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Advancements in cancer treatments have increased the number of survivors of child-
hood cancers. Endocrinopathies are common complications following cancer therapy and
may occur decades later. The objective of the current review is to address the main
endocrine abnormalities detected in childhood cancer survivors including disorders of the
hypothalamic-pituitary axis, thyroid, puberty, gonads, bone, body composition, and glucose
metabolism.
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INTRODUCTION
Approximately 1 in 285 children will be diagnosed with cancer
before the age 20 years, and 1 in 530 young adults between the
ages of 20 and 39 years is a childhood cancer survivor (CCS) (1).
Endocrine complications are among the most common sequelae
observed in CCS, and they frequently occur as cancer therapy-
related late – effects appearing years, even decades, after the
exposure to chemotherapy and/or radiotherapy. The prevalence
of an endocrine disorder in 1423 at risk adult CCS was reported
to be 62% (95% CI 59.5–64.6) (2). The 60-year cumulative risk of
having an endocrinopathy in an individual diagnosed with can-
cer between the ages of 5 and 9 years was 43% in a large cohort
of Northern European CCS (3). The occurrence of endocrine
disorders documented in an Italian Transition Unit for adult
CCS was 48.46 and 62.78% in females and males, respectively
(Figure 1) (4). Treatment exposures placing individuals at risk
of endocrinopathies have traditionally included alkylating agent
based chemotherapy and radiotherapy. More recently, selective
mitogen-activated kinase inhibitors and immune system mod-
ulators have been shown to also be associated with endocrine
dysfunction. The long-term consequences of the use of these novel
therapies, some of which are prescribed in maintenance regi-
mens, remain to be fully elucidated (5–7). Healthcare providers
should be equipped to diagnose and manage acute and long-
term endocrine complications that may arise in maturing CCS.
This review will address the risk of endocrine disorders associ-
ated with the treatment of pediatric cancer and brain tumors.
The data summarized in this review are based on a systematic
search of the medical literature using MEDLINE/Pubmed (from
1970 to May 2014) using keywords relevant to this topic. Addi-
tional searches were conducted within the reference lists of relevant
articles.

DISORDERS OF THE HYPOTHALAMUS AND PITUITARY
Tumor development and/or surgical resections close to the hypo-
thalamus and/or pituitary may induce direct anatomical damage to
these structures and result in multiple hypothalamic/pituitary dys-
functions (Table 1). Disorders of the hypothalamus/pituitary are
also common following their exposure to direct or scatter radio-
therapy. More recently, Ipilimumab, an immune system modu-
lator, was shown to potentially cause auto-immune hypophysitis
with ensuing anterior panhypopituitarism (7). Pituitary dysfunc-
tion was the most frequent endocrine complication in a Northern
European cohort comparing 31,723 CCS and 211,261 controls.
In this study, the standard hospitalization rate ratio of hypopitu-
itarism was 88.0 (95% CI 72.1–107.5) in CCS when compared to
matched controls from the local general population (3).

GROWTH HORMONE DEFICIENCY AND POOR LINEAR GROWTH
Growth failure and short stature are among the most common
sequelae of childhood cancer therapy (8). Several etiologies may
contribute to growth failure in CCS including growth hormone
deficiency (GHD), exposures to spinal and total-body irradiation
(TBI), pubertal disorders, chemotherapy treatments including
glucocorticoids, hypothyroidism, suboptimal nutrition, and renal
disease (9–12).

In CCS, GHD is frequently attributed to cranial radiotherapy
doses of 12–64 Gy to the hypothalamus/pituitary (4). Radiation
has a dose and time dependent effect on GH secretion. Mer-
chant et al. demonstrated that GHD was likely to develop within
36 months of exposure to hypothalamic/pituitary radiotherapy in
individuals receiving doses ≥20 Gy (13) (Figure 2). In compari-
son to radiotherapy, the impact of chemotherapy alone on GHD
secretion is more controversial and less common (14–17). Ima-
tinib, a tyrosine kinase inhibitor (TKI), has been associated with
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FIGURE 1 | Prevalence of endocrine disorders at the last follow-up visit by gender. Reproduced with permission from Ref. (4) ©2013 European Society of
Endocrinology.

growth deceleration and with failure of provocative GH stimula-
tion testing (18, 19). Imatinib is presumed to inhibit bone growth
by impeding the kinase mediated release of GH (5).

Growth hormone deficiency should be investigated in skele-
tally immature CCS when linear growth velocity decelerates over
a 6-month period. The effect of GHD on growth may be masked
by precocious puberty and by hyperinsulinemia in the context
of rapid weight gain (“growth without growth hormone”) with
seemingly normal linear growth driven by sex steroids and insulin
respectively in affected individuals (20, 21). CCS exposed to spinal
radiotherapy are at risk of having skeletal disproportions; this
should ideally be investigated by measuring the sitting height
(12). Biochemical evaluation for GHD requires dynamic test-
ing, which despite limitations related to poor reproducibility in
the general population, remains acceptable for the assessment of
GH secretion in CCS (22). In the general population, the diag-
nosis of GHD typically requires failing dynamic tests using two
different secretagogues; however, in CCS exposed to cranial radio-
therapy and individuals with a history of a brain tumor close to the
hypothalamus/pituitary, failing one test was considered sufficient
in the consensus guidelines published by the Growth Hormone
Research Society (23). Secretagogues used in dynamic testing
include insulin, arginine, levodopa, clonidine, and glucagon. GH
releasing hormone (GHRH) should not be used for the assessment
of GH secretion in this population given the primarily hypothal-
amic location of radiation-induced damage (24). Plasma levels of
IGF-1 and IGFBP3, although commonly practiced, are not reli-
able screening tools in CCS exposed to cranial radiotherapy and
are associated with high rates of false-negatives (25).

