organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-Benzoyl-4-hydroxy-2-methyl-2*H*-1,2benzothiazine 1,1-dioxide

Matloob Ahmad,^a Hamid Latif Siddiqui,^b* Saeed Ahmad,^c Sana Aslam^b and Masood Parvez^d

^aApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore-54600, Pakistan, ^bInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, ^cDepartment of Chemistry, Gomal University, Dera Ismail Khan, NWFP, Pakistan, and ^dDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4 Correspondence e-mail: drhamidlatif@yahoo.com

Received 19 March 2010; accepted 24 March 2010

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.113; data-to-parameter ratio = 20.3.

In the title molecule, $C_{16}H_{13}NO_4S$, the heterocyclic thiazine ring adopts a half-chair conformation with the S and N atoms displaced by 0.410 (3) and 0.299 (3) Å, respectively, on opposite sides of the mean plane formed by the remaining ring atoms. The crystal structure is stabilized by intermolecular hydrogen bonds of the types $O-H\cdots O$ and C- $H\cdots O$; the former result in dimers lying about inversion centers and the latter form chains of molecules running along the *c* axis. In addition, intramolecular $O-H\cdots O$ links are present.

Related literature

For 1,2-benzothiazine derivatives as anti-inflammatory drugs (NSAIDs), see: Lombardino *et al.* (1971); Soler (1985); Carty *et al.* (1993); Turck *et al.* (1995). For the synthesis of benzothiazine derivatives, see: Siddiqui *et al.* (2007); Ahmad, Siddiqui, Zia-ur-Rehman *et al.* (2010). For related structures, see: Siddiqui *et al.* (2008); Ahmad, Siddiqui, Rizvi *et al.* (2010).

b = 9.9085 (3) Å

c = 10.7234 (4) Å

 $\alpha = 83.257$ (2)

 $\beta = 79.481 \ (2)^{\circ}$

Experimental

Crystal data

C ₁₆ H ₁₃ NO ₄ S	
$M_r = 315.33$	
Triclinic, P1	
$a = 6.8342 (3) \tilde{A}$	Í

 $\gamma = 85.113 \ (2)^{\circ}$ $V = 707.50 \ (5) \ \text{\AA}^{3}$ Z = 2Mo $K\alpha$ radiation

Data collection

Nonius KappaCCD diffractometer	7177 measured reflections
Absorption correction: multi-scan	4080 independent reflections
(SORTAV; Blessing, 1997)	3665 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.971, \ T_{\max} = 0.981$	$R_{\rm int} = 0.022$

Refinement $R[F^2 > 2\sigma(F^2)] = 0.041$ 201 parameters $wR(F^2) = 0.113$ H-atom parameters constrainedS = 1.09 $\Delta \rho_{max} = 0.42$ e Å $^{-3}$ 4080 reflections $\Delta \rho_{min} = -0.34$ e Å $^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} O3-H3O\cdots O4\\ O3-H3O\cdots O1^{i}\\ C3-H3\cdots O1^{ii}\end{array}$	0.84	1.80	2.5365 (15)	146
	0.84	2.56	3.0108 (15)	115
	0.95	2.50	3.2627 (18)	138

 $\mu = 0.25 \text{ mm}^{-1}$

 $0.12 \times 0.10 \times 0.08 \text{ mm}$

T = 173 K

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x, -y, -z + 1.

Data collection: *COLLECT* (Hooft, 1998); cell refinement: *DENZO* (Otwinowski & Minor, 1997); data reduction: *SCALE-PACK* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

HLS is grateful to Institute of Chemistry, University of the Punjab, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2140).

References

- Ahmad, M., Siddiqui, H. L., Rizvi, U. F., Ahmad, S. & Parvez, M. (2010). Acta Cryst. E66, 0862.
- Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698–704.
- Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
- Carty, T. J., Marfat, A., Moore, P. F., Falkner, F. C., Twomey, T. M. & Weissman, A. (1993). *Agents Actions*, **39**, 157–165.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Lombardino, J. G., Wiseman, E. H. & McLamore, W. M. (1971). J. Med. Chem. 14, 1171–1177.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Weaver, G. W. (2007). Synth. Commun. 37, 767–773.
- Siddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, 04–06.
- Soler, J. E. (1985). US Patent No. 4 563 452.
- Turck, D., Busch, U., Heinzel, G., Narjes, H. & Nehmiz, G. (1995). Clin. Drug Invest. 9, 270–276.

supplementary materials

Acta Cryst. (2010). E66, 0968 [doi:10.1107/S1600536810011025]

3-Benzoyl-4-hydroxy-2-methyl-2H-1,2-benzothiazine 1,1-dioxide

M. Ahmad, H. L. Siddiqui, S. Ahmad, S. Aslam and M. Parvez

Comment

Oxicam, a class of non steroidal anti-inflammatory drugs (NSAIDs) consists of benzothiazine derivatives which are found to be potent anti-inflammatory and analgesic agents, e.g., piroxicam (Lombardino *et al.*, 1971), droxicam (Soler, 1985), ampiroxicam (Carty *et al.*, 1993), meloxicam (Turck *et al.*, 1995), etc. In continuation of our research on potential biologically active benzothiazine compounds (Siddiqui *et al.*, 2007; Ahmad, Siddiqui, Zia-ur-Rehman *et al.*, 2010), we report the synthesis and crystal structure of the title compound in this article.

In the title compound (Fig. 1), the bond distances and angles agree with the cortresponding bond distances and angles reported in closely related compounds (Siddiqui *et al.*, 2008; Ahmad, Siddiqui, Rizvi *et al.*, 2010). The heterocyclic thiazine ring adopts half chair conformation with atoms S1 and N1 displaced by 0.410 (3) and 0.299 (3) Å on the opposite sides from the mean planes formed by the remaining ring atoms.

The structure is stabilized by intermolecular hydrogen bonds of the types O_{H} . O and C_{H} . O; the former result in dimers lying about inversion centers and the later form chains of molecules running along the *c*-axis (Tab. 1 and Fig. 2). In addition, intramolecular interactions of the types O_{H} . O and C_{H} . N are also present consolidating the crystal packing.

Experimental

An aqueous sodium hydroxide solution (1.33 g in 10 ml water) was slowly added to a solution of 3-benzoyl-4-hydroxy-2*H*-1,2-benzothiazine 1,1-dioxide (5.0 g, 16.6 mmole) in acetone (50 ml). Dimethylsulfate (4.03 g, 32 mmole) was added drop wise and the mixture was stirred for 30 minutes. The contents of the flask were acidified to pH 3.0 by the addition of 5% HCl. White precipitates of the title compound were formed which were collected and washed with excess distilled water. Crystals suitable for crystallographic study were grown from a solution of chloroform/methanol (4:1); yield = 3.5 g, 70%; m.p. = 420-421 K.

Refinement

Though all the H atoms could be distinguished in the difference Fourier map the H-atoms were included at geometrically idealized positions and refined in riding-model approximation with O—H = 0.84 Å and C—H = 0.95 and 0.98 Å for aryl and methyl H-atoms, respectively. The $U_{iso}(H)$ were allowed at $1.2U_{eq}(O/C)$. The final difference map was essentially featurless.

Figures

Fig. 1. The title molecule plotted with the displacement ellipsoids at 50% probability level (Farrugia, 1997).

Fig. 2. A part of the unit cell showing intermolecular and intrmolecular hydrogen bonds by dashed lines; the H-atoms not involved in H-bonds have been excluded for clarity.

3-Benzoyl-4-hydroxy-2-methyl-2H-1,2-benzothiazine 1,1-dioxide

Crystal data

$C_{16}H_{13}NO_4S$	Z = 2
$M_r = 315.33$	F(000) = 328
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.480 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 6.8342 (3) Å	Cell parameters from 3532 reflections
b = 9.9085 (3) Å	$\theta = 1.0 - 30.0^{\circ}$
c = 10.7234 (4) Å	$\mu = 0.25 \text{ mm}^{-1}$
$\alpha = 83.257 \ (2)^{\circ}$	T = 173 K
$\beta = 79.481 \ (2)^{\circ}$	Block, pale-yellow
$\gamma = 85.113 \ (2)^{\circ}$	$0.12 \times 0.10 \times 0.08 \text{ mm}$
$V = 707.50 (5) \text{ Å}^3$	

Data collection

Nonius KappaCCD diffractometer	4080 independent reflections
Radiation source: fine-focus sealed tube	3665 reflections with $I > 2\sigma(I)$
graphite	$R_{\text{int}} = 0.022$
ω and ϕ scans	$\theta_{\text{max}} = 30.1^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
Absorption correction: multi-scan (SORTAV; Blessing, 1997)	$h = -9 \rightarrow 9$
$T_{\min} = 0.971, \ T_{\max} = 0.981$	$k = -13 \rightarrow 13$
7177 measured reflections	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from neighbouring sites

$wR(F^2) = 0.113$	H-atom parameters constrained
S = 1.09	$w = 1/[\sigma^2(F_o^2) + (0.0468P)^2 + 0.3608P]$ where $P = (F_o^2 + 2F_c^2)/3$
4080 reflections	$(\Delta/\sigma)_{max} < 0.001$
201 parameters	$\Delta \rho_{max} = 0.42 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.34 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.20282 (5)	0.24470 (3)	0.28051 (3)	0.02305 (10)
01	-0.00548 (16)	0.28521 (10)	0.28975 (11)	0.0279 (2)
O2	0.29460 (19)	0.15793 (11)	0.18540 (11)	0.0339 (3)
03	0.23671 (18)	0.47875 (11)	0.58638 (10)	0.0290 (2)
H3O	0.2333	0.5621	0.5604	0.044*
O4	0.24683 (18)	0.68733 (10)	0.42430 (10)	0.0303 (2)
N1	0.32262 (17)	0.38365 (11)	0.25903 (11)	0.0218 (2)
C1	0.2435 (2)	0.17087 (13)	0.43178 (14)	0.0230 (3)
C2	0.2400 (2)	0.03080 (14)	0.46264 (16)	0.0284 (3)
H2	0.2244	-0.0268	0.4008	0.034*
C3	0.2596 (2)	-0.02341 (15)	0.58521 (17)	0.0321 (3)
H3	0.2570	-0.1189	0.6078	0.039*
C4	0.2832 (2)	0.06112 (16)	0.67508 (16)	0.0325 (3)
H4	0.2965	0.0229	0.7588	0.039*
C5	0.2875 (2)	0.20118 (15)	0.64393 (14)	0.0279 (3)
H5	0.3035	0.2582	0.7062	0.033*
C6	0.2683 (2)	0.25797 (13)	0.52084 (13)	0.0228 (3)
C7	0.2650 (2)	0.40639 (13)	0.48734 (13)	0.0218 (2)
C8	0.2777 (2)	0.46608 (13)	0.36361 (13)	0.0205 (2)
C9	0.2466 (2)	0.61275 (13)	0.33796 (13)	0.0222 (2)
C10	0.5305 (2)	0.38032 (17)	0.19048 (16)	0.0336 (3)
H10A	0.5688	0.4736	0.1624	0.040*
H10B	0.5419	0.3296	0.1161	0.040*
H10C	0.6189	0.3356	0.2474	0.040*
C11	0.2056 (2)	0.67762 (13)	0.21160 (13)	0.0227 (3)

supplementary materials

C12	0.0803 (2)	0.61998 (14)	0.14609 (14)	0.0254 (3)
H12	0.0330	0.5325	0.1758	0.030*
C13	0.0252 (2)	0.69159 (15)	0.03694 (14)	0.0283 (3)
H13	-0.0619	0.6535	-0.0071	0.034*
C14	0.0968 (3)	0.81858 (15)	-0.00811 (15)	0.0304 (3)
H14	0.0587	0.8668	-0.0828	0.036*
C15	0.2239 (3)	0.87500 (15)	0.05592 (15)	0.0309 (3)
H15	0.2752	0.9609	0.0240	0.037*
C16	0.2759 (2)	0.80577 (14)	0.16662 (14)	0.0270 (3)
H16	0.3595	0.8456	0.2119	0.032*

Atomic displacement parameters $(Å^2)$

S1 $0.02533 (17)$ $0.02010 (16)$ $0.02556 (17)$ $-0.00128 (11)$ $-0.00723 (12)$ $-0.00570 (11)$ O1 $0.0246 (5)$ $0.0277 (5)$ $0.0338 (6)$ $-0.0033 (4)$ $-0.0113 (4)$ $-0.0022 (4)$ O2 $0.0448 (7)$ $0.0258 (5)$ $0.0331 (6)$ $0.0001 (4)$ $-0.0074 (5)$ $-0.0127 (4)$ O3 $0.0404 (6)$ $0.0251 (5)$ $0.0231 (5)$ $0.0006 (4)$ $-0.0084 (4)$ $-0.0063 (4)$ O4 $0.0444 (6)$ $0.0224 (5)$ $0.0263 (5)$ $-0.0038 (4)$ $-0.0088 (4)$ $-0.0065 (4)$ N1 $0.0218 (5)$ $0.0210 (5)$ $0.0224 (5)$ $-0.0014 (4)$ $-0.0020 (4)$ $-0.0053 (4)$ C1 $0.0189 (6)$ $0.0221 (6)$ $0.0281 (7)$ $-0.0007 (4)$ $-0.0050 (5)$ $-0.0017 (5)$ C2 $0.0218 (6)$ $0.0220 (6)$ $0.0412 (8)$ $-0.0019 (5)$ $-0.0061 (6)$ $-0.0017 (5)$ C3 $0.0234 (7)$ $0.0226 (7)$ $0.0337 (8)$ $-0.0019 (6)$ $-0.0055 (6)$ $0.0068 (6)$ C4 $0.0278 (7)$ $0.0326 (7)$ $0.0327 (6)$ $-0.0014 (4)$ $-0.0045 (6)$ $0.0093 (6)$ C5 $0.0261 (7)$ $0.031 (7)$ $0.0256 (7)$ $-0.0014 (4)$ $-0.0045 (5)$ $-0.0013 (5)$ C6 $0.0194 (6)$ $0.0220 (6)$ $0.0226 (6)$ $-0.0014 (4)$ $-0.0045 (5)$ $-0.0033 (5)$ C6 $0.0221 (6)$ $0.0226 (6)$ $0.0226 (6)$ $-0.0033 (4)$ $-0.0034 (5)$ $-0.0038 (5)$ C7 $0.0212 (6)$ $0.0226 (6)$ $0.0226 (6)$ $-0.0033 (4$		U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S1	0.02533 (17)	0.02010 (16)	0.02556 (17)	-0.00128 (11)	-0.00723 (12)	-0.00570 (11)
02 0.0448 (7) 0.0258 (5) 0.0331 (6) 0.0001 (4) -0.0074 (5) -0.0127 (4) 03 0.0404 (6) 0.0251 (5) 0.0231 (5) 0.0006 (4) -0.0084 (4) -0.0063 (4) 04 0.0444 (6) 0.0224 (5) 0.0263 (5) -0.0038 (4) -0.0088 (4) -0.0065 (4) $N1$ 0.0218 (5) 0.0210 (5) 0.0224 (5) -0.0014 (4) -0.0020 (4) -0.0053 (4) $C1$ 0.0189 (6) 0.0221 (6) 0.0281 (7) -0.0007 (4) -0.0050 (5) -0.0017 (5) $C2$ 0.0218 (6) 0.0220 (6) 0.0412 (8) -0.0019 (5) -0.0055 (6) 0.0068 (6) $C4$ 0.0278 (7) 0.0326 (7) 0.0337 (8) -0.0019 (6) -0.0045 (6) 0.0093 (6) $C5$ 0.0261 (7) 0.0311 (7) 0.0256 (7) -0.0044 (5) -0.0019 (5) -0.0010 (5) $C7$ 0.0212 (6) 0.0226 (6) 0.0224 (6) -0.0044 (4) -0.0045 (5) -0.0010 (5) $C7$ 0.0212 (6) 0.0226 (6) 0.0226 (6) -0.0010 (4) -0.0044 (5) -0.0038 (5) $C8$ 0.0209 (6) 0.0226 (6) 0.0224 (6) -0.0033 (4) -0.0039 (5) -0.0033 (5) $C1$ 0.0259 (7) 0.0364 (8) 0.0373 (8) -0.0034 (6) 0.0036 (6) -0.0033 (4) $C1$ 0.0259 (7) 0.0226 (6) 0.0226 (6) -0.0021 (5) -0.0033 (5) -0.0033 (6) $C1$ 0.0259 (7) 0.0364 (8) 0.0373 (8) <td>01</td> <td>0.0246 (5)</td> <td>0.0277 (5)</td> <td>0.0338 (6)</td> <td>-0.0033 (4)</td> <td>-0.0113 (4)</td> <td>-0.0022 (4)</td>	01	0.0246 (5)	0.0277 (5)	0.0338 (6)	-0.0033 (4)	-0.0113 (4)	-0.0022 (4)
O3 $0.0404(6)$ $0.0251(5)$ $0.0231(5)$ $0.0006(4)$ $-0.0084(4)$ $-0.0063(4)$ $O4$ $0.0444(6)$ $0.0224(5)$ $0.0263(5)$ $-0.0038(4)$ $-0.0088(4)$ $-0.0065(4)$ $N1$ $0.0218(5)$ $0.0210(5)$ $0.0224(5)$ $-0.0014(4)$ $-0.0020(4)$ $-0.0053(4)$ $C1$ $0.0189(6)$ $0.0221(6)$ $0.0281(7)$ $-0.0007(4)$ $-0.0050(5)$ $-0.0017(5)$ $C2$ $0.0218(6)$ $0.0220(6)$ $0.0412(8)$ $-0.0019(5)$ $-0.0051(6)$ $-0.0017(5)$ $C3$ $0.0234(7)$ $0.0245(6)$ $0.0460(9)$ $-0.0031(5)$ $-0.0055(6)$ $0.0068(6)$ $C4$ $0.0278(7)$ $0.0326(7)$ $0.0337(8)$ $-0.0019(6)$ $-0.0045(6)$ $0.0093(6)$ $C5$ $0.0261(7)$ $0.0311(7)$ $0.0256(7)$ $-0.0004(5)$ $-0.0053(5)$ $0.0012(5)$ $C6$ $0.0194(6)$ $0.0230(6)$ $0.0224(6)$ $-0.0010(4)$ $-0.0045(5)$ $-0.0010(5)$ $C7$ $0.0212(6)$ $0.0226(6)$ $0.0226(6)$ $-0.0011(4)$ $-0.0041(4)$ $-0.0042(4)$ $C9$ $0.0227(6)$ $0.0211(6)$ $0.0234(6)$ $-0.0033(4)$ $-0.0039(5)$ $-0.0032(4)$ $C11$ $0.0259(7)$ $0.0364(8)$ $0.0373(8)$ $-0.0034(6)$ $0.0036(6)$ $-0.0123(6)$ $C11$ $0.0257(7)$ $0.0232(6)$ $0.0226(6)$ $-0.0021(5)$ $-0.0033(5)$ $-0.0033(4)$ $C12$ $0.0278(7)$ $0.0237(7)$ $0.0258(6)$ $-0.0021(5)$ $-0.0033(5)$ $-0.0033(6)$	O2	0.0448 (7)	0.0258 (5)	0.0331 (6)	0.0001 (4)	-0.0074 (5)	-0.0127 (4)
04 0.0444 (6) 0.0224 (5) 0.0263 (5) -0.0038 (4) -0.0088 (4) -0.0065 (4)N1 0.0218 (5) 0.0210 (5) 0.0224 (5) -0.0014 (4) -0.0020 (4) -0.0053 (4)C1 0.0189 (6) 0.0221 (6) 0.0281 (7) -0.0007 (4) -0.0050 (5) -0.0017 (5)C2 0.0218 (6) 0.0220 (6) 0.0412 (8) -0.0019 (5) -0.0061 (6) -0.0017 (5)C3 0.0234 (7) 0.0245 (6) 0.0460 (9) -0.0031 (5) -0.0055 (6) 0.0068 (6)C4 0.0278 (7) 0.0326 (7) 0.0337 (8) -0.0019 (6) -0.0045 (6) 0.0093 (6)C5 0.0261 (7) 0.0311 (7) 0.0256 (7) -0.0004 (5) -0.0045 (5) -0.0010 (5)C6 0.0194 (6) 0.0230 (6) 0.0224 (6) -0.0004 (4) -0.0040 (5) -0.0010 (5)C7 0.0212 (6) 0.0226 (6) -0.0011 (4) -0.0041 (4) -0.0042 (4)C9 0.0227 (6) 0.0211 (6) 0.0224 (6) -0.0033 (4) -0.0039 (5) -0.0032 (4)C11 0.0259 (7) 0.0364 (8) 0.0373 (8) -0.0034 (6) 0.0036 (6) -0.0123 (6)C12 0.0278 (7) 0.0237 (6) 0.0222 (6) 0.0002 (5) -0.0033 (5) -0.0033 (4)C10 0.0259 (7) 0.0287 (7) 0.0261 (7) -0.0034 (6) -0.0033 (5) -0.0033 (6)C11 0.0255 (6) 0.0200 (6) 0.0222 (6) 0.0002 (5) -0.0033 (5) <td>O3</td> <td>0.0404 (6)</td> <td>0.0251 (5)</td> <td>0.0231 (5)</td> <td>0.0006 (4)</td> <td>-0.0084 (4)</td> <td>-0.0063 (4)</td>	O3	0.0404 (6)	0.0251 (5)	0.0231 (5)	0.0006 (4)	-0.0084 (4)	-0.0063 (4)
N1 0.0218 (5) 0.0210 (5) 0.0224 (5) -0.0014 (4) -0.0020 (4) -0.0053 (4)C1 0.0189 (6) 0.0221 (6) 0.0281 (7) -0.0007 (4) -0.0050 (5) -0.0017 (5)C2 0.0218 (6) 0.0220 (6) 0.0412 (8) -0.0019 (5) -0.0061 (6) -0.0017 (5)C3 0.0234 (7) 0.0245 (6) 0.0460 (9) -0.0031 (5) -0.0055 (6) 0.0068 (6)C4 0.0278 (7) 0.0326 (7) 0.0337 (8) -0.0019 (6) -0.0045 (6) 0.0093 (6)C5 0.0261 (7) 0.0311 (7) 0.0256 (7) -0.0004 (5) -0.0053 (5) 0.0012 (5)C6 0.0194 (6) 0.0220 (6) 0.0226 (6) -0.0004 (4) -0.0040 (5) -0.0038 (5)C7 0.0212 (6) 0.0226 (6) 0.0226 (6) -0.0011 (4) -0.0054 (5) -0.0038 (5)C8 0.0209 (6) 0.0220 (5) 0.0211 (6) -0.0031 (4) -0.0039 (5) -0.0032 (4)C9 0.0227 (6) 0.0211 (6) 0.0224 (6) -0.0034 (6) 0.0036 (6) -0.0123 (6)C11 0.0259 (7) 0.0364 (8) 0.0373 (8) -0.0034 (6) 0.0036 (6) -0.0033 (4)C12 0.0278 (7) 0.0227 (6) 0.0227 (6) 0.0226 (6) -0.0022 (5) -0.0033 (6) -0.0033 (6)C13 0.0319 (7) 0.0287 (7) 0.0258 (6) -0.0021 (5) -0.0033 (6) -0.0034 (5)C14 0.0391 (8) 0.0266 (7) 0.0249 (7) <t< td=""><td>O4</td><td>0.0444 (6)</td><td>0.0224 (5)</td><td>0.0263 (5)</td><td>-0.0038 (4)</td><td>-0.0088 (4)</td><td>-0.0065 (4)</td></t<>	O4	0.0444 (6)	0.0224 (5)	0.0263 (5)	-0.0038 (4)	-0.0088 (4)	-0.0065 (4)
C1 $0.0189(6)$ $0.0221(6)$ $0.0281(7)$ $-0.0007(4)$ $-0.0050(5)$ $-0.0017(5)$ C2 $0.0218(6)$ $0.0220(6)$ $0.0412(8)$ $-0.0019(5)$ $-0.0061(6)$ $-0.0017(5)$ C3 $0.0234(7)$ $0.0245(6)$ $0.0460(9)$ $-0.0031(5)$ $-0.0055(6)$ $0.0068(6)$ C4 $0.0278(7)$ $0.0326(7)$ $0.0337(8)$ $-0.0019(6)$ $-0.0045(6)$ $0.0093(6)$ C5 $0.0261(7)$ $0.0311(7)$ $0.0256(7)$ $-0.0004(5)$ $-0.0053(5)$ $0.0012(5)$ C6 $0.0194(6)$ $0.0230(6)$ $0.0254(6)$ $-0.0004(4)$ $-0.0040(5)$ $-0.0010(5)$ C7 $0.0212(6)$ $0.0226(6)$ $0.0226(6)$ $-0.0011(4)$ $-0.0054(5)$ $-0.0038(5)$ C8 $0.0209(6)$ $0.0202(5)$ $0.0211(6)$ $-0.0011(4)$ $-0.0041(4)$ $-0.0042(4)$ C9 $0.0227(6)$ $0.0211(6)$ $0.0224(6)$ $-0.0033(4)$ $-0.0039(5)$ $-0.0032(4)$ C10 $0.0259(7)$ $0.0364(8)$ $0.0373(8)$ $-0.0034(6)$ $0.0036(6)$ $-0.0123(6)$ C11 $0.0257(7)$ $0.0232(6)$ $0.0222(6)$ $0.0022(5)$ $-0.0033(5)$ $-0.0033(4)$ C12 $0.0278(7)$ $0.0237(7)$ $0.0258(6)$ $-0.0021(5)$ $-0.0034(5)$ $-0.0036(5)$ C13 $0.0319(7)$ $0.0287(7)$ $0.0261(7)$ $-0.0036(6)$ $-0.0077(6)$ $-0.0012(5)$ C14 $0.0391(8)$ $0.0266(7)$ $0.0249(7)$ $-0.0034(5)$ $-0.0078(6)$ $-0.0012(5)$ C15 $0.0404(8)$ <td>N1</td> <td>0.0218 (5)</td> <td>0.0210 (5)</td> <td>0.0224 (5)</td> <td>-0.0014 (4)</td> <td>-0.0020 (4)</td> <td>-0.0053 (4)</td>	N1	0.0218 (5)	0.0210 (5)	0.0224 (5)	-0.0014 (4)	-0.0020 (4)	-0.0053 (4)
C2 0.0218 (6) 0.0220 (6) 0.0412 (8) -0.0019 (5) -0.0061 (6) -0.0017 (5)C3 0.0234 (7) 0.0245 (6) 0.0460 (9) -0.0031 (5) -0.0055 (6) 0.0068 (6)C4 0.0278 (7) 0.0326 (7) 0.0337 (8) -0.0019 (6) -0.0045 (6) 0.0093 (6)C5 0.0261 (7) 0.0311 (7) 0.0256 (7) -0.0004 (5) -0.0053 (5) 0.0012 (5)C6 0.0194 (6) 0.0220 (6) 0.0224 (6) -0.0004 (4) -0.0040 (5) -0.0010 (5)C7 0.0212 (6) 0.0226 (6) 0.0226 (6) -0.0011 (4) -0.0054 (5) -0.0038 (5)C8 0.0209 (6) 0.0202 (5) 0.0211 (6) -0.0033 (4) -0.0039 (5) -0.0032 (4)C9 0.0227 (6) 0.0211 (6) 0.0234 (6) -0.0034 (6) 0.0036 (6) -0.0123 (6)C10 0.0259 (7) 0.0364 (8) 0.0373 (8) -0.0034 (6) 0.0036 (6) -0.0033 (4)C12 0.0278 (7) 0.0287 (7) 0.0261 (7) -0.0021 (5) -0.0033 (5) -0.0036 (5)C13 0.0319 (7) 0.0287 (7) 0.0261 (7) -0.0036 (6) -0.0077 (6) -0.0012 (5)C14 0.0391 (8) 0.0266 (7) 0.0249 (7) -0.0036 (6) -0.0077 (6) -0.0012 (5)C15 0.0404 (8) 0.0216 (6) 0.0301 (7) -0.0034 (5) -0.0070 (6) -0.0036 (5)C16 0.0312 (7) 0.0217 (6) 0.0294 (7) -0.0034 (5) <td>C1</td> <td>0.0189 (6)</td> <td>0.0221 (6)</td> <td>0.0281 (7)</td> <td>-0.0007 (4)</td> <td>-0.0050 (5)</td> <td>-0.0017 (5)</td>	C1	0.0189 (6)	0.0221 (6)	0.0281 (7)	-0.0007 (4)	-0.0050 (5)	-0.0017 (5)
C3 $0.0234 (7)$ $0.0245 (6)$ $0.0460 (9)$ $-0.0031 (5)$ $-0.0055 (6)$ $0.0068 (6)$ C4 $0.0278 (7)$ $0.0326 (7)$ $0.0337 (8)$ $-0.0019 (6)$ $-0.0045 (6)$ $0.0093 (6)$ C5 $0.0261 (7)$ $0.0311 (7)$ $0.0256 (7)$ $-0.0004 (5)$ $-0.0053 (5)$ $0.0012 (5)$ C6 $0.0194 (6)$ $0.0230 (6)$ $0.0254 (6)$ $-0.0004 (4)$ $-0.0040 (5)$ $-0.0010 (5)$ C7 $0.0212 (6)$ $0.0226 (6)$ $0.0226 (6)$ $-0.0010 (4)$ $-0.0054 (5)$ $-0.0038 (5)$ C8 $0.0209 (6)$ $0.0202 (5)$ $0.0211 (6)$ $-0.0011 (4)$ $-0.0041 (4)$ $-0.0042 (4)$ C9 $0.0227 (6)$ $0.0211 (6)$ $0.0234 (6)$ $-0.0033 (4)$ $-0.0039 (5)$ $-0.0032 (4)$ C10 $0.0259 (7)$ $0.0364 (8)$ $0.0373 (8)$ $-0.0034 (6)$ $0.0036 (6)$ $-0.0123 (6)$ C11 $0.0255 (6)$ $0.0200 (6)$ $0.0222 (6)$ $0.0002 (5)$ $-0.0033 (5)$ $-0.0033 (4)$ C12 $0.0278 (7)$ $0.0232 (6)$ $0.0258 (6)$ $-0.0021 (5)$ $-0.0054 (5)$ $-0.0036 (5)$ C13 $0.0319 (7)$ $0.0287 (7)$ $0.0261 (7)$ $-0.0036 (6)$ $-0.0077 (6)$ $-0.0012 (5)$ C14 $0.0391 (8)$ $0.0266 (7)$ $0.0249 (7)$ $0.0036 (6)$ $-0.0078 (6)$ $-0.0025 (5)$ C15 $0.0404 (8)$ $0.0216 (6)$ $0.0294 (7)$ $-0.0034 (5)$ $-0.0070 (6)$ $-0.0036 (5)$	C2	0.0218 (6)	0.0220 (6)	0.0412 (8)	-0.0019 (5)	-0.0061 (6)	-0.0017 (5)
C4 $0.0278(7)$ $0.0326(7)$ $0.0337(8)$ $-0.0019(6)$ $-0.0045(6)$ $0.0093(6)$ C5 $0.0261(7)$ $0.0311(7)$ $0.0256(7)$ $-0.0004(5)$ $-0.0053(5)$ $0.0012(5)$ C6 $0.0194(6)$ $0.0230(6)$ $0.0254(6)$ $-0.0004(4)$ $-0.0040(5)$ $-0.0010(5)$ C7 $0.0212(6)$ $0.0226(6)$ $0.0226(6)$ $-0.0010(4)$ $-0.0054(5)$ $-0.0038(5)$ C8 $0.0209(6)$ $0.0202(5)$ $0.0211(6)$ $-0.0011(4)$ $-0.0041(4)$ $-0.0042(4)$ C9 $0.0227(6)$ $0.0211(6)$ $0.0234(6)$ $-0.0033(4)$ $-0.0039(5)$ $-0.0032(4)$ C10 $0.0259(7)$ $0.0364(8)$ $0.0373(8)$ $-0.0034(6)$ $0.0036(6)$ $-0.0123(6)$ C11 $0.0255(6)$ $0.0200(6)$ $0.0222(6)$ $0.0002(5)$ $-0.0033(5)$ $-0.0033(4)$ C12 $0.0278(7)$ $0.0232(6)$ $0.0258(6)$ $-0.0021(5)$ $-0.0054(5)$ $-0.0036(5)$ C13 $0.0319(7)$ $0.0287(7)$ $0.0261(7)$ $-0.0036(6)$ $-0.0077(6)$ $-0.0012(5)$ C14 $0.0391(8)$ $0.0266(7)$ $0.0249(7)$ $0.0036(6)$ $-0.0077(6)$ $-0.0012(5)$ C15 $0.0404(8)$ $0.0216(6)$ $0.0301(7)$ $-0.0031(5)$ $-0.0070(6)$ $-0.0036(5)$ C16 $0.0312(7)$ $0.0217(6)$ $0.0294(7)$ $-0.0034(5)$ $-0.0070(6)$ $-0.0036(5)$	C3	0.0234 (7)	0.0245 (6)	0.0460 (9)	-0.0031 (5)	-0.0055 (6)	0.0068 (6)
C5 $0.0261(7)$ $0.0311(7)$ $0.0256(7)$ $-0.0004(5)$ $-0.0053(5)$ $0.0012(5)$ C6 $0.0194(6)$ $0.0230(6)$ $0.0254(6)$ $-0.0004(4)$ $-0.0040(5)$ $-0.0010(5)$ C7 $0.0212(6)$ $0.0226(6)$ $0.0226(6)$ $-0.0010(4)$ $-0.0054(5)$ $-0.0038(5)$ C8 $0.0209(6)$ $0.0202(5)$ $0.0211(6)$ $-0.0011(4)$ $-0.0041(4)$ $-0.0042(4)$ C9 $0.0227(6)$ $0.0211(6)$ $0.0234(6)$ $-0.0033(4)$ $-0.0039(5)$ $-0.0032(4)$ C10 $0.0259(7)$ $0.0364(8)$ $0.0373(8)$ $-0.0034(6)$ $0.0036(6)$ $-0.0123(6)$ C11 $0.0255(6)$ $0.0200(6)$ $0.0222(6)$ $0.0002(5)$ $-0.0033(5)$ $-0.0033(4)$ C12 $0.0278(7)$ $0.0232(6)$ $0.0258(6)$ $-0.0021(5)$ $-0.0054(5)$ $-0.0036(5)$ C13 $0.0319(7)$ $0.0287(7)$ $0.0249(7)$ $0.0036(6)$ $-0.0077(6)$ $-0.0012(5)$ C14 $0.0391(8)$ $0.0216(6)$ $0.0301(7)$ $-0.0031(5)$ $-0.0058(6)$ $0.0005(5)$ C16 $0.0312(7)$ $0.0217(6)$ $0.0294(7)$ $-0.0034(5)$ $-0.0070(6)$ $-0.0036(5)$	C4	0.0278 (7)	0.0326 (7)	0.0337 (8)	-0.0019 (6)	-0.0045 (6)	0.0093 (6)
C6 0.0194 (6) 0.0230 (6) 0.0254 (6) -0.0004 (4) -0.0040 (5) -0.0010 (5)C7 0.0212 (6) 0.0226 (6) 0.0226 (6) -0.0010 (4) -0.0054 (5) -0.0038 (5)C8 0.0209 (6) 0.0202 (5) 0.0211 (6) -0.0011 (4) -0.0041 (4) -0.0042 (4)C9 0.0227 (6) 0.0211 (6) 0.0234 (6) -0.0033 (4) -0.0039 (5) -0.0032 (4)C10 0.0259 (7) 0.0364 (8) 0.0373 (8) -0.0034 (6) 0.0036 (6) -0.0123 (6)C11 0.0255 (6) 0.0200 (6) 0.0222 (6) 0.0002 (5) -0.0033 (5) -0.0033 (4)C12 0.0278 (7) 0.0232 (6) 0.0258 (6) -0.0021 (5) -0.0054 (5) -0.0036 (5)C13 0.0319 (7) 0.0287 (7) 0.0261 (7) -0.0036 (6) -0.0077 (6) -0.0012 (5)C14 0.0391 (8) 0.0266 (7) 0.0249 (7) -0.0031 (5) -0.0058 (6) 0.0005 (5)C15 0.0404 (8) 0.0216 (6) 0.0301 (7) -0.0034 (5) -0.0070 (6) -0.0036 (5)C16 0.0312 (7) 0.0217 (6) 0.0294 (7) -0.0034 (5) -0.0070 (6) -0.0036 (5)	C5	0.0261 (7)	0.0311 (7)	0.0256 (7)	-0.0004 (5)	-0.0053 (5)	0.0012 (5)
C7 $0.0212 (6)$ $0.0226 (6)$ $0.0226 (6)$ $-0.0010 (4)$ $-0.0054 (5)$ $-0.0038 (5)$ C8 $0.0209 (6)$ $0.0202 (5)$ $0.0211 (6)$ $-0.0011 (4)$ $-0.0041 (4)$ $-0.0042 (4)$ C9 $0.0227 (6)$ $0.0211 (6)$ $0.0234 (6)$ $-0.0033 (4)$ $-0.0039 (5)$ $-0.0032 (4)$ C10 $0.0259 (7)$ $0.0364 (8)$ $0.0373 (8)$ $-0.0034 (6)$ $0.0036 (6)$ $-0.0123 (6)$ C11 $0.0255 (6)$ $0.0200 (6)$ $0.0222 (6)$ $0.0002 (5)$ $-0.0033 (5)$ $-0.0033 (4)$ C12 $0.0278 (7)$ $0.0232 (6)$ $0.0258 (6)$ $-0.0021 (5)$ $-0.0054 (5)$ $-0.0036 (5)$ C13 $0.0319 (7)$ $0.0287 (7)$ $0.0261 (7)$ $-0.0035 (5)$ $-0.0093 (6)$ $-0.0046 (5)$ C14 $0.0391 (8)$ $0.0266 (7)$ $0.0249 (7)$ $0.0036 (6)$ $-0.0077 (6)$ $-0.0012 (5)$ C15 $0.0404 (8)$ $0.0216 (6)$ $0.0301 (7)$ $-0.0031 (5)$ $-0.0058 (6)$ $0.0005 (5)$ C16 $0.0312 (7)$ $0.0217 (6)$ $0.0294 (7)$ $-0.0034 (5)$ $-0.0070 (6)$ $-0.0036 (5)$	C6	0.0194 (6)	0.0230 (6)	0.0254 (6)	-0.0004 (4)	-0.0040 (5)	-0.0010 (5)
C8 $0.0209(6)$ $0.0202(5)$ $0.0211(6)$ $-0.0011(4)$ $-0.0041(4)$ $-0.0042(4)$ C9 $0.0227(6)$ $0.0211(6)$ $0.0234(6)$ $-0.0033(4)$ $-0.0039(5)$ $-0.0032(4)$ C10 $0.0259(7)$ $0.0364(8)$ $0.0373(8)$ $-0.0034(6)$ $0.0036(6)$ $-0.0123(6)$ C11 $0.0255(6)$ $0.0200(6)$ $0.0222(6)$ $0.0002(5)$ $-0.0033(5)$ $-0.0033(4)$ C12 $0.0278(7)$ $0.0232(6)$ $0.0258(6)$ $-0.0021(5)$ $-0.0054(5)$ $-0.0036(5)$ C13 $0.0319(7)$ $0.0287(7)$ $0.0261(7)$ $-0.0036(6)$ $-0.0077(6)$ $-0.0012(5)$ C14 $0.0391(8)$ $0.0266(7)$ $0.0249(7)$ $0.0036(6)$ $-0.0077(6)$ $-0.0012(5)$ C15 $0.0404(8)$ $0.0216(6)$ $0.0301(7)$ $-0.0031(5)$ $-0.0058(6)$ $0.0005(5)$ C16 $0.0312(7)$ $0.0217(6)$ $0.0294(7)$ $-0.0034(5)$ $-0.0070(6)$ $-0.0036(5)$	C7	0.0212 (6)	0.0226 (6)	0.0226 (6)	-0.0010 (4)	-0.0054 (5)	-0.0038 (5)
C9 $0.0227 (6)$ $0.0211 (6)$ $0.0234 (6)$ $-0.0033 (4)$ $-0.0039 (5)$ $-0.0032 (4)$ C10 $0.0259 (7)$ $0.0364 (8)$ $0.0373 (8)$ $-0.0034 (6)$ $0.0036 (6)$ $-0.0123 (6)$ C11 $0.0255 (6)$ $0.0200 (6)$ $0.0222 (6)$ $0.0002 (5)$ $-0.0033 (5)$ $-0.0033 (4)$ C12 $0.0278 (7)$ $0.0232 (6)$ $0.0258 (6)$ $-0.0021 (5)$ $-0.0054 (5)$ $-0.0036 (5)$ C13 $0.0319 (7)$ $0.0287 (7)$ $0.0261 (7)$ $-0.0005 (5)$ $-0.0093 (6)$ $-0.0046 (5)$ C14 $0.0391 (8)$ $0.0266 (7)$ $0.0249 (7)$ $0.0036 (6)$ $-0.0077 (6)$ $-0.0012 (5)$ C15 $0.0404 (8)$ $0.0216 (6)$ $0.0301 (7)$ $-0.0031 (5)$ $-0.0058 (6)$ $0.0005 (5)$ C16 $0.0312 (7)$ $0.0217 (6)$ $0.0294 (7)$ $-0.0034 (5)$ $-0.0070 (6)$ $-0.0036 (5)$	C8	0.0209 (6)	0.0202 (5)	0.0211 (6)	-0.0011 (4)	-0.0041 (4)	-0.0042 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9	0.0227 (6)	0.0211 (6)	0.0234 (6)	-0.0033 (4)	-0.0039 (5)	-0.0032 (4)
C11 0.0255 (6) 0.0200 (6) 0.0222 (6) 0.0002 (5) -0.0033 (5) -0.0033 (4) C12 0.0278 (7) 0.0232 (6) 0.0258 (6) -0.0021 (5) -0.0054 (5) -0.0036 (5) C13 0.0319 (7) 0.0287 (7) 0.0261 (7) -0.0036 (6) -0.0093 (6) -0.0046 (5) C14 0.0391 (8) 0.0266 (7) 0.0249 (7) 0.0036 (6) -0.0077 (6) -0.0012 (5) C15 0.0404 (8) 0.0216 (6) 0.0301 (7) -0.0031 (5) -0.0058 (6) 0.0005 (5) C16 0.0312 (7) 0.0217 (6) 0.0294 (7) -0.0034 (5) -0.0070 (6) -0.0036 (5)	C10	0.0259 (7)	0.0364 (8)	0.0373 (8)	-0.0034 (6)	0.0036 (6)	-0.0123 (6)
C12 0.0278 (7) 0.0232 (6) 0.0258 (6) -0.0021 (5) -0.0054 (5) -0.0036 (5) C13 0.0319 (7) 0.0287 (7) 0.0261 (7) -0.0005 (5) -0.0093 (6) -0.0046 (5) C14 0.0391 (8) 0.0266 (7) 0.0249 (7) 0.0036 (6) -0.0077 (6) -0.0012 (5) C15 0.0404 (8) 0.0216 (6) 0.0301 (7) -0.0031 (5) -0.0058 (6) 0.0005 (5) C16 0.0312 (7) 0.0217 (6) 0.0294 (7) -0.0034 (5) -0.0070 (6) -0.0036 (5)	C11	0.0255 (6)	0.0200 (6)	0.0222 (6)	0.0002 (5)	-0.0033 (5)	-0.0033 (4)
C13 0.0319 (7) 0.0287 (7) 0.0261 (7) -0.0005 (5) -0.0093 (6) -0.0046 (5) C14 0.0391 (8) 0.0266 (7) 0.0249 (7) 0.0036 (6) -0.0077 (6) -0.0012 (5) C15 0.0404 (8) 0.0216 (6) 0.0301 (7) -0.0031 (5) -0.0058 (6) 0.0005 (5) C16 0.0312 (7) 0.0217 (6) 0.0294 (7) -0.0034 (5) -0.0070 (6) -0.0036 (5)	C12	0.0278 (7)	0.0232 (6)	0.0258 (6)	-0.0021 (5)	-0.0054 (5)	-0.0036 (5)
C14 0.0391 (8) 0.0266 (7) 0.0249 (7) 0.0036 (6) -0.0077 (6) -0.0012 (5) C15 0.0404 (8) 0.0216 (6) 0.0301 (7) -0.0031 (5) -0.0058 (6) 0.0005 (5) C16 0.0312 (7) 0.0217 (6) 0.0294 (7) -0.0034 (5) -0.0070 (6) -0.0036 (5)	C13	0.0319 (7)	0.0287 (7)	0.0261 (7)	-0.0005 (5)	-0.0093 (6)	-0.0046 (5)
C15 0.0404 (8) 0.0216 (6) 0.0301 (7) -0.0031 (5) -0.0058 (6) 0.0005 (5) C16 0.0312 (7) 0.0217 (6) 0.0294 (7) -0.0034 (5) -0.0070 (6) -0.0036 (5)	C14	0.0391 (8)	0.0266 (7)	0.0249 (7)	0.0036 (6)	-0.0077 (6)	-0.0012 (5)
C16 0.0312 (7) 0.0217 (6) 0.0294 (7) -0.0034 (5) -0.0070 (6) -0.0036 (5)	C15	0.0404 (8)	0.0216 (6)	0.0301 (7)	-0.0031 (5)	-0.0058 (6)	0.0005 (5)
	C16	0.0312 (7)	0.0217 (6)	0.0294 (7)	-0.0034 (5)	-0.0070 (6)	-0.0036 (5)

