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Abstract

There is growing evidence that genetic risk factors for common disease are caused by hereditary changes of gene
regulation acting in complex pathways. Clearly understanding the molecular genetic relationships between genetic control
of gene expression and its effect on complex diseases is essential. Here we describe the Brisbane Systems Genetics Study
(BSGS), a family-based study that will be used to elucidate the genetic factors affecting gene expression and the role of gene
regulation in mediating endophenotypes and complex diseases. BSGS comprises of a total of 962 individuals from 314
families, for which we have high-density genotype, gene expression and phenotypic data. Families consist of combinations
of both monozygotic and dizygotic twin pairs, their siblings, and, for 72 families, both parents. A significant advantage of
the inclusion of parents is improved power to disentangle environmental, additive genetic and non-additive genetic effects
of gene expression and measured phenotypes. Furthermore, it allows for the estimation of parent-of-origin effects,
something that has not previously been systematically investigated in human genetical genomics studies. Measured
phenotypes available within the BSGS include blood phenotypes and biochemical traits measured from components of the
tissue sample in which transcription levels are determined, providing an ideal test case for systems genetics approaches. We
report results from an expression quantitative trait loci (eQTL) analysis using 862 individuals from BSGS to test for
associations between expression levels of 17,926 probes and 528,509 SNP genotypes. At a study wide significance level
approximately 15,000 associations were observed between expression levels and SNP genotypes. These associations
corresponded to a total of 2,081 expression quantitative trait loci (eQTL) involving 1,503 probes. The majority of identified
eQTL (87%) were located within cis-regions.
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Introduction

Dissection of the genetic architecture underlying quantitative

traits and complex disease is essential to our understanding of the

aetiology of complex diseases that cause most of the disease burden

in society. Genome-wide association studies (GWAS) have proven

to be an effective tool for identifying common causal loci of

moderate to large effect size associated with human diseases and

traits [1], [2]. However, as has been well discussed, GWAS have

struggled to discover loci that collectively explain large proportions

of the heritability of most complex traits [3], [4]. It has been

proposed [5–7] that the nature of genetic variance for complex

disease may be different to that of Mendelian disease that are

caused by protein coding mutations, in that it may result from

hereditary changes in gene regulation rather than gene variants

that alter protein function. A number of recently published studies

support this hypothesis [8–10]. More specifically, genetic differ-

ences between individuals in quantitative traits, endophenotