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ARTICLE INFO ABSTRACT

KEYWORDS:
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Objectives: The aim was to isolate and identify the species of mycobacteria causing tuberculous-like (TB-like)
lesions in cattle in Ghana.
Methods: Between 2019 and 2020, 68 bovine tissue samples with TB-like lesions, identified during post slaughter

Ab i . . . . .

attoir . examination, were obtained from four major abattoirs close to border towns in Ghana. The samples were cultured
Zoonotic tuberculosis . . . . . . .
One Health on Lowenstein-Jensen medium. Isolated bacteria were characterized by Ziehl-Neelsen staining and observation
Accra for acid-fast bacilli (AFB) under a microscope. DNA was extracted from AFB-positive isolates, and mycobacterial

speciation was performed by line probe assay using GenoType Mycobacterium CM and also with mycobacterial
16S rRNA gene amplification and sequencing.

Results: No Mycobacterium bovis was identified; however 53 bacterial isolates were obtained, of which 41 were
non-tuberculous mycobacteria (NTM) strains and 12 were gram-positive bacteria. The predominant NTM species
was M. fortuitum (43.9%, 18/41), with the rest being M. novocastrense, M. terrae, M. flavescens, M. holsaticum,
M. cosmeticum, M. virginiense, M. intracellulare, M. mageritense, M. minnesotensis, M. duvalii, M. lehmannii, and M.
koreense.

Conclusions: In cattle, NTM contribute significantly to lesions observed during slaughter examination and may be
an important cause of zoonotic tuberculosis. A One Health surveillance of NTM in Ghana would provide insights
into their clinical significance.

1. Introduction

Bovine tuberculosis (bTB) is a chronic disease, characterized by the
development of tubercles in different tissues of the infected host, par-
ticularly cattle, as well as a wide range of domestic and wild animals
(Hlokwe et al., 2019; O’Reilly and Daborn, 1995; Sibhat et al., 2017).
The disease is caused by species of the members of Mycobacterium tuber-
culosis complex (MTBC), primarily Mycobacterium bovis. There are, how-
ever, several reports about non-tuberculous mycobacteria (NTM) caus-
ing granulomatous lesions in cattle similar to the tuberculosis lesions
caused by the pathogenic MTBC (King et al., 2017; Nuru et al., 2017).
bTB has significant adverse effects on livestock production, while being
a major cause of zoonotic tuberculosis in humans (Ayele et al., 2004;

Rodriguez-Campos et al., 2014; Tenguria et al., 2011). Developing coun-
tries, particularly in Africa and some parts of Asia, continue to suffer a
severe burden of bTB with its associated zoonotic consequences for hu-
man health (Miiller et al., 2013; Palmer et al., 2012). This is because
unlike in developed countries, milk pasteurization is not practiced rou-
tinely, and the test and slaughter method is not strictly adhered to. This
continues to contribute to the approximately 10-15% of human tuber-
culosis cases caused by M. bovis being reported in developing countries
(Ashford et al., 2001; Malama et al., 2013).

In Ghana, bTB remains an epizootic disease with multiple public
health and economic implications due to its zoonotic potential and the
loss of revenue to cattle farmers. A national prevalence of bTB is unavail-
able for Ghana; however, a prevalence of 19% has been reported in cattle
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Figure 1. The four abattoir locations (in red circles) where samples were taken.

in the North Tongu District of Volta Region (Amemor et al., 2017). Stud-
ies at slaughter facilities in Accra found a prevalence of 6.4% bTB infec-
tion among 94 cattle screened (Addo et al., 2016). In many developing
countries, including Ghana, where facilities are not readily available for
TB culture, the detection of acid-fast bacilli (AFB) after Ziehl-Neelsen
staining of suspected lesions during necropsy examinations of cattle in
various abattoirs is presumed to indicate bTB caused by M. bovis. Several
studies have, however, reported that other mycobacterial species such
as NTM are responsible for some of the tuberculous-like (TB-like) lesions
in cattle (Katale et al., 2014; Kuria et al., 2018; Nuru et al., 2017). In
Ghana, no study has fully investigated the aetiology of TB-like lesions
observed in cattle during post slaughter examination and their zoonotic
potential. This information is of critical and timely importance, because
some studies have reported NTM infections in human tuberculosis cases
(Addo et al., 2017; Otchere et al., 2017). The aim of this study was
therefore to isolate and characterize mycobacterial species from TB-like
lesions of slaughtered cattle in Ghana.

2. Methods
2.1. Study site

Samples were collected from four government-certified abattoirs:
Tema (GIHOC) and JFAMCO abattoirs in the Greater Accra Region,
Tamale Abattoir in the Northern Region, and Ho abattoir in the Volta Re-
gion (Figure 1). Tamale and Ho abattoirs were selected because of their
proximity to borders of neighbouring countries — Burkina Faso, Mali,
Niger, and Togo, from where most cattle are imported into Ghana. The
daily average slaughter for the abattoirs are as follows: Tamale n = 60,
Ho n = 10, Madina/Accra n = 20, and Tema n = 25. Cattle slaughtered
at these abattoirs are brought in by butchers who purchase them from
various locations within the country or import them from neighbouring
countries.

2.2. Breed of cattle

In Ghana, the West African Shorthorn or WASH (Bos taurus brachyc-
eros) remains the major breed of cattle and is estimated to be about 60%
of the cattle population. Thus, this breed is the most traded in domestic
stocks (Atiadeve et al., 2014). Other breeds such as Sanga (Bos taurus
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africanus) and Zebu (Bos primigenius indicus) are also significant in the
trade, but these are mostly imported or cross-breeds.

2.3. Data collection

The age, sex, type (class), and breed of cattle were recorded. Cattle
were classified as young (<6 years) or old (>6 years) based on denti-
tion characteristics (Pace and Wakeman, 2003) and/or farm records.
The geographic origin of the animals and the system under which they
were managed were also recorded. The organs or tissues from which the
lesions originated were recorded.

2.4. Sample collection

As standard practice at the abattoirs, certified veterinary officers per-
form ante-mortem examinations on all animals before slaughter. Post-
mortem inspections are then conducted after slaughter, where the car-
casses are examined for suspected TB-like lesions that are indicative of
tuberculosis infection.

From December 2019 to March 2020, 68 bovine tissue samples were
collected from 50 individual cattle after detailed necropsy examina-
tions for the detection of gross macroscopic lesions compatible with
bTB (Figure 2) using procedures described previously (Demelash et al.,
2009). The samples were stored at —20°C until processing for culture of
mycobacteria at the pathogen level 3 laboratory of Noguchi Memorial
Institute for Medical Research.

2.5. Tissue processing and culture

Prior to culture procedures, direct smears from lesions of each tissue
sample were made and stained with Ziehl-Neelsen stain for the detec-
tion of AFB. Each tissue sample with lesions was chopped into smaller
pieces in a sterile large glass petri dish and 10 grams of the pieces were
then weighed into a Stomacher bag. Twenty millilitres of phosphate
buffered saline (PBS) was added and the tissue sample macerated for
10 minutes using a laboratory blender (Stomacher). Ten millilitres of
the homogenized mixture of tissue sample and PBS was filtered through
cheesecloth into a 50-ml Falcon tube, and 10 ml of 0.5% N-acetyl-L-
cysteine/2% NaOH/1.45% Na-citrate solution (decontaminating solu-
tion) was added. The mixture was then left at room temperature for 20
minutes after which it was topped up with PBS to the 50 ml mark and
centrifuged at 3500 rpm for 15 minutes.

The supernatant was decanted while the pellet was resuspended in
2 ml PBS for inoculation onto culture media. A volume of 200 ul of the
suspension was plated on two Lowenstein-Jensen slants, one contain-
ing pyruvate and the other containing glycerol, and incubated at 37°C.
Cultures were observed daily for the first week to identify fast growers
and then weekly for visible growth of bacteria until 12 weeks. Smears
were prepared for each viable growth and Ziehl-Neelsen staining was
performed to confirm the presence of AFB.

2.6. DNA extraction

A loopful of AFB in pure culture growing at the log phase was sus-
pended in 1 ml of sterile distilled water and heated at 95°C for 1 hour
to allow for the disruption of the mycobacterial cell wall to release DNA
into suspension. The resulting suspension was stored at —20°C and used
for all downstream DNA-based assays.

2.7. Speciation of mycobacteria using a line probe assay (LPA)

The mycobacterial species characterization was initially done on the
extracted DNA samples using LPAs from Hain Lifescience GmbH, Ger-
many: GenoType MTBC (for speciation of members of the MTBC) and
GenoType Mycobacterium CM (for speciation of common NTM). The as-
says were performed using the reagents provided and in accordance with
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the manufacturer’s instructions. Each assay is made up of two steps: an
amplification step, which is a multiplex PCR, followed by a reverse hy-
bridization.

A positive control sample containing the Control DNA (C+) provided,
which is M. kansasii DNA, was used as the positive control, and sterile
nuclease-free water was used as the negative control in place of the
templates. Hybridization was performed on a TwinCubator and the re-
sulting banding patterns were compared to the reference chart provided
by the manufacturer. The species of the mycobacteria were then deter-
mined based on the interpretation or reference charts of Mycobacterium
genotype MTBC and CM, as provided by the manufacturer.

2.8. Amplification of the Mycobacterium 16S rRNA gene

To identify the isolates that could not be identified by the
LPAs and to confirm those that were identified, the 16S my-
cobacterial rRNA gene was amplified in PCR reactions us-
ing specific primers: 5-AGAGTTTGATCCTGGCTCAG-3’ and 5’-
AAAAAGCGACAAACCACCTACGAG-3’. The PCR mix contained 18
ul nuclease-free water (H,0), 25 ul of OneTaq Quick-Load DNA
polymerase with buffer (2 uM), 1 pl forward primer PA (10 pM), 1 pl
reverse primer MSHA (10 pM), and 5 pl of template, making 50 ul PCR
mix. A negative control (no template) and a positive control (DNA from
M. tuberculosis H37Rv) were included to assay for contamination of the
reagents and successful PCR amplification, respectively. Amplification
was done by preheating at 95°C, initial denaturation at 94°C for 5
minutes, 45 seconds of secondary denaturation at 94°C, followed by 35
cycles of annealing for 45 seconds at 56°C, followed by 45 seconds of
elongation at 72°C, and then a final elongation for 10 minutes at 72°C.
The amplicons were resolved on a 2% gel, and a band size of 550 bp
was observed.

2.9. Sequencing of mycobacterial 16S rRNA gene

The positive amplicons were then outsourced for Sanger sequenc-
ing of the mycobacterial 16S rRNA gene. The nucleotide sequences ob-
tained for each amplicon were cleaned using MEGA version 7 (open-
source) software and the Staden package, to obtain a chromatogram
of nucleotides with sharp peaks that were utilized in the Blast search
for the identification of the organism with highest identity score on
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Figure 2. Macroscopic lesions (shown in red
circles) of cattle tissue compatible with bovine
tuberculosis: (A) (B) lungs, (C) spleen, and (D)
lymph node.

the National Centre for Biotechnology Information (NCBI) website
(https://blast.ncbi.nlm.nih.gov/Blast.cg).

2.10. Phylogenetic analysis of mycobacterial 16S rRNA gene sequences

The trace files from the Sanger sequencing were processed using
SeqTrace 0.9.0 (Stucky, 2012). The files were aligned and consensus
sequences were computed from matching forward and reverse traces,
low-quality base calls were filtered out, and ends of sequences were
trimmed. Consensus DNA sequences were then exported to FASTA files.
These sequences were aligned with Clustal Omega (Sievers et al., 2011)
and cleaned with GBlocks (Talavera and Castresana, 2007) using the
default parameters to remove non-informative and gapped sites. The
cleaned non-zero length alignments were then concatenated and ex-
ported in NEXUS file format. These files were imported into raxmlGUI
(Edler et al., 2020) for phylogenetic tree construction with maximum
likelihood algorithm using thorough bootstrapping with 1000 replicates.
The tree was aesthetically customized thereafter with FigTree v1.4.4
(http://tree.bio.ed.ac.uk/software/figtree/).

3. Results
3.1. Characteristics of the cattle sampled for the study

The majority of the 50 sampled cattle were female (60%, 30/50)
and of the WASH breed (n = 29), followed by Sanga (n = 10), Gudali
(n = 3), N'dama (n = 3), Muturu (n = 2), White Fulani (n = 2), and
Zebu (n = 1). The organ with the most TB-like lesions was the lung
(57.3%, 39/68), followed by the liver (n = 12), lymph nodes (n = 7),
spleen (n = 4), intestines (n = 5), and udder (n = 1). Direct smears
from lesions of the 68 tissue samples yielded 48.5% (33/68) positivity
for AFB, while positivity was 69.1% (47/68) after culture. Overall, 53
individual bacterial isolates were obtained from the 68 tissues samples
after culture and were used for further studies.

3.2. Mycobacterium species identified using GenoType MTBC and
GenoType Mycobacterium CM

The DNA of the 53 culture-positive samples was subjected to LPA,
and while no MTBC species was identified, 17 of the isolates were identi-
fied as M. fortuitum and one as M. szulgai by the GenoType Mycobacterium
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Table 1
Mycobacterium species identified using
GenoType Mycobacterium CM

Sample ID Species identified
JA004 Lungs M. fortuitum
NAO0O1 Lungs M. fortuitum
NAO002 Lungs M. fortuitum
NA002 Spleen M. fortuitum
NAOO5 Lungs M. fortuitum
NAO010 Lungs M. fortuitum
NAO11 Lungs M. szulgai
NAO013 Lungs M. fortuitum
NAO016 Lungs M. fortuitum
NAO019 Lungs M. fortuitum
NA020 Udder M. fortuitum
NAO021 Lungs M. fortuitum
NAO028 Lungs M. fortuitum
NAO029 Liver M. fortuitum
NAO030 Liver M. fortuitum
NAO030 Liver M. fortuitum
TAO002 Liver M. fortuitum
HAO007 Lymph Nodes M. fortuitum

Table 2
Gram-positive bacterial species identified from 16S rRNA sequencing
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Table 3
Mycobacterium species identified from 16S rRNA
sequencing
Species identified =~ Frequency  Percentage (%)
M. fortuitum 18 33.96
M. novocastrense 4 7.54
M. flavescens 3 5.66
M. terrae 4 7.54
M. holsaticum 3 5.66
M. cosmeticum 2 3.77
M. virginiense 1 1.89
M. intracellulare 1 1.89
M. mageritense 1 1.89
M. minnesotensis 1 1.89
M. duvalii 1 1.89
M. lehmannii 1 1.89
M. koreense 1 1.89
Total 41/53 77.36%

Table 4
Comparison of GenoType Mycobacterium CM results and the 16S rRNA sequenc-
ing results

Gram-positive bacterial species identified Frequency Percentage (%)
Nocardia flavorosea 2 3.77

Nocardia farcinica 2 3.77
Cellulosimicrobium cellulans 4 7.54

Gordonia bronchialis 2 3.77

Dietzia cinnamea 1 1.89

Kocuria atrinae 1 1.89

Total 12/53 22.64

CM (Table 1). However, the remaining isolates (n = 35), the majority
of which were presumed to be mycobacterial strains and a few gram-
positive bacteria (GPB), could not be identified using the LPA method.

3.3. Mycobacterial species identified using 16S rRNA sequencing

Since most of the isolates could not be identified by the LPA method
(GenoType MTBC and GenoType Mycobacterium CM), all 53 isolates
were further analysed by sequencing the mycobacterial 16S rRNA gene,
after amplification. Blast searches of the gene sequences on the NCBI
website revealed no identification of MTBC species among the isolates.
Among the 53 bacterial isolates, 41 were identified as NTM and the
others (n = 12) were identified as GPB (Table 2). The 41 NTM isolates
belonged to one of 13 different species of mycobacteria, with the pre-
dominant species being M. fortuitum (43.9%, 18/41). The others were M.
novocastrense, M. terrae, M. flavescens, M. holsaticum, M. cosmeticum, M.
virginiense, M. intracellulare, M. mageritense, M. minnesotensis, M. duvalii,
M. lehmannii, and M. koreense (Table 3).

3.4. Concordance between LPA and 16S rRNA sequencing for speciation of
mycobacteria

Comparing the 18 isolates of mycobacteria identified by LPA to the
same isolates identified by 16S rRNA sequencing, 10 out of 18 isolates
were identified by both GenoType Mycobacterium CM and16S rRNA se-
quencing as M. fortuitum (10/18, 55.6% concordance) (Table 4). The
GenoType Mycobacterium CM results were discordant with the 16S rRNA
sequencing results for the remaining eight isolates. Four of the isolates
were identified by 16S rRNA sequencing as species of NTM other than M.
fortuitum and three as GPB, and not M. fortuitum as was initially identi-
fied by the GenoType Mycobacterium CM. The last isolate was identified
by the GenoType Mycobacterium CM as M. szulgai, while the same was
identified by 16S rRNA gene sequencing as M. koreense.
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Sample ID Species identified by:
GenoType Mycobacterium CM 16S rRNA sequencing
JA004 Lungs M. fortuitum M. fortuitum
NAO0O1 Lungs M. fortuitum M. fortuitum
NAO0O2 Lungs M. fortuitum M. fortuitum
NAO0O2 Spleen M. fortuitum M. fortuitum
NAOOS5 Lungs M. fortuitum M. fortuitum
NAO010 Lungs M. fortuitum M. fortuitum
NAO11 Lungs M. szulgai M. koreense
NAO013 Lungs M. fortuitum M. fortuitum
NAO016 Lungs M. fortuitum M. fortuitum
NAO019 Lungs M. fortuitum Gordonia bronchialis
NA020 Udder M. fortuitum M. fortuitum
NAO21 Lungs M. fortuitum M. cosmeticum
NAO028 Lungs M. fortuitum M. novocastrense
NAO029 Liver M. fortuitum M. fortuitum
NAO030 Liver Smooth M. fortuitum Cellulosimicrobium cellulans
NAO030 Liver Yellow M. fortuitum Cellulosimicrobium cellulans
TAO002 Liver M. fortuitum M. mageritense
HAO007 Lymph Nodes M. fortuitum M. minnesotensis

3.5. Phylogenetic relationship between NTM species identified and the M.
bovis reference strain

Although M. bovis was not isolated in the study, the reference strain
sequence was added to the sequences of the identified NTM for a phy-
logenetic analysis to examine the relationship between the 13 different
mycobacterial strains identified and the M. bovis reference strain.

The closest NTM species to the M. bovis reference strain in the phy-
logenetic tree was M. intracellulare. However, the most prevalent NTM
species identified, M. fortuitum, was significantly diverse from the M.
bovis reference strain (Figure 3).

3.6. Prevalence of multiple mycobacteria and mixed infections

The 41 NTM strains were isolated from 32 of the 50 cattle sampled,
representing 64% NTM prevalence. The majority (21/41, 51.2%) of the
NTM were isolated from the lungs, 10 were isolated from the liver, four
from the lymph nodes, and two each were isolated from the spleen, ud-
der, and intestines (Table 5). Five of the cattle (10%, 5/50) were found
to have been infected with GPB. The combined infection rate, therefore,
was 74% (37/50). Among the 37 infected cattle, 75.7% (28/37) were
infected with a single NTM species, 10.8% (4/37) were infected with
multiple (two to three) NTM species as co-infections, 5.4% (2/37) were
co-infected with both NTM species and GPB species, while 8.1% (3/37)
were infected with only GPB, as shown in Table 6.
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Figure 3. Phylogenetic tree showing the relationship between NTM strains and the Mycobacterium bovis reference strain. The phylogenetic tree was constructed
using raxmlGUI software with the maximum likelihood algorithm and was aesthetically customized thereafter with FigTree v1.4.4.

Table 5

Distribution of non-tuberculous my-
cobacteria (NTM) based on tissue
type

Tissue type NTM strains

Lungs 21
Liver 10
Spleen

Lymph nodes 4
Intestines 2
Udder 2

Total NTM isolated 41

Table 6
Non-tuberculous mycobacteria (NTM) and gram-positive
bacteria (GPB) infection dynamics among cattle

Infections Number of cattle  Percentage
Single NTM infection 28 75.7%
Multiple NTM co-infection 4 10.8%
NTM and GPB co-infection =~ 2 5.4%

Only GPB infection 3 8.1%

4, Discussion

Mycobacterium bovis is considered the main cause of bTB, while the
neglected but opportunist NTM are considered a nuisance to the diag-
nosis of bTB. Therefore, in addition to the tuberculin made from killed
M. bovis, the intradermal tuberculin skin test (TST) in live cattle uses
another one from killed Mycobacterium avium (NTM) to prevent false-
positive results. However, in countries like Ghana where bTB is thought
to be epizootic, the identification of TB-like lesions in cattle during
slaughter is often assumed to be indicative of bTB, especially if the le-
sions yield AFB. The objective of this study was to isolate and character-
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ize mycobacterial species causing TB-like lesions in cattle in Ghana for
epidemiological purposes and to guide therapy. This led to the sampling
of 68 tissue samples from 50 cattle with characteristic TB-like lesions
during post slaughter examinations.

The predominant cattle breed with TB-like lesions observed in this
study was the WASH (58%, 29/50). This is because, more than 50%
of the samples originated from the northern part of Ghana where the
most preferred and predominant breed is WASH (Atiadeve et al., 2014),
and this could account for the high frequency. The free grazing or no-
madic system of raising cattle is practiced widely in Ghana. This sys-
tem is known to expose cattle to infections of environmental pathogens
such as NTM and Nocardia that cause granulomatous lesions in cattle
(Michelet et al., 2018; Nuru et al., 2017).

Many of the NTM species were isolated from the lungs. This sug-
gests that the primary route of infection was respiratory via aerosol
inhalation. It has been established that although raising cattle by the
free grazing or nomadic system is safer than zero grazing, this promotes
close contact between them at night shelters, watering points, market-
ing yards, and at dipping tanks, thus exposing them to a high risk of
pulmonary infections with mycobacteria (Ayele et al., 2004)

After DNA analysis and mycobacterial 16S rRNA gene sequencing,
77.4% (41/53) of the isolates were identified as mycobacterial strains,
constituting 13 different species of NTM. The predominant strain was
M. fortuitum (34.0%, 18/53), and no M. bovis or other MTBC species
was identified. The current findings are consistent with reports from
elsewhere, such as Ethiopia, where 96 cattle tissues with TB-like lesions
were studied and neither M. bovis nor any of the MTBC species was iden-
tified. That study concluded that NTM was the major cause of TB-like
lesions in the studied population (Nuru et al., 2017). A similar study in
Kenya, however, isolated a few M. bovis (n = 3) from 218 bovine tissue
specimens with TB-like lesions; the majority of the isolates were NTM,
chief among them being M. fortuitum (n = 12) (Kuria et al., 2018). In an-
other study in Tanzania, 55 NTM representing 16 different species were
isolated from tissues of cattle, wildlife, and human sputum, with the ma-
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jority (n = 36) isolated from cattle (Katale et al., 2014). The consistency
of the current study findings with earlier reports elsewhere points to
the fact that NTM are significantly implicated in TB-like lesions among
cattle in Ghana, with M. fortuitum being the predominant strain.

Also in this study, six species of GPB were isolated, three of which
(Nocardia sp, Gordonia sp, and Dietzia sp) have been reported elsewhere
to cause TB-like lesions in cattle (Grist, 2008; Savini et al., 2012).

The isolation of NTM from TB-like lesions in cattle presents a
major challenge to the diagnosis of bTB using the TST. This is be-
cause the bovine purified protein derivative (PPD) used for this test
has been proven to cause cross-reactivity with M. fortuitum (the pre-
dominant species identified in this study) and other NTM species
found in this study, resulting in false-positive reactions (Michel, 2008;
Thacker et al., 2013). Also, some of the NTM species isolated in
this study such as M. fortuitum, M. intracellulare, M. novocastrense,
and M. terrae have been reported in human infections (Chen et al.,
2009; Falkinham 3rd, 1996; Gharbi et al., 2019), especially among im-
munocompromised individuals such as those suffering from HIV/AIDS
(Baird and Thomson, 2018; Kobayashi et al., 2016; Lee et al., 2011), lung
diseases such as cystic fibrosis, chronic obstructive pulmonary disease
(COPD), pulmonary tuberculosis, and lung cancer (Axson et al., 2019;
Taiwo and Glassroth, 2010), surgical wound infections (Pinheiro et al.,
2019; Singhal et al., 2013), and skin and soft tissue infections, gastroin-
testinal infections, and several other infections (Brode et al., 2017).
In Ghana, speciation of mycobacterial isolates from the 2014 human
population-based nationwide TB prevalence survey, revealed that more
than 50% were NTM, with M. fortuitum being the most frequent (21.4%)
(Addo et al., 2017). A similar study in Ghana on patients with pulmonary
tuberculosis (n = 1755), isolated and identified 2.5% of total isolates as
NTM species (Otchere et al., 2017).

Therefore, NTM infections in humans is not in doubt, although the
source of transmission to humans is not clear. However, NTM are con-
sidered to be environmental mycobacteria mostly found in soil, water
bodies, plants, and pastures (Hruska and Kaevska, 2012), and thus there
is a high infection tendency in free grazing cattle as well as humans
(Nuru et al., 2017). The outcomes of the current study provide the re-
search evidence to tackle NTM infection in cattle in Ghana as an issue
of both veterinary and medical importance based on the zoonotic con-
sequences to human health. This suggestion is further strengthened by
earlier work done by Malama and others in Zambia, where similar NTM
were isolated from humans and animals at the interface of the same
study area (Malama et al., 2013).

In conclusion, in cattle, NTM contribute significantly to TB-like le-
sions observed during slaughter examination and may be an important
cause of zoonotic tuberculosis. A One Health surveillance of NTM in
Ghana is recommended. Sampling from humans, animals, and environ-
mental sources such as water and soil would provide insights into the
zoonotic potential and clinical significance of these NTM.
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