Geometric parameters (Å, °)

S1—O2	1.4329 (11)	C6—C7	1.4716 (18)
S1—O1	1.4346 (11)	С7—С8	1.3784 (19)
S1—N1	1.6333 (12)	C8—C9	1.4518 (18)
S1—C1	1.7593 (14)	C9—C11	1.4936 (19)
O3—C7	1.3265 (16)	C10—H10A	0.9800
O3—H3O	0.8400	C10—H10B	0.9800
O4—C9	1.2509 (16)	C10—H10C	0.9800
N1—C8	1.4373 (16)	C11—C12	1.3966 (19)
N1—C10	1.4753 (18)	C11—C16	1.3969 (19)
C1—C2	1.3896 (19)	C12—C13	1.391 (2)

C1—C6	1.4011 (19)	C12—H12	0.9500
C2—C3	1.386 (2)	C13—C14	1.390 (2)
С2—Н2	0.9500	С13—Н13	0.9500
C3—C4	1.388 (2)	C14—C15	1.389 (2)
С3—Н3	0.9500	C14—H14	0.9500
C4—C5	1.390 (2)	C15—C16	1.388 (2)
C4—H4	0.9500	С15—Н15	0.9500
C5—C6	1.3974 (19)	C16—H16	0.9500
С5—Н5	0.9500		
02—\$1—01	118.95 (7)	C7—C8—N1	120.26 (11)
O2—S1—N1	108.49 (7)	C7—C8—C9	120.23 (12)
01— <u>S1</u> —N1	107.25 (6)	N1-C8-C9	119.51 (12)
02 = 12 = 01	109 77 (7)	04	119.85 (12)
01 - 1 - 1	107.98 (6)	04	118 55 (12)
N1 - S1 - C1	103 26 (6)	C8-C9-C11	121 55 (12)
$C7_{-03}_{+30}$	109.20 (0)	N1_C10_H104	109.5
C8-N1-C10	116.02 (11)	N1_C10_H10B	109.5
$C_8 $ N1 S1	110.02 (11)	H10A C10 H10B	109.5
$C_{0} = N_{1} = S_{1}$	114.30(9)	$\frac{110}{10} = \frac{10}{10} = \frac{110}{10}$	109.5
C10-N1-S1	110.00 (9)		109.5
$C_2 = C_1 = C_0$	121.72(13)	HIOA—CIO—HIOC	109.5
C2	120.23 (11)	HI0B—CI0—HI0C	109.5
C6	117.96 (10)		119.90 (13)
C3_C2_C1	118.87 (14)	C12—C11—C9	121.08 (12)
C3—C2—H2	120.6	C16—C11—C9	118.60 (12)
C1—C2—H2	120.6	C13—C12—C11	119.51 (13)
C2—C3—C4	120.34 (14)	C13—C12—H12	120.2
С2—С3—Н3	119.8	C11—C12—H12	120.2
С4—С3—Н3	119.8	C14—C13—C12	120.42 (14)
C3—C4—C5	120.73 (15)	C14—C13—H13	119.8
C3—C4—H4	119.6	C12—C13—H13	119.8
С5—С4—Н4	119.6	C15—C14—C13	120.07 (14)
C4—C5—C6	119.87 (15)	C15—C14—H14	120.0
С4—С5—Н5	120.1	C13—C14—H14	120.0
С6—С5—Н5	120.1	C16—C15—C14	119.93 (14)
C5—C6—C1	118.46 (13)	C16—C15—H15	120.0
C5—C6—C7	120.69 (13)	C14—C15—H15	120.0
C1—C6—C7	120.79 (12)	C15—C16—C11	120.14 (14)
O3—C7—C8	122.43 (12)	C15—C16—H16	119.9
O3—C7—C6	114.62 (12)	C11—C16—H16	119.9
С8—С7—С6	122.84 (12)		
O2—S1—N1—C8	-166.36 (9)	C1—C6—C7—C8	-13.2 (2)
O1—S1—N1—C8	63.98 (11)	O3—C7—C8—N1	175.55 (12)
C1—S1—N1—C8	-49.92 (11)	C6—C7—C8—N1	-8.6(2)
O2—S1—N1—C10	-22.94 (13)	O3—C7—C8—C9	-4.2 (2)
01—S1—N1—C10	-152.60 (11)	C6—C7—C8—C9	171.61 (12)
C1—S1—N1—C10	93.50 (12)	C10—N1—C8—C7	-100.95 (16)
O2—S1—C1—C2	-37.60 (14)	S1—N1—C8—C7	43.55 (16)
01—S1—C1—C2	93.50 (12)	C10—N1—C8—C9	78.84 (16)
	×		

supplementary materials

N1—S1—C1—C2	-153.13 (11)	S1—N1—C8—C9	-136.66 (11)
O2—S1—C1—C6	145.77 (11)	C7—C8—C9—O4	13.9 (2)
O1—S1—C1—C6	-83.13 (12)	N1-C8-C9-O4	-165.87 (13)
N1—S1—C1—C6	30.25 (12)	C7—C8—C9—C11	-163.55 (13)
C6—C1—C2—C3	0.6 (2)	N1-C8-C9-C11	16.66 (19)
S1—C1—C2—C3	-175.86 (11)	O4—C9—C11—C12	-137.23 (14)
C1—C2—C3—C4	-0.3 (2)	C8—C9—C11—C12	40.27 (19)
C2—C3—C4—C5	0.0 (2)	O4—C9—C11—C16	35.29 (19)
C3—C4—C5—C6	-0.1 (2)	C8—C9—C11—C16	-147.21 (14)
C4—C5—C6—C1	0.4 (2)	C16-C11-C12-C13	-0.6 (2)
C4—C5—C6—C7	177.71 (13)	C9—C11—C12—C13	171.87 (13)
C2-C1-C6-C5	-0.7 (2)	C11-C12-C13-C14	1.1 (2)
S1—C1—C6—C5	175.85 (10)	C12-C13-C14-C15	-0.1 (2)
C2-C1-C6-C7	-178.00 (13)	C13-C14-C15-C16	-1.4 (2)
S1—C1—C6—C7	-1.42 (18)	C14-C15-C16-C11	2.0 (2)
C5—C6—C7—O3	-14.30 (19)	C12-C11-C16-C15	-1.0 (2)
C1—C6—C7—O3	162.91 (13)	C9—C11—C16—C15	-173.59 (13)
C5—C6—C7—C8	169.55 (13)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O3—H3O…O4	0.84	1.80	2.5365 (15)	146
O3—H3O···O1 ⁱ	0.84	2.56	3.0108 (15)	115
C3—H3····O1 ⁱⁱ	0.95	2.50	3.2627 (18)	138
C12—H12…N1	0.95	2.59	3.0163 (18)	107
	. 1			

Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y, -z+1.

Fig. 1

Fig. 2

