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Abstract

Stain colour estimation is a prominent factor of the analysis pipeline in most of histology

image processing algorithms. Providing a reliable and efficient stain colour deconvolution

approach is fundamental for robust algorithm. In this paper, we propose a novel method for

stain colour deconvolution of histology images. This approach statistically analyses the

multi-resolutional representation of the image to separate the independent observations out

of the correlated ones. We then estimate the stain mixing matrix using filtered uncorrelated

data. We conducted an extensive set of experiments to compare the proposed method to

the recent state of the art methods and demonstrate the robustness of this approach using

three different datasets of scanned slides, prepared in different labs using different

scanners.

Introduction

Direct analysis of stain expressions is pivotal for many tasks in the field of digital pathology.

Typically, chemical stains are applied to a tissue section in order to highlight particular areas

of interest. In digital pathology, these markers continue to play a key role, and automated algo-

rithms frequently use stain expressions in a similar way as part of their analysis. These algo-

rithms normally require the estimation of each applied stain out of multi-stained tissue image.

For instance, on a Haematoxylin and Eosin (H&E) slide the Haematoxylin staining has been

used as a guide to detect the nuclei [1] and as a learning feature to perform deep learning for

cell detection [2]. The estimation of each stain colour are also used by several stain normalisa-

tion algorithms in order to find the contribution of each individual stain to the final color vari-

ation before performing stain colour normalisation [3–5]. The problem of stain colour

estimation out of multi-stained images is exacerbated by the fact that the colour of a stain may

vary depending on factors such as the stain manufacturer, room temperature, and the expo-

sure time, which are likely to vary between different histology labs [6]. Hence, stain separation
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(also called stain deconvolution) out of multi-stained images is an essential step in most of his-

tology image analysis algorithms.

Stain deconvolution is the process of transforming a stained tissue section image from the

normal RGB colour space into a series of stain channels. Each stain channel is a grayscale

image, which represents the intensity of a particular stain expression across the original image.

Stain deconvolution methods typically attempt to find an ideal stain matrix, a matrix that

when multiplied to the RGB colour channels produces the desired stain channels. A stain

matrix is composed of stain vectors, each vector representing the model colour of a particular

stain from the original image. In some applications, a normalisation step is conducted to stan-

dardise the stain colour appearance in all of processed images before processing each stain col-

our [3, 7–9].

Ruifrok and Johnston’s colour deconvolution algorithm [10] was among the first in this

field. The method outlined certain key principals that more recent methods continue to use,

such as the use of stain matrices and the conversion of RGB colour channels into optical den-

sity space. The authors also provided sample stain matrices to separate certain popular stain

pairs, such as H&E or H&DAB. It should be noted, however, that these stain matrices were

optimised for a particular set of images under certain staining conditions, and generally stain

matrices need to be tuned to the exact stain colours present in the histology images. As a result,

we may not achieve adequate deconvolution if we apply present stain matrix to images with

different staining conditions [3, 11, 12].

To address the need for image-specific stain matrices, a number of stain deconvolution

methods have been developed to estimate a specific stain matrix for a given input image. These

methods typically apply some statistical analysis to the colour channels of an image and reduce

it into a series of stain vectors. An early method of automated stain matrix estimation was

described by Macenko et al. [11] as part of a method of stain normalisation. Stain vectors were

estimated by taking singular value decomposition (SVD) of the image data. Gavrilovic et al.
[13] considered the problem in the Maxwellian chromaticity plane, assuming that by project-

ing pixels into this space, perceptually similar colours will appear close to each other. Ideally,

pixels are expected to appear in groups corresponding to each stain with some division

between them. Pixel groups are modelled as a Gaussian mixture whose parameters are deter-

mined using an Expectation Maximisation (EM) approach. Each stain vector is then estimated

as the mean of its corresponding Gaussian distribution.

Rabinovic et al. [14] compared two stain deconvolution approaches, Non-Negative Matrix

Factorisation (NNMF) and Independent Component Analysis (ICA). They showed that while

NNMF performed better, neither method was sufficient to fully deconvolve the images. The

study was performed on hyper-spectral images, rather than light microscopy images. Hyper-

spectral imaging typically operates on a greater number of input channels, compared to the

three-channel RGB images, which may limit the comparison that can be made between meth-

ods for the two modalities.

Other works have taken a supervised approach to stain deconvolution such as Khan et al.
[3] and Alsubaie et al. [15]. These methods make use of a pre-trained stain classifier to identify

the locations where each stain is present. Stain colours, and thus the stain vectors, are then esti-

mated from these sets of classified pixels. However, for such approaches to be viable, good

quality annotated training data must be available for a variety of stain types, which is often

challenging to obtain.

Kather et al. [16] proposed using PCA to get the optimal representation of stain colours.

This is achieved by projecting the first two PCA components on the plane created by the stain

vectors estimated using the pre-estimated stain matrix [10]. However, PCA assumes orthogo-

nality between the main components, which is not always the case, especially in correlated
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stain colours such as H and E. Also, as we described above, using pre-estimated stain matrix

using [10] is not always the best choice to represent the variability in stain colours as it assumes

a fixed stain vectors for H and E images.

Trahearn et al. [12] recently proposed a method of stain deconvolution using a variant of

ICA. The method is based on the assumption that stain vectors can be modelled as indepen-

dent components according to the ICA model. When ICA is applied, it is expected that pixels

of the same stain will be distributed approximately along the principal axis of one of the inde-

pendent components and pixels of different stains will be distributed along different principle

axes. However, Trahearn et al. [12] show that in some cases the raw independent components

do not provide adequate deconvolution. Thus, a correction step is applied in order to adjust

the estimated independent components. The set of optimal stain vectors is found by minimis-

ing the mean of the distances between each pixel and its nearest vector, stopping when conver-

gence is achieved.

In theory, ICA recovers the independent components in the mixture based on two assump-

tions: a) source signals are independent, and b) they have non-Gaussain distributions [17].

Independency among sources is a strong assumption that might not always be satisfied, and

the success of ICA is significantly dependent on this assumption [18]. In this paper, we pro-

pose an algorithm for stain deconvolution of histology images using independent component

analysis in the wavelet domain. In this approach, the condition of independency among

sources is relaxed. Each colour channel of the input image is decomposed into a series of nar-

row sub-band images using decimated wavelet transform. Statistical analysis is performed for

each sub-band to find the least Gaussian sub-bands. Finally, ICA is applied to the selected sub-

bands to estimate the stain matrix. Performing stain deconvolution using only the least Gauss-

ian sub-bands increases independence among the separated sources.

The proposed framework also utilises textural information in stain colour deconvolution.

The coefficients of the wavelet decomposition embed textural features of the image content

which when acquired from the three colour channels could be used to find the stain mixing

parameters through the powerful statistical blind source separation algorithm ICA.

We demonstrate the effectiveness of the proposed method in three different experiments

using H&E scanned slides from three datasets: colon cancer [2], breast cancer [19] and lung

cancer. Colon and lung tissue slides were scanned in the University Hospitals Coventry and

Warwickshire (UHCW) while breast tissue slides were scanned at the Pathology Department

of the University Medical Center Utrecht, Utrecht, The Netherlands. Faced with these varia-

tions in the datasets including slide preparation and scanning procedures, the proposed

method shows robust results compared to state of the art.

Materials and Methods

Ethics Statement

The colon and lung cancer tissue slides were anonymously collected from the University Hos-

pitals Coventry and Warwickshire (UHCW) NHS Trust in Coventry, UK. The ethics approval

for a larger digital pathology study associated with this one was obtained from the National

Research Ethics Service North West (REC reference 15/NW/0843). We also have a written per-

mission to use breast images derived from our previous contribution to the AMIDA2013 con-

test [19].

Blind Source Separation Model

In the blind source separation model, each component of the signal mixture x = x1, x2, . . .xi, i
> = 1 is represented as a linear combination of the source signals s = s1, s2, . . .sj, j = 1, 2, 3, . . .r,
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r> = 2 mixed by a mixing matrix M [22],
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or simply,

x ¼ Ms ð2Þ

The objective is to separate the mixture such that the original source signals are recovered.

One way of doing this is to find the mixing matrix M using Independent Component Analysis

(ICA). ICA can recover source signals only if they are statistically independent. It separates the

mixture by transforming it into a linear combination of components that are as non-Gaussian

as possible. However, the assumption of independency among sources is precarious [20].