Treatment with recombinant GH (rGH) replacement therapy is
typically not initiated until 12 months after successfully complet-
ing cancer or brain tumor treatments. The mitogenic potential
of GH stimulating tumor growth is a safety concern in CCS
(26). Studies suggest that rGH in patients with brain tumors are

not associated with primary disease recurrence (27–29). However,
there may be an increase in the development of second neoplasm
in CCS treated with GH (30, 31). Ergun-Longmire et al. reported
a relative risk of 2.15 (95% CI, 1.3–3.5; p < 0.002) of developing a
second neoplasm in CCS treated with rGH when compared to con-
trols and the most commonly identified neoplasms were menin-
giomas (30). Nevertheless, using the same multi-center cohort of
CCS and reporting specifically on the risk of subsequent central
nervous system neoplasms after a longer period of follow-up, Pat-
terson et al. recently reported an adjusted rate ratio of meningioma
and gliomas in GH treated survivors of CNS tumors when com-
pared to CNS tumor survivors who were not treated with GH of 1.0
(95% CI 0.6–1.8, p= 0.94), thus indicating negligible differences
between the two groups in regards to this particular risk (32).

The benefits of rGH extend beyond linear growth and are high-
lighted in adult GHD studies. Some of the advantages include
improvements in bone mineral density (BMD), cardiovascu-
lar function, reduction in metabolic syndrome, and sustained
improvements in quality of life (33). The benefits and risk of rGH
have to be carefully weighed in children and adult survivors. Ongo-
ing studies are needed to investigate and characterize the risk of
developing second neoplasms as well as the proposed advance-
ments in the physiological and psycho-social well-being of rGH
in CCS.

DISORDERS OF LUTEINIZING HORMONE AND FOLLICLE-STIMULATING
HORMONE
Central precocious puberty
Central precocious puberty (CPP) is defined by the early activation
of the hypothalamic–pituitary–gonadal axis leading to the onset
of puberty prior to the ages of 8 and 9-years in girls and boys,
respectively (34, 35). The consequences of CPP include the pre-
mature closure of growth plates resulting in decreased adult height
prospects. Precocious puberty, especially menarche, can generate
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Table 1 | Central endocrinopathies.

Function Complication Therapy-related risks Relationship to time, dose to gland,

or organ when applicable

Evaluation/labs Intervention

Linear

growth

GH deficiency Surgery Damage to the pituitary by tumor

expansion and/or surgery

Bone age

IGF1, IGF-BP3

GH stimulation test

GH replacement

Radiotherapy to

hypothalamus/pituitary

Doses ≥18 Gy (highest risk ≥30 Gy)

Puberty Central

precocious

puberty

Radiotherapy to

hypothalamus/pituitary

Doses ≥18 Gy, Bone age GnRH agonist

Girls <5 years old at exposure have a

higher risk

Baseline AM LH, FSH, estradiol

(girls), or testosterone (boys)

Leuprolide stimulation test

LH/FSH

deficiencya

Surgery Damage to the pituitary by tumor

expansion or growth

Bone age

Baseline AM LH, FSH, estradiol

(girls), or testosterone (boys)

Induction of

puberty/sex

hormone

replacement therapy

Radiotherapy to

hypothalamus/pituitary

Doses ≥30 Gy

Partial deficit ≥20 Gy

Pituitary,

other

ACTH

insufficiencya

Surgery Damage to the pituitary by tumor

expansion and/or surgery

8 a.m. cortisol and ACTH Hydrocortisone and

stress dose teaching

Irradiation to

hypothalamus or pituitary

Doses ≥30 Gy Low dose ACTH stimulation

test if AM cortisol is abnormal

Systemic glucocorticoids Deficiency depends on the doses used

and duration of exposure

TSH

deficiencya

Surgery Damage to the pituitary by tumor

expansion and/or surgery

Free T4 Levothyroxine

Radiotherapy to

hypothalamus/pituitary

Doses ≥30 Gy

Central

diabetes

insipidus

Surgery Damage to the pituitary by tumor

expansion and/or surgery

Plasma electrolytes, serum,

and urinary osmolalities. Water

deprivation test in equivocal

situations

Desmopressin

Fluid management

GH, growth hormone; IGF-1, insulin-like growth factor-1; IGF-BP3, insulin-like growth factor binding protein 3; GnRH, gonadotropin releasing hormone; ACTH,

corticotropin; TSH, thyroid stimulating hormone; AM, morning sample; LH, luteinizing hormone; FSH, follicle-stimulating hormone.
aAlso described in the context of ipilimumab-induced anterior hypophysitis.

significant psycho-social adjustment challenges in young children,
particularly in those with special needs. While radiotherapy to the
hypothalamus/pituitary is the main risk factor associated with CPP
in CCS; pubertal development can also be triggered prematurely
by tumors located near the hypothalamus or optic pathways inde-
pendently from radiation exposure. Additional risk factors include
hydrocephalus, female sex, exposure to radiotherapy before the age
of 5 years, and increased BMI (36, 37).

The mean linear velocity in children with CPP can be 8–
10 cm/year (+2 to +4 SDS for chronological age) at diagnosis
(38); however, in CCS the linear growth velocity may be normal
or poor secondary to concurrent GHD or spinal damage from
radiotherapy (39). Clinicians should not rely on the measure-
ment of testicular volume for the diagnosis of puberty in males
exposed to gonadotoxic chemotherapy regimens (as those with
alkylating agents) and/or testicular irradiation. In these individu-
als, treatment-related germ cell injury can impair testicular growth
without necessarily affecting their ability to produce testosterone

and this can be particularly misleading in the context of CPP. Clin-
icians should be aware of these caveats and have a low threshold
to initiate laboratory testing if there is suspicion of early pubertal
growth based on other clinical markers such as penile enlargement,
scrotal skin thinning, or pubarche.

Biochemical evidence of CPP includes pubertal basal levels of
luteinizing hormone (LH) and sex steroids (estradiol or testos-
terone). Random basal values may be inconclusive secondary to
the pulsatile nature of gonadotropins and stimulated values may
be necessary to establish the diagnosis. GnRH agonists are used
in stimulation testing and a pubertal LH value and a LH to
follicle-stimulating hormone (FSH) ratio >1 is consistent with
CPP (34, 40). Radiographic evaluation encompasses an assess-
ment of a child’s skeletal maturation (41, 40). In females a pelvic
ultrasound demonstrating pubertal sized uterus and ovaries may
also be helpful in confirming the diagnosis (42).

Treatment with a GnRH agonist suppresses the secretion of
gonadotropins and may be useful in improving final height
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FIGURE 2 | Growth hormone secretion after hypothalamic/pituitary
exposures to radiotherapy. Reproduced with permission from Ref. (13)
©2011 by American Society of Clinical Oncology.

prospects by delaying skeletal maturation and allowing a longer
time for linear growth (43). This treatment may also act synergis-
tically with rGH and improve the final adult height of GH-deficient
CCS who also have CPP (43). Determining the best time to
discontinue GnRH agonist therapy even in children with idio-
pathic CPP can be challenging and requires taking into account
multiple factors including chronological age, bone age, target
height, psycho-social maturation, and parental preferences. This
determination is rendered even more challenging by the possible
development over time of permanent LH/FSH deficiency in these
patients (44). The use of aromatase inhibitors in order to pro-
long the delay in closure of growth plates in concert with rGH
has been utilized by some clinicians to augment the height out-
comes of CCS (45). Data remain inconclusive as to whether or not
aromatase inhibitors improve adult height and many pediatric
endocrinologists consider their use to be experimental.

LH/FSH deficiency
The deficiency in LH/FSH, also referred to as hypogonadotropic
hypogonadism, can result in delayed or arrested pubertal devel-
opment during childhood. The post-pubertal male and female
with LH/FSH deficiency may present with androgen insufficiency
symptoms and secondary amenorrhea, respectively. LH/FSH defi-
ciency can occur after tumor and/or surgery related damage or
after doses of radiotherapy to the hypothalamic–pituitary area
>30 Gy (36, 46, 47). Female CCS diagnosed after the age of 10 years
and who received doses >50 Gy are at high risk for delayed menar-
che (36). Deficiency in LH/FSH may also occur in the context
of ipilimumab-induced auto-immune hypophysitis, as detailed in
Section “Corticotropin Deficiency” (7). Replacement is warranted
for the development and maintenance of secondary sex charac-
teristic, optimal bone mass accrual, and body composition. Sex
steroids also play a pivotal role in the metabolism of lipids and
carbohydrates (48).

CORTICOTROPIN DEFICIENCY
Corticotropin (ACTH) deficiency, also known as central adrenal
insufficiency, can occur in CCS following tumor and/or surgery

related damage or after the exposure of the hypothala-
mus/pituitary to radiotherapy doses ≥30 Gy (49). Hudson et al.
identified disorders of the hypothalamic–pituitary–adrenal axis in
13.8% of CCS exposed to cranial radiotherapy (2). In a study of
children with embryonal brain tumors treated with radiotherapy,
the 4-year cumulative incidence of ACTH deficiency was 38± 6%
and there was no significant difference in those patients who
received irradiation of >42 and <42 Gy (50). The incidence of
ACTH deficiency in patients receiving TBI as part of precondi-
tioning of BMT has been reported at 6% (51) ACTH deficiency
was documented in 60% (n= 50) of patients receiving BMT for
malignant and non-malignant reasons. It was more likely to occur
in patients who had been transplanted <1 year prior to testing and
all the subjects who were diagnosed were asymptomatic (15). The
clustering of ACTH deficiency cases within a year of transplant
in this study suggests that a large proportion of patients experi-
ence transient forms of this condition as a result of their exposure
to high-dose glucocorticoids. More recently, ACTH deficiency has
been associated with the use of imatinib, a TKI with 48% of indi-
viduals diagnosed 3–71 months following the exposure (52). Ipil-
imumab, an immune system modulator can cause auto-immune
hypophysitis with ensuing panhypopituitarism, especially at doses
>3 mg/kg with a reported prevalence of 4.9–17% (7, 53, 54). The
onset of hypophysitis may not occur until 6 weeks after therapy
and affected individuals may require 2–5 years of glucocorticoid
therapy (55). Future investigations are needed to determine when
and for how long CCS treated with these agents should be tested. If
patients are deemed insufficient, the chronicity of the insufficiency
should also be studied.

Symptoms of ACTH deficiency include fatigue, weakness, nau-
sea, vomiting, anorexia, and abdominal cramping. When exposed
to a severe illness, patients with ACTH deficiency may develop
life threatening complications including hypoglycemia related
seizures and hypotensive shock. Untreated ACTH deficiency may
be associated with decreased free water clearance and hypona-
tremia; replacement with hydrocortisone in such instances, espe-
cially in post-surgical patients, may unmask co-existent central
diabetes insipidus. A screening cortisol level, collected at 8 a.m.
that is≥10 mcg/dl is reassuring and against the presence of ACTH
deficiency; a value≤5 mcg/dl at 8 a.m. should in contrast raise high
suspicions regarding this diagnosis. Definitive testing includes
insulin tolerance, low dose cosyntropin or metyrapone stimula-
tion tests. A peak cortisol value <18 µg/dl following low dose
(1 microgram) cosyntropin is the most commonly used diagnos-
tic criterion (56). The treatment of ACTH deficiency relies on
replacement therapy with hydrocortisone and patient and family
education regarding stress dosing during times of illness.

TSH DEFICIENCY
Thyroid stimulating hormone deficiency, also known as central
hypothyroidism, is rarely reported in CCS. It can occur as a
result of tumor and/or surgery related damage or after hypothala-
mic/pituitary exposure to radiotherapy doses ≥30 Gy (44, 50, 57,
58). One CCS study detected TSH deficiency in 6% (n= 71) of
childhood brain tumor survivors (59). Deficiency in TSH may
also occur in the context of ipilimumab-induced auto-immune
hypophysitis, as detailed in Section“Corticotropin Deficiency”(7).
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Hypothyroidism is associated with poor linear growth, delayed
bone age, and disturbances in pubertal timing during childhood.
It can also cause fatigue, fluid retention, constipation, cold intoler-
ance, proximal muscle weakness, and depression. A serum free T4
(FT4) below normal in conjunction with a low or normal serum
TSH is characteristic of TSH deficiency. Levothyroxine is used to
treat this form of hypothyroidism with doses are adjusted to main-
tain FT4 values within mid to high normal ranges (60). In contrast
to primary hypothyroidism (PH), serum TSH values are not help-
ful in the monitoring of this condition, as they are expected to
remain low even after inadequate replacement with levothyroxine.

HYPERPROLACTINEMIA
Prolactin production by the pituitary gland is controlled by
the hypothalamus, with a predominantly inhibitory tone due to
dopaminergic input. Disruptions of hypothalamic–pituitary con-
nections due to tumor growth, surgery, or doses of radiotherapy
>30–50 Gy can result in hyperprolactinemia because of the loss
of hypothalamic inhibition on prolactin secretion (44, 61, 62).
Patients with hyperprolactinemia can present with galactorrhea.
Furthermore, elevated prolactin levels may suppress LH and FSH
production and cause hypogonadism. Nevertheless, hyperpro-
lactinemia in CCS tends to remain asymptomatic, especially in
a patient population where individuals are concurrently at risk of
gonadotropin deficiency and primary gonadal failure because of
their cancer treatment exposures (62).

CENTRAL DIABETES INSIPIDUS
Central diabetes insipidus is the clinical manifestation of the deficit
in secretion and release of the anti-diuretic hormone (ADH).
Hypothalamic neurons are responsible of the production of ADH;
the latter is carried by axonal transport to the posterior pituitary
from which it is released into the circulation. The deficiency in
ADH impairs the affected individual’s ability to concentrate urine
with ensuing polyuria, polydipsia, and dehydration when access
to free water is compromised. Central diabetes insipidus can be a
mode of revelation of childhood brain malignancies such as dys-
germinomas or hypophyseal non-Hodgkin’s lymphomas (63, 64).
In these instances, it can initially be isolated and as the tumoral
infiltration worsens additional pituitary functions become defi-
cient (64). More commonly, however, diabetes insipidus occurs
in the context of pan-hypopituitarism due to the presence of
a tumor in close proximity to the sellar region or as a con-
sequence of surgical procedures aimed at removing it. Central
diabetes insipidus does not occur as a late effect of cranial radio-
therapy and is hence rarely discussed in the literature dedicated
to CCS (65). Central diabetes insipidus does not seem to be
associated with the use of ipilimumab (7). The management of
central diabetes insipidus consists of replacement therapy using
desmopressin with close monitoring of fluid intake and urine
output in order to avoid overtreatment and ensuing hypona-
tremia and seizures. Significant shifts in replacement needs are
noted in the post-operative patient, mandating close monitoring
in the inpatient setting until stabilization is achieved (66, 67).
This was well characterized following neurosurgical interventions
on sellar/supra sellar tumors such as craniophayngioma with the
classical description of a triple phase response consisting of a first

phase of transient diabetes insipidus lasting for up to 2 days, fol-
lowed by an anti-diuretic phase of 1–2 weeks before the onset of
permanent diabetes insipidus (67). Patients with altered thirst
sensation are more easily managed with the determination of a
fixed daily fluid requirement in addition to a fixed dose of desmo-
pressin in order to avoid significant fluctuations in their hydration
status (66).

DISORDERS OF THE THYROID
The radiosensitive nature of the thyroid gland predisposes it to
dysfunctions including hypothyroidism, hyperthyroidism, nod-
ules, and cancer (Table 2). Hudson et al. identified thyroid dis-
orders in up to 66.4% of CCS exposed to neck radiotherapy
(2). Thyroid dysfunction has been attributed to multiple cancer
therapies including radiotherapy with direct or scatter exposure
of the neck, TKI, 131 I-Metaidobenzylguanidine ([131I] MIBG),
retinoid X receptor agonist autoantibodies, angiogenesis inhibitor
thalidomide, and interferon-α (68–70).

PRIMARY HYPOTHYROIDISM
Primary hypothyroidism is the most common thyroid abnormal-
ity in CCS. In a study by Armstrong et al., the relative risk of PH in
CCS was 17.1 when compared to sibling controls (70). The study
also documented that up to 50% Hodgkin lymphoma patients
receiving >45 Gy developed hypothyroidism within 5-years (70).
Female sex and older age at diagnosis were also associated with an
increased incidence of hypothyroidism. The risk of PH has pri-
marily been attributed to direct or scatter radiation of the neck
including cranio-spinal radiotherapy as well as TBI for cytoreduc-
tion before HSCT (50, 58, 59, 71). Subclinical or compensated
PH is more commonly diagnosed than overt PH in the context
of low dose radiotherapy and HSCT, with some patients experi-
encing spontaneous recovery (58). Chemotherapy alone has not
been traditionally associated with PH. However, TKIs such as
sorafenib, sunitinib, and imatinib have been noted to cause thy-
roid dysfunction (72–74). Hypothyroidism during treatment with
sunitinib occurred in 7–85% of patients (72, 73). The pathophys-
iology of TKI causing PH remains elusive; it may be secondary
to destruction of the thyroid gland, impairments of thyroid hor-
mone transport or metabolism, or reduced TSH clearance (72).
PH was documented in 13 out 16 CCS of neuroblastoma treated
with [131I] MIBG in a long-term follow-up study over a period of
15.5 years (11.2–20.2) (69).

Extended surveillance for thyroid dysfunction is crucial as
hypothyroidism in CCS exposed to radiotherapy and radio-labeled
agents may occur decades later. The clinical presentation of PH is
similar to central hypothyroidism in CCS; however, biochemically
they differ. The labs in PH include an elevated plasma TSH level
with normal or low free T4; both values are used in monitoring
replacement using levothyroxine at substitutive doses.

HYPERTHYROIDISM
Hyperthyroidism was diagnosed in up to 5% of survivors in a
report by Armstrong et al., a rate that was 8 times greater than
in sibling controls (70). Overt hyperthyroidism albeit rare has
been reported in CCS after hematopoietic stem-cell transplant
(HSCT) (75–77). The occurrence of hyperthyroidism may be
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Table 2 | Peripheral endocrinopathies.

Function Complication Therapy-related

risks

Relationship to time, dose to gland,

or organ when applicable

Evaluation/labs Intervention

Thyroid Primary

hypothyroidism

Neck irradiation Risk increases with dose and time after

exposure

TSH, FT4 Levothyroxine

I131 labeled agents MIBG for neuroblastoma

Hyperthyroidism Neck irradiation Doses ≥35 Gy TSH, FT4, T3 Dependent on clinical

course

Auto-immune

hypothyroidism

HSCT Transfer of auto-immunity from donor TSH, FT4 Levothyroxine

Thyroid neoplasms Neck irradiation Doses 20–29 Gy Yearly palpation of neck Per etiology

Age <10 at exposure Thyroid US

Females at higher risk US guided FNAB

Gonadal

disorders

male

Leydig cell

dysfunction

Testicular irradiation Doses ≥24 Gy AM LH, FSH,

testosterone

Replacement therapy

with testosterone
Alkylating agents Generally subclinical

Germ cell

dysfunction

Testicular irradiation Possible ≥0.15 Gy Baseline LH, FSH,

inhibin B

Sperm banking

High risk ≥2 Gy

Alkylating agents Cyclophosphamide dose ≥7.5 gram/m2a Adults: semen analysis

MOPP ≥3 cycles

Busulfan ≥600 mg/m2a

Ifosfamide ≥60 g/m2a

Any alkylating agent in combination with

radiotherapy to the testes

Gonadal

disorders

female

Ovarian failure Abdominopelvic

irradiation

Acute ovarian failure doses ≥20 Gy Baseline LH, FSH,

estradiol

Induction of puberty with

estradiol

Hormone replacement

therapy

Mature oocyte

cryopreservation

Premature menopause/infertility at

lower doses

Higher risk at older age Pubertal females-AMH

Alkylating agents Higher risk at older age

Bone

health

Osteoporosis Radiotherapy TBI BMD studies Per etiology

Glucocorticoids,

methotrexate

Associated hormone deficiencies

Nutritional/lifestyle causes

25 Hydroxy-Vitamin D

levels

Sex Steroids

Metabolic Obesity overweight

Insulin resistance

Metabolic syndrome

Diabetes mellitus

Surgery Hypothalamic injury/central obesity Waist to Hip Ratio Lifestyle modifications –

diet, physical activity

Radiotherapy Cranial radiotherapy abdominal radiation

TBI

Fasting: glucose, lipids,

insulin, HbA1c

Per etiology

Oral glucose tolerance

if fasting test abnormal

TBI, total-body irradiation; TSH, thyroid stimulating hormone; AM, morning sample; LH, luteinizing hormone; FSH, follicle-stimulating hormone; FNAB, ultrasound

guided fine needle; aspiration biopsy; TKI, tyrosine kinase inhibitors; AMH, anti-Mullerian hormone; BMD, bone mineral density.
aCumulative dose; source: long-term follow-up guidelines for survivors of childhood, adolescent, and young adult cancers – Version 3.0-Oct 2008. Children’s Oncology

Group – www.survivorshipguidelines.org.

more common shortly after HSCT with Jung et al. reporting
a prevalence of 4.5% in the first 3 months following transplant
(77). Lower prevalence values (0.7–2%) have been reported in
studies incorporating long-term follow in the pediatric HSCT
population (75, 76).

AUTOIMMUNE INDUCED THYROID DISEASE
Positive thyroid autoantibodies have been reported in cases of
hypothyroidism and hyperthyroidism in CCS of allogeneic HSCT
(78, 79). It has been presumed to be related to the transfer of
auto-immunity from the stem-cell donor to the HSCT recipient.
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However, the presence of thyroid antibodies does not neces-
sarily lead to progression to hypothyroidism in the context of
HSCT (80). Auto-immune thyroiditis may exacerbate the thy-
roid toxicity of certain, but not all, TKI (72, 81). Autoimmune
and non-autoimmune thyroiditis are also well established toxic-
ities of interferon-α, a human recombinant cytokine used in the
treatment of some solid tumors and hematologic malignancies
(82). Newer anticancer agents such as the monoclonal antibod-
ies have also been associated with rare cases of auto-immune
hypothyroidism and transient hyperthyroidism. The incidences of
ipilimumab-induced auto-immune hypothyroidism in small case
reports have been 0–2, 7, and 19% in patients receiving standard
doses, high doses, and combination therapy with bevacizumab,
respectively (82).

THYROID NEOPLASMS
Second thyroid neoplasms may occur later than two decades after
the diagnosis of the primary cancer in CCS (83, 84). Armstrong
et al. conveyed that 20 years after diagnosis, the risk of having
a thyroid nodule in CCS after exposure to neck irradiation was
20%, which is 27 times higher than the sibling population (70).
The association between the development of thyroid cancer and
direct or scatter radiation of the neck is well known (85). In a
large cohort of 12,575 CCS, 111 cases of second primary can-
cers were pathologically confirmed in patients who had received
radiotherapy (86). The most common second primary cancer was
papillary thyroid carcinoma and the risk was highest in patients
who had received ≤20 Gy, were of female and of a young age
(<10 years) at the time of diagnosis of the primary cancer (86).
Hodgkin lymphoma is the primary cancer most commonly asso-
ciated with thyroid cancer. The cumulative incidence of thyroid
cancer was 2.3% (95% CI, 1.7–3.1) in this population (83). A
recent report by Veiga et al. suggested that alkylating agents in
conjunction with <20 Gy of irradiation can increase the incidence
of thyroid neoplasm by 2.4 (95% CI, 1.3–4.5; p= 0.002) (83).
Radiolabeled agents such as 131I MIBG used in the treatment of
neuroblastomas have also been associated with the development
of papillary thyroid cancer (68).

The currently recommended screening modality for thyroid
cancer in CCS at risk is the yearly clinical examination of the
neck by an experienced provider. There is significant disagree-
ment regarding the use of thyroid ultrasound for the purposes of
screening in the absence of clinical symptoms, because of the high
probability of finding abnormal results leading to higher rates of
diagnostic procedures and unnecessary anxiety to patients and
their families; the yield in identifying malignant nodules with
ultrasonography is indeed low, even in survivors of Hodgkin lym-
phoma (87–90). Kovalchik et al. recently validated an absolute
risk prediction model (AUC 0.80, 95% CI), screening for thy-
roid cancer in CCS. The model was based on sex, age <15 years
at primary cancer diagnosis, history of thyroid nodule, radio-
therapy to the neck, and exposure to alkylating agents (91). The
diagnosis of second primary thyroid cancer in CCS relies on the
presence of a positive result on a fine needle aspiration biopsy
of a suspected nodule; the treatment approach and prognosis
are identical to thyroid cancer cases diagnosed in the general
population (87).

DISORDERS OF THE GONADS
MALES
The testes have two functional compartments, a reproductive com-
partment and an endocrine compartment (Table 2). The repro-
ductive compartment consists of germ cells and the Sertoli cells
that support them. The endocrine compartment encompasses the
Leydig cells, which are responsible for producing testosterone. The
two compartments are affected differently by cancer therapies and
understanding this dichotomy in testicular function is impera-
tive in counseling male CCS in regards to their risk of gonadal
dysfunction.

Leydig cell dysfunction
Hypogonadism after chemotherapy exposure alone is rare (92,
93). However, high doses of alkylating agents, such as cyclophos-
phamide can cause low testosterone (94, 95). There are also case
reports of broad acting kinase inhibitors causing low testosterone
and gynecomastia (96). Leydig cell dysfunction as a result of tes-
ticular irradiation is dependent on the age of the exposure and the
dose of irradiation. Pre-pubertal males receiving doses >24 Gy
are at high risk for hypogonadism, whereas pubertal males are
at risk when exposed to >33 Gy (97–99). An elevated LH and
a low normal morning testosterone define subclinical hypogo-
nadism, and can be attributed to moderate doses of alkylating
agent and low dose of testicular irradiation (<20 Gy); how-
ever, subclinical hypogonadism rarely requires exogenous testos-
terone replacement therapy (99–101). At risk, CCS should be
followed closely for signs and biochemical evidence of hypogo-
nadism that warrant replacement therapy during pubertal years
and adulthood.

Germ cell dysfunction
Germ cells are more sensitive to testicular irradiation and
chemotherapy than Leydig cells. Chemotherapy agents associated
with germ cell dysfunction include cyclophosphamide, procar-
bazine, ifosfamide, busulfan, melphalan, and cisplatin (99, 102).
Green et al. reported germ cell dysfunction with subsequent
azospermia in 38.2% (n= 275) males exposed to chemotherapy
and/or testicular irradiation (103). Small testicular volume, ele-
vated FSH, and low inhibin B levels are associated with poor
fertility prognosis in males; however, these clinical and biochem-
ical findings lack sensitivity and specificity in male CCS. Males
exposed to gonadotoxic agents may recover germ cell function
and it is recommended that they have semen analyses in order to
determine fertility status (103, 104).

Sperm cryopreservation is recommended in cancer patients
prior to therapy with gonodotoxic agents. In pre-pubertal males,
an approach combining testicular tissue extraction, spermatogo-
nial stem-cell preservation, and later transplantation of decont-
aminated (non-malignant) cells has been proposed but remains
experimental (99, 105, 106).

FEMALES
The ovaries do not replicate the functional dichotomy (distinct
endocrine and reproductive compartments) observed in the testes.
The female ovarian follicle is responsible for estrogen production
and oocyte maturation, and both functions are simultaneously
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affected by gonadal failure. The extent of ovarian damage and
subsequent residual function do not solely depend on the intensity
of the cancer treatments received by the patient. These also depend
on the number of viable follicles, or “ovarian reserve,” at the time
of the exposure. Patients whose viable follicles were depleted dur-
ing therapy do not experience a recovery of their ovarian function
after the completion of cancer treatments and are diagnosed with
acute ovarian insufficiency (107). A subset of individuals, with
a less severe but nevertheless significant depletion of their ovar-
ian reserve, will experience a resumption of pubertal development
or menstrual cycles in the few years following the completion of
cancer therapy only to be diagnosed several years later with pre-
mature menopause, which is defined as ovarian failure prior to the
age of 40 years (108). Given naturally declining numbers of folli-
cles during a woman’s lifespan, ovarian reserve and, consequently,
vulnerability to damage from gonadotoxic agents, are particularly
dependent on chronological age at the time of exposure to cancer
treatments (107, 108). Cancer treatments associated with ovarian
toxicity include abdominopelvic irradiation (API) and chemother-
apy agents such as cyclophosphamide, procarbazine, busulfan,
melphalan, and thiotepa (107–110). Chemotherapy is less toxic
to the ovaries of pre-pubertal females in comparison to pubertal
and adult females (107, 111–113). The ovarian toxicity of API is
age and dose dependent, irradiation doses >20 Gy in female, CCS
>13 years old, and TBI in CCS > 10-years is correlated with ovar-
ian insufficiency (107, 114, 115). A study of an AML cohort treated
with chemotherapy alone (anthracyclines and cytarabine) demon-
strated that menarche occurred at the mean age of 13.1 years and
fertility rates were similar to their siblings (92). Even in the absence
of exposure to API and despite the occurrence of menarche at
a normal age, CCS were nevertheless shown to have a decreased
reproductive capacity in comparison to healthy controls in another
report (113). The risk of premature menopause was 8 and 0.8%
(RR= 13.21, 95% CI= 3.26–53.51; p < 0.001) in CCS and sib-
lings, respectively (108). The cumulative incidence of premature
menopause was highest among CCS exposed to both alkylating
agents and API (108). Evidence of ovarian insufficiency includes
elevated gonadotropins, low anti-mullerian hormone (AMH) lev-
els, and reduced mean ovarian volume (113). AMH is an acceptable
marker of ovarian follicular reserve in female CCS, and low levels
are indicative of declining ovarian function (116–119). Despite
declining ovarian reserve in CCS, some survivors have successful
pregnancies, with live birth rates of 63–73% (119–121).

Young CCS with ovarian failure may experience poor lin-
ear growth and poor bone mineralization. Older hypo-gonadal
females can develop menopausal symptoms and are at risk for
osteoporosis and cardiovascular disease (122, 123). Sex hormone
replacement therapy is warranted in female CCS with ovarian fail-
ure. The use of cryopreserved ovarian tissue from pre-pubertal
females carries the risk of re-seeding malignant cells and is con-
sidered experimental; by contrast, mature oocyte cryopreserva-
tion is no longer considered experimental and may represent a
viable option for young pubertal females prior to gonadotoxic
therapies (124). The availability of this technique, along with
better ways of assessing ovarian reserve in females at risk of pre-
mature menopause may improve fertility prospects in the CCS
population.

BONE HEALTH RELATED COMPLICATIONS
Childhood cancer survivors have an increased risk of poor bone
health and decreased BMD (Table 2). Contributing factors include
the primary cancer (increased osteoclast stimulation in hemato-
logical malignancies), treatment exposures, and concurrent hor-
mone deficiencies (125). CCS treated with glucocorticoids and
methotrexate or exposed to cranio-spinal radiotherapy, especially
receiving >24 Gy of cranial irradiation are susceptible to decreased
BMD (125, 126). The association between central nervous system
exposures to radiotherapy and low BMD is likely due to radiation
related endocrinopathies (deficiencies in GH and/or sex steroids
in particular) (126). Lower BMD can be observed prior to cancer
therapies because of the effect of the primary illness itself on bone
(127). In a recent report on childhood ALL, the 3-year cumulative
symptomatic fracture risk was 17.8% (n= 399). Fractures were
more likely to occur during therapy than during follow up (127).
The decline in BMD did not correlate with fracture risk in this
study as well as in a report on survivors of osteosarcoma (127,
128). Recent studies have provided further reassurance regarding
the continued recovery of BMD after the completion of therapy, a
progress that continues, even in older individuals followed through
adulthood (126, 129).

Optimizing bone health in CCS includes hormone replacement
therapy for those with GHD, hypogonadism, and vitamin D defi-
ciency. It is also recommended that survivors receive adequate
nutritional calcium, participate in weight bearing activities, and
avoid smoking (125, 128).

OVERWEIGHT, OBESITY, AND DISORDERS OF GLUCOSE
HOMEOSTASIS
Obesity is a recognized public health challenge with far reaching
consequences on overall states of health in the general popula-
tion (130, 131) (Table 2). The prevalence of obesity and metabolic
syndrome in the overall CCS population seems to be comparable
to that observed in the general population (2, 130, 132). Hudson
et al. demonstrated the prevalence of obesity, hypertension, dys-
lipidemia, and diabetes was 36.5, 22.6, 50.9, and 5.9%, respectively,
in a cohort of CCS followed for 26.3 years after diagnosis (2). Nev-
ertheless, survivors of ALL and brain tumors have significantly
higher risks of obesity and overweight (133). Additional risk fac-
tors include female sex, doses of cranial radiotherapy >20 Gy, age
at exposure <4-years old, and GHD (134, 135). CCS with a history
of brain tumor development, radiotherapy, or surgery within the
hypothalamus or near the sellar region are at risk of developing a
particularly severe form of obesity characterized by hyperphagia
and rapid weight gain, and which is sometimes referred to as “cen-
tral” or “hypothalamic” obesity (136, 137). In these patients with
significant hypothalamic injury, increased parasympathetic tone
and ensuing hyperinsulinemia (the latter promoting fat storage)
have been suggested as possible causes for this phenomenon (136,
137). Treatment approaches for this particular type of obesity have
included octreotide and dextroamphetamine (137, 138). In a ran-
domized, double-blind placebo-controlled study of 18 individuals
with hypothalamic obesity, octreotide allowed the stabilization of
BMI with lower rates of weight gain and lower insulin secretion
over a treatment period of 6 months (137). The use of dextroam-
phetamine in five children with hypothalamic obesity allowed the
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stabilization of BMI over a period of 24 months (138). The small
numbers of patients enrolled in these studies with limited long-
term follow-up data to support sustainable efficacy as well as the
cost and possible side effects of the medications used in these
reports have hindered the wider adoption of such treatment strate-
gies. CCS were also shown to have a higher risk of diabetes mellitus,
especially following exposure to TBI, abdominal radiotherapy, and
alkylating agents (139, 140). Further research is needed in order to
understand the mechanism by which such treatments leave lasting
impacts on metabolism and glucose homeostasis as a preamble in
optimizing the management of these disorders.

SUMMARY
Endocrine complications are common in CCS. Healthcare
providers need to be aware of the lifelong endocrinopathies associ-
ated with treatment exposures. Further research is needed in order
to improve risk prediction and develop patient centered screen-
ing strategies as the early diagnosis of endocrine disorders and
timely treatment of these complications can improve overall states
of health and the quality of life of individuals belonging to this
vulnerable population.
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