 hr incubation at 37 deg C. The results of this analysis are shown in Table 2

and a representative data set is displayed in Fig 3. Particulate concentrations increased approx-

imately 4-fold during this incubation period and both the median as well as the mode of the

particle diameters increased suggesting both a substantial number of new particles forming as

well as an increase in their size. This increase in both particle number and size was inhibited

by the addition of a calcium chelator (citrate) to the samples (data not shown).

Specific binding of fluorophor-conjugated alendronate and osteopontin

Primary CNP consist of an inner cavity surrounded by a hydroxyapatite outer shell. Larger

secondary CNP may increase in size following the acquisition of an additional outer layer of

protein (e.g. fetuin-a) or mucus (which can be detected by staining with 2% uranyl acetate)

[23]. Thus, primary CNP, but rarely secondary CNP should specifically bind to agents with

affinity for hydroxyapatite surfaces. To exploit this property we fluorescently labeled two such

agents (alendronate, a bisphosphonate compound, and osteopontin, a hydroxyapatite-binding

protein expressed in bone) and treated all feline urine samples with these compounds prior to

repeating NTA in fluorescence mode. With both agents, specific binding to the nanoparticu-

lates present in feline urine was observed (Fig 4A and 4B) while no such binding was observed

with polystyrene control beads (100 nm mean diameter). Preferential binding to primary CNP

Fig 2. Fluo-4-AM positive particulate matter from a healthy cat. A representative histogram showing averaged sizing and relative

abundance data (with SE in red) and individual analyses from the triplicate assessment (right) cumulative percentage (left) of submicron

particulate matter in healthy feline urine.

doi:10.1371/journal.pone.0166045.g002

Table 2. Characteristic of submicron particulates in healthy cat urine (n = 9) after a 4 hr incubation at 37 deg C.

Diameter Diameter Diameter Diameter Diameter Concentration

(nm) (nm) (nm) (nm) (nm) (1010 per mL)

mode mode 10th 50th 90th

Mean 142.11 114.44 71.89 131.22 222.78 10.39

SE 9.90 8.44 4.32 11.44 31.72 0.98

Mean and mode as well as values for the 10th, 50th, and 90th percentile are shown. In addition, concentration in particles (x1010) per mL of undiluted urine is

presented.

doi:10.1371/journal.pone.0166045.t002
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is detected by the shift in the histogram to the left (smaller sized population). CNP generated

in vitro cannot acquire this mucus layer and larger CNP retain the ability to bind alendronate

(Fig 5). Transmission electron microscopy was used to characterize the urine particulates in

parallel with NTA evaluation (Fig 6).

Discussion

Submicron particulate matter appears to be relatively abundant in feline urine as evidenced by

NTA of the samples we analyzed. In our nine cats with no known history of urolithiasis, the

average concentration of submicron particulates was 2.7 +/- 0.21 x1010 particles per milliliter

of urine. Several lines of evidence suggest strongly that this particulate matter is largely miner-

alo-organic and not exosomal in nature. While urine exosomes are quite numerous and repre-

sent an important potential source of novel biomarkers, exosomes would generally require

specific induction (e.g. with antidiuretic hormone) or post-acquisition enrichment to reach

the concentrations in mammalian urine observed herein.

We have demonstrated that the submicron particulates present in feline urine fall within

established ranges for CNP and have the characteristic structural features of CNP in TEM

images. In our feline samples the 10th to the 90th percentile of particle diameter averaged at

54–362 nm, which is entirely consistent with CNP sizes established by other modalities. How-

ever, NTA has several advantages over other reported methods for CNP analysis (e.g. dynamic

light scattering among others) and can be coupled with fluorescent labeling to allow for immu-

nophenotyping of submicron particle sub-populations. CNP are mineralo-organic colloidally

suspended particles that play a role in both physiologic mineral homeostasis as well as in dis-

eases characterized by ectopic extra-skeletal mineralization. Of particular importance is the

potential role of CNP in urinary tract lithogenesis. CNP have been isolated from uroliths, Ran-

dall’s plaques, and bladder mucosa in encrusted urinary bladder cystitis[18–24]. NTA can

characterize particle populations ranging from 30–1000 nm in size and requires as little as one

microliter of biological fluid sample. This minute sample size requirement may allow for inves-

tigations to be performed in other urolithiasis models wherein urine volumes are exceedingly

small such as Drosophila sp.[35,36].

Size distribution alone is insufficient to establish these nanoparticulates as CNP. We have

demonstrated that under sterile, cell-free conditions these particulates can increase in number

Fig 3. Representative histogram showing size distribution and cumulative percentage (left) of submicron

particulate matter from urine obtained from a healthy cat. After a 4 hr incubation at 37 deg C. A representative frame

from the captured video analyzed by NTA is shown as well (right).

doi:10.1371/journal.pone.0166045.g003
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nearly 4-fold which is consistent with the behavior described for CNP generated in vitro by

others[16]. Further, due to the overlap of the CNP size range with that for exosomes it is essen-

tial to distinguish these two nanoparticulate populations. While the refractive index (RI) of the

submicron particulates in feline urine is much greater than is reported for urinary exosomes,

the investigators deemed that this alone was insufficient to exclude exosomes from the analy-

sis. For this reason, NTA following staining with a specific and reversible exosome-binding

fluorophore (Exo-FITC1) was performed as well. At the urine dilutions used in this study,

Exo-FITC staining particles were below the detection limit for NTA. Human exosomal prepa-

rations were detectable at concentrations as low as 1x107 particles/mL. Given the high RI of

the particles of interest in our samples and the lack of Exo-FITC1 binding, the authors con-

cluded that exosomes make up only a very minor portion of the particle populations in our

samples. Moreover, the submicron particle identified with electron microscopy lack the char-

acteristic cup shape of exosomes. Further, the increase in size was inhibited by the addition of

Fig 4. A: Representative histogram showing size distribution and cumulative percentage (left) of submicron particulate

matter in healthy feline urine after labeling with DyLight 488 conjugated alendronate. A representative frame from the

captured video analyzed by NTA is shown as well (right). Note the strongly preferential binding to primary CNP that lack an

outer layer of protein or mucus. B: Representative histogram showing averaged sizing and relative abundance data (left; SE

in red) and individual analyses from the assessment (right) of this representative sample of healthy feline urine after labeling

with DyLight 488 conjugated osteopontin. Note the strongly preferential binding to primary naturally-occurring CNP that lack

an outer layer of protein or mucus.

doi:10.1371/journal.pone.0166045.g004
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the chelator citrate, which has also been reported to help inhibit urinary crystallite deposition

and CaOx stone formation[37].

Fluo-4 is a calcium-activated fluorophore that has been used previously to detect nanoscale

calcium-containing crystals[32]. In the present investigation, we employed this agent to con-

firm that the predominant submicron particles present in feline urine have a calcium-rich

outer layer which is strongly supportive of their being CNP. Application of this stain to other

particles notably polystyrene beads) failed to produce particulates detectable by fluorescence

though they were identifiable by laser light scatter.

The outer layer of primary CNP is made up predominately of calcium and phosphorus in

the form of hydroxyapatite (HA). We employed a labeling strategy herein where a fluorophore

Fig 5. DyLight488-conjugated alendronate binding of CNP generated in vitro. A representative histogram showing

averaged sizing and relative abundance data (left; SE in red) and individual analyses from the assessment (right) of this

representative sample in triplicate. Note that CNP generated in vitro do not acquire the protein/mucus coating known to

occur in vivo and the larger forms retain the ability to bind to alendronate.

doi:10.1371/journal.pone.0166045.g005

Fig 6. Transmission electron microscopy (TEM) images of calcifying nanoparticles (CNP). (A) CNP synthesized de

novo in the laboratory using supersatured solutions of calcium and phosphorus and a solution of bovine fetuin A (see detailed

description in the methodology section). (B) CNP identified in the urine of healthy, colony cats. In each case 5 microliters of

samples were applied to a coated copper mesh and excess fluid wicked away. After complete air-drying, each prepared mesh

was evaluated with electron microscopy at 80KV.

doi:10.1371/journal.pone.0166045.g006

Identification of Calcifying Nanoparticles in Feline Urine

PLOS ONE | DOI:10.1371/journal.pone.0166045 December 22, 2016 9 / 12



(DyLight488) was conjugated to two compounds that bind specifically to HA, but via different

binding motifs. When these labeled compounds were applied to feline urine samples prior to

NTA, they efficiently and specifically labeled primary CNP. Primary CNP formed in vivo lack

the external coating of protein and mucus that is identified on larger secondary CNP. The

expectation that our labeled products would preferentially bind to the smaller particulates in

our samples was born out by the empiric data. Similarly, when CNP generated in vitro were

subjected to this same analysis no preferential binding to smaller CNP was observed. CNP gen-

erated in vitro can transition to secondary CNP, but lack the protein/mucus coating that can

reduce access to HA surfaces by alendronate and osteopontin.

The limitations of this study bear mentioning. The sample size is modest and limited to a

single mammalian species, which limits the broader applicability of our findings. The authors

elected to not culture the presumptive CNP although this technique has been widely used by

others. While culture techniques offer a means of propagating CNP, they offer no additional

insights into the particle characteristics.

In summary, we have demonstrated that NTA can provide a detailed accounting of the sub-

micron particulate matter in mammalian urine. This method requires as little as 1–5 microli-

ters of urine and is thus suitable for use with even the smallest animal models of urolithiasis

(e.g. fruit flies). The predominant nanoscale particulates in feline urine have the characteristics

of CNP based on their size, their ability to spontaneously form under suitable condition, and

the presence of an outer layer that is rich in calcium and capable of binding to hydroxyapatite

binders such as alendronate and osteopontin. As CNP have been associated with a number of

significant urologic maladies, including nephrolithiasis [38], the method described herein may

prove to be a useful adjunct in evaluating lithogenesis risk in mammals. We propose that uri-

nary CNP indices may prove to be a useful adjunct in the evaluation of lithogenic risk and

future studies evaluating CNP formation in cats and humans with urolithiasis are warranted
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