In the problem of stain colour deconvolution, sources are the original stains and the

observed signals are the stain mixture. Therefore, we can show the dependency between differ-

ent stain colours by comparing stain vector of each stain using two different staining contexts:

In the first context, only one stain colour is applied, in the second context two stain colours are

applied to the tissue as shown in [21] and [13]. It has been shown that the estimated stain vec-

tor for slide with only one stain colour, i.e, either H or E is different from the corresponding

stain vector estimated from slides with multiple stains, for example H&E. Therefore, stain col-

ours are actually not independent of each other and presence of one stain affect the others.

Sub-band Independent Component Analysis

In order to reduce independency between the source signals, a linear filtering operator is

applied such that the independent subcomponents are allowed to pass through. To explain

that, consider sF as the observation signals after applying a filtering operator F, i.e.

sF ¼ FðsÞ ð3Þ

Since s is linear combination of independent components and M is constant matrix. Then,

we can similarly express xF as follows,

xF ¼ FðsÞ ¼ FðMsÞ ¼ MFðsÞ ¼ MsF ð4Þ

Thus, by applying ICA to the filtered observations xF, we can find the mixing matrix M

which is the same matrix used to mix the raw signals. Therefore, we can apply M to the original

data in Eq (2) to separate the mixture and estimate source signals, see Fig 1 for an illustration.

More details about sub-band ICA can be found in [18, 22–24].

In the proposed method, observed signals are decomposed into several subbands using

wavelet filters [25, 26]. The objective is to find which of the narrow sub-band signals provide

independency among the sources, which can be achieved by selecting the sub-bands with the

least Gaussian distribution [24]. This originates from the central limit theorem which states

that the sum of independent signals tends to have a Gaussian distribution more than the origi-

nal signals. Non-Gaussianity can be measured statistically using kurtosis, l1 norm, or l2 norm

[27]. In our experiments, we find that kurtosis gives the most reliable measure of Gaussianity.

In the following section, we describe the proposed framework which includes the filtering

method and sub-bands selection criteria.

Stain Deconvolution Using SAM Stain Colour Representation
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Stain Matrix Estimation

We propose the use of multi-resolution representation of the input image, which is generated

by decimated wavelet decomposition [25, 26] to find the mixing matrix. A block diagram of

the proposed method is shown in Fig 2. According to the Beer-Lambert law, there is an expo-

nential relationship between the amount of absorbed light N and the intensity of the transmit-

ted light I, as given by the following equation,

I ¼ I0e� MN ð5Þ

where I0 is the intensity of the incident light. In histology images, M is the concentration of

stain colour represented as a vector of RGB components. In this paper, we refer to M as the

Fig 1. Blind source separation using sub-band decomposition with ICA. A filtering operator is applied to

the observed signal xi to extract independent and dependent sub-bands. The unmixing matrix is then

estimated using a selected set of sub-bands which maximises independency among sources.

doi:10.1371/journal.pone.0169875.g001

Fig 2. Block diagram of the proposed method.

doi:10.1371/journal.pone.0169875.g002
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mixing matrix. N is the amount of the absorbed stain at each pixel of the image which we refer

to as density map of each applied stain.

The input image I is converted to the Optical Density space (OD) as follows,

D ¼ � log
I
I0

� �

ð6Þ

where D is the histology image in the OD space. Combining Eqs (5) and (6), we can express D

as follows,

D ¼ MN ð7Þ

The task is to find the stain density maps N = n1, . . .ni, where i = 1, 2, 3 corresponds to the

intensity of H stain, E stain, and the background for each pixel. Even though we assume that

there are two stain colours in the image, the algorithm is applicable to images with more than

two stains.

Given the optical density image as a three-rows matrix D = [dr dg db]T, where each row cor-

responds to one colour channel, we decompose each colour channel into its sub-bands

dl
a; d

l
h; d

l
v; d

l
o, where l = 1, 2, . . .L, L is the level of decomposition in the wavelet transform and

a, h, v, and o denote approximation, horizontal, vertical and diagonal sub-bands of d at each

level of decomposition.

For each level l, four three-dimensional sub-bands al, hl, vl, ol are composed as follows:

al ¼ ½dl
r;a dl

g;a dl
b;a� hl ¼ ½dl

r;h dl
g;h dl

b;h�

vl ¼ ½dl
r;v dl

g;v dl
b;v� ol ¼ ½dl

r;o dl
g;o dl

b;o�
ð8Þ

A normalisation step is applied to each sub-bands so that it has zero mean and unit vari-

ance. This is required to ensure that all the values are in the same scale before performing the

non-Gaussianity comparison. We use kurtosis K to measure Gaussianity for each sub-band in

Eq (8).

For a Gaussian distribution, K is equal to zero. Thus, we select sub-bands that maximise |K|.

Each one of the selected sub-bands is reshaped into a three-rows matrix, where each row is one

colour channel. Finally, selected sub-bands are concatenated to each other horizontally to form

a single matrix D0 of size 3 × p where p is the total number of pixels in all the selected sub-

bands. We selected 20 sub-bands from all five levels of decomposition and ordered them based

on their kurtosis values. Then, we apply ICA to D0 to find the mixing matrix M as follows,

M ¼

mr;1 mr;2 mr;3

mg;1 mg;2 mg;3

mb;1 mb;2 mb;3

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

ð9Þ

where mr,i, mg,i, and mb,i are the mixing parameters of the red, green and blue colour channels

for H, E, and background for i = 1, 2, 3, respectively.

Finally, stain colour distribution in the OD space is generated using the inverse of Eq (7).

Therefore, we multiply the inverse of M with the original OD image D.

N ¼ M� 1D ð10Þ
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In contrast to most of the existing algorithms which rely only on colour information to per-

form deconvolution, the proposed approach automatically estimates the mixing matrix in Eq

(2) by incorporating colour and texture of histology images. Using a filtered image rather than

the OD image to find the stain matrix has several advantages: First, it only uses filtered and

independent observations to reduce the contamination of signals when estimating stain

matrix. Second, it takes texture information into account which is correlated with stain colours

in histology images.

Results

Datasets

Stain chemicals bind differently to different tissue types. Therefore, it is essential to evaluate a

stain deconvolution algorithm using different tissue types. We have also considered the varia-

tion in stain colour consistency by collecting images that have been scanned in two different

labs. For the first and third datasets, automated H&E staining machine used was Tissue-Tek

Prisma by Sakura joined to the coverslipping machine, Sakura Finetek Europe B.V. KvK /

Chamber of Commerce Leiden 28065449. A sample image from each dataset is shown in Fig 3.

In each dataset, we have selected a number of visual fields.

1. Colon Cancer Histology Images:

The first dataset consists of seven colon cancer whole-slide images from different patients

stained with H&E and scanned at 20× magnification by Omnyx VL120 scanners at UHCW.

For each whole-slide image, two non-overlapping images of size 500 × 500 pixels are

extracted from the same visual field. Selected visual fields represent areas with different

stain colour distributions. They also include regions containing both tumour and non-

tumour tissue.

2. Breast Cancer Histology Images:

The second dataset comprises of three breast cancer whole-slide images from different

patients stained with H&E. The slides have been scanned at 40× magnification by Aperio

ScanScope XT scanners at the Pathology Department of the University Medical Center

Utrecht, Utrecht, The Netherlands. The dataset has been published as part of the MICCAI

contest on the Assessment of Mitosis Detection Algorithms (AMIDA2013) [19]. For each

whole-slide image, we selected two non-overlapping images of size 2,000 × 2,000 pixels.

Fig 3. Sample images from the datasets used in our experiments. Images a, b, and c are samples from

colon, breast, and lung cancer images, respectively. All of the datasets are H&E stain images. One can notice

the huge variation in the colour appearance as they are applied to different tissue types and processed in

different labs using two different scanners. These variations in colour appearance are really challenging for

most of the stain deconvolution algorithms.

doi:10.1371/journal.pone.0169875.g003
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3. Lung Cancer Histology Images:

The third dataset consists of two lung cancer whole-slide images from two different

patients. Slides are stained with H&E and scanned at 40× magnification by Omnyx VL120

scanner at UHCW. For each whole-slide image, two non-overlapping images of size

2,000 × 2,000 pixels are extracted from the same visual field.

Evaluation

In this section, we provide both quantitative and qualitative assessments of the proposed algo-

rithm, in comparison to some of the recent existing methods of stain deconvolution. For the

quantitative analysis, we perform three different experiments: First, we evaluate the accuracy

of the estimated stain vector representing the concentration of the applied stain. Next, we eval-

uate the accuracy of the estimated density map, which is related to the amount of absorbed

stain colour at each pixel. Third, we assess the performance of a nuclei detection algorithm [2,

28], which uses the H channel as a learning feature. In the following sub-sections, we describe

each experiment and show the associated results. All data used in this experiments and the

code files are placed in the supporting document file S1 File attached with this manuscript.

Evaluating the Estimated Stain Matrix. The stain matrix defines the principal colour of

each applied stain. Each vector of the stain matrix represents the RGB values within the OD

space for one stain colour. It is essential to find an accurate stain matrix, as it will affect the esti-

mated stain colour intensity. However, we need a reference ground truth stain matrix in order

to evaluate the quality of an estimated stain matrix. Thus, for each visual field, we have gener-

ated the ground truth stain matrix as follows: A set of pixels are selected from all images in the

visual field. Note that pixels are selected based on their biological structure rather than their

stain colour. This means that, for Haematoxlyin, we only selected pixels that belong to nuclei.

For Eosin, we selected pixels that belong to cytoplasm. For a given stain, we calculated its stain

vector by taking the median of each colour channel across the selected pixels in OD space. The

final stain matrix is generated by horizontal concatenation of all the stain vectors. We then

compute the Euclidean distance between the estimated stain vector and the ground truth stain

vector.

Results shown in Table 1 reveal that the proposed method outperforms Macenko et al. algo-

rithm [11] for H channel estimation by around 2–7% for colon and breast datasets. For the E

channel estimation, we report an improvement by 11–92% for colon and lung datasets, respec-

tively. Ruifrok and Johnston algorithm [10] produce a higher euclidean distance of the H and

E estimation by 4–17% and 11–27% compared to the proposed method for colon, breast and

lung datasets respectively. For the BCD [13], we noticed the tendency of dark intensity colour

for all of the datasets. The estimation error for BCD is 25–35% for H and 24–30% for E larger

than the error reported for the proposed method in all the three datasets. This is because the

Table 1. Euclidean Distance between the estimated stain matrix and the ground truth. The median of the Euclidean distances for each method is shown

in the last two columns. Last row shows the median of the Euclidean distances for all methods to highlight the significance of the best achieved median values.

Colon Dataset Breast Dataset Lung Dataset Median

H E H E H E H E

Proposed 0.0623 0.0871 0.0537 0.0585 0.1377 0.0779 0.0592 0.085

Macenko et al. [11] 0.0774 0.2002 0.1202 0.0488 0.0936 0.9949 0.0971 0.4146

Ruifrok and Johnston [10] 0.1980 0.2017 0.2201 0.3150 0.1826 0.1917 0.2002 0.2361

BCD [13] 0.3789 0.3282 0.4027 0.3606 0.3897 0.3655 0.3905 0.3514

ICA [12] 0.2795 0.3349 0.5219 0.5607 0.4081 1.2451 0.4032 0.7136

Median 0.198 0.2017 0.2201 0.315 0.1826 0.3655 — —

doi:10.1371/journal.pone.0169875.t001
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algorithm is mainly concerned about the deconvolution more than the stain colour estimation.

This is clear in the separation results achieved by [13], see Fig 4.

In order to find the effect of number of sub-bands in our proposed method, we run an

experiment on the datasets described above. We performed this experiment using 5, 10, 15,

and 20 number of sub-bands. Results in Table 2 show the Euclidean distance for the estimated

H and E stain vectors and the ground truth. We found that for most of the datasets, using all

the 20 sub-bands improves the accuracy of the generated stain vectors. For the first dataset,

using 5 and 20 sub-bands generated closest stain vectors to the ground truth with a distance

between them of 0.02. For the third dataset, a number of 10 and 20 sub-bands gives the highest

accuracy with Euclidean distance of 0.06. Similarly, 20 sub-bands gives the highest accuracy

for the second dataset.

Evaluating Density Map Estimation. A density map shows the distribution of a particu-

lar stain across the section. For each image, the ground truth density map is generated using

the corresponding ground truth stain matrix. The correlation coefficients between the esti-

mated and ground truth density maps for each of the three datasets are shown in Fig 5. Figures

show that the weaker stain (Eosin) becomes more challenging to estimate for most of the algo-

rithms. Although most of the algorithms are performing comparatively when it comes to esti-

mating the stronger stain, Haematoxylin in this case, only the proposed algorithm and

Macenko et al. [11] are able to provide the most satisfactory results for Eosin with a median

correlation of 89% and 63% respectively for colon tissues 95% and 91%, respectively for breast

tissue, and 93% and 94%, respectively for the lung tissues. Correlation values for all datasets

with the corresponding p-values are shown in Fig 6. To particularly investigate the improve-

ment of the estimated stains when applying ICA to the filtered image rather than the raw OD

image, Fig 7 shows a Bland Altman plot for the same randomly selected pixels for both

Fig 4. Stain colour deconvolution results for a colon tissue image. The first and second rows show the H

and E channels, respectively for each algorithm. Column a, b, c, d, and e shows the deconvolution results for

the Proposed method, Ruifrok and Johnston [10], Macenko et al. [11], BCD [13],and CA [12], respectively.

There are two factors one could look at when evaluating the qualitative separation results, first: the accuracy

of the separation and second:the stain colour estimation. In this sample image, we can see that the proposed

method is achieving good stain separation and stain colour estimation compared to the other methods.

doi:10.1371/journal.pone.0169875.g004

Table 2. Euclidean Distance between the estimated stain matrix and the ground truth. Stain matrix is estimated using the proposed method by changing

the number of selected sub-bands.

Number of sub-bands

5 10 15 20

H E H E H E H E

Colon Dataset 0.0467 0.0938 0.1113 0.0877 0.1316 0.1051 0.0623 0.0871

Breast Dataset 0.1490 0.1519 0.1077 0.1458 0.1304 0.1415 0.0537 0.0585

Lung Dataset 0.0589 0.0980 0.0457 0.0850 0.0372 0.0925 0.1377 0.0779

doi:10.1371/journal.pone.0169875.t002
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proposed method and ICA [12] in all the three datasets. It is noticeable that in the proposed

method most of the pixels are lying within the limits of agreements while in ICA [12] there is a

wide spread of differences between the estimated density values and the ground truth (y-axis).

This illustrates that by filtering the original OD image, correlation between the original sources

can be reduced and thus sources are more independent and hence more separable.

It is worth noting here that density map and stain matrix estimation are interrelated to each

other. In fact, inaccurate estimation of the stain matrix will result in the wrong stain colour

and in that case the estimated density map is actually meaningless. In other words, without

having the accurate stain matrix estimated, the density map does not actually represent the

stain under observation. Therefore, we need to look to both factors when we are comparing

Fig 5. Correlation between the density maps and the ground truth. Indices a, b, c, d, and e of the x-axis

show the correlation results for the Proposed method, Macenko et al. [11], Ruifrok and Johnston [10], BCD

[13],and ICA [12], respectively. Due to the high difference in the correlation margin between ICA and the other

algorithms in the H density estimation for the second dataset, ICA has been removed in order to make the

correlations of the other algorithms noticeable.

doi:10.1371/journal.pone.0169875.g005
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stain deconvolution algorithms. An example of this is shown in Fig 4. One can notice that the

estimated stain channels by [10–12] are far from the actual stain colours in the original image.

The reason behind that is for [10], the stain matrix is pre-calculated and fixed for all images. In

case of [13], projection on the Maxwellian chromaticity plane removes the small variations

within one stain colour which results in a very rough separation between stain channels, see

Fig 8 for a closer view of the deconvolution results.

Fig 6. Correlation between the density maps and the ground truth with the associated p-values above

each method for the H (left) and E (right) stains in all the three datasets. Indices a, b, c, d, and e of the x-

axis show the correlation results of among all datasets for the Proposed method, Macenko et al. [11], Ruifrok

and Johnston [10], BCD [13],and ICA [12], respectively Notice that most of the proposed methods perform

similarly in estimating H satin (left). However, the weaker stain (E) is more challenging to estimate (right).

Proposed method keeps its performance in estimating Eosin stain with mean significance of p-value < 0.05.

doi:10.1371/journal.pone.0169875.g006

Fig 7. Bland Altman plot for the proposed method (left) and ICA [12] (right) for H and E stains using all datasets. Same randomly selected pixels are

plotted from all three datasets by running the proposed method and ICA [12]. Median of agreement is -0.002 for the proposed method and -0.005 for [12].

Limits of agreements for the proposed method is [-0.48, 48] compared to [-0.79, 0.78] for ICA [12].

doi:10.1371/journal.pone.0169875.g007
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Assessment of Tumour Nuclei Detection using the Estimated H channel. In this section

we demonstrate that an accurate deconvolution for histology images could improve the perfor-

mance in the further processing, such as nuclei detection. In this experiment, we evaluate the

performance of the proposed stain deconvolution method using a nuclei detection algorithm

proposed in [2, 28]. The algorithm uses a Spatially Constrained Convolutional Neural Network

(SC-CNN) to detect the centroids of nuclei in colon histopathology images. The method uses

the H and L�a�b� channels to find nuclei features. We use a sub-set of 20 images of the dataset

and ground truth used in [2] to evaluate our method against the other published methods. For

each of the evaluated algorithms, H channel is generated for all the images. Then, SC-CNN is

re-trained using only the H channel for each algorithm separately. Results in Table 3 show that

the proposed methods significantly improves the achieved F1 score compared to other

method. Ruifrok and Johnston method [10] is not included in this experiments as the stain

matrix is constant in all images and hence it is not reflecting the stability in stain colour

Fig 8. Estimation of Eosin channel for a sample image. Images a,b,c,d and e corresponds to the original image, Ruifrok and

Johnston [10], Macenko et al. [11], BCD [13], respectively. We can notice in Ruifrok and Johnston method [10] that the pre-

estimated mixing parameters is actually not reflecting the Eosin stain colour distribution in the original image. In Macenko et al.

[11] method, the colour estimation is affected by the correlation between the two stain colours. In BCD method [13], the fine

variation within the H stain is merged with the E due to the projection on the chromaticity plane. In the proposed method

however, the variation of the stain colour distribution in the original image is perfectly reflected and H channel is smoothly

separated.

doi:10.1371/journal.pone.0169875.g008

Table 3. Results of nuclei detection algorithm in [2, 28] trained and tested for different stain deconvolution algorithms. Values show the mean and

standard deviation for each of the precision, recall, and F1 score measures. Note that the evaluated algorithms are dynamically estimating stain colour based

on current information. Thus, consistency of the algorithm could improve the detection accuracy. However, we did not include stain normalization in this exper-

iments to avoid affecting the deconvolution results.

Precision Recall F1 score

Proposed 0.809 ± 0.1972 0.419±0.2404 0.520±0.223

BCD [13] 0.469±0.384 0.399±0.419 0.352±0.363

Macenko et al. [11] 0.407±0.281 0.553 ±0.335 0.374±.0270

ICA [12] 0.370±0.351 0.416±0.262 0.288±0.240

doi:10.1371/journal.pone.0169875.t003
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estimation. Therefore, the factor that we are measuring here, i.e. stain colour consistency after

the deconvolution, is not applicable to that method.

Conclusions

In this paper, we presented a novel method for stain deconvolution of histology images using

multi-resolution wavelet representation of the image to estimate stain mixing matrix. We pro-

pose filtering the input image to allow the independent observations to pass through. We then

use independent observations from the colour channels to estimate stain matrix which is not

affected by the correlated signals. The estimated stain matrix is then applied to the raw image

to find the individual stain colour distribution. We have shown through extensive experiments

that the proposed algorithm outperforms the recent stain deconvolution algorithms. Our

future direction would be customising the number of selected sub-bands to the image under

process. Since images have different histology structure and the distribution of the stain col-

ours are variable from one image to another, we can utilise this to allow dynamic estimation of

the number of selected sub-bands and thus improve both computational and time complexity

of our algorithm.

Supporting Information

S1 File. Data and code. This ZIP file contains all data and the MatLab code files for the pro-

posed algorithm. Folder Data contains two folders: Folder GroundTruth contains the data

used to perform the experiment and folder RGB-images contains all images used to generate

data for experiments.

(ZIP)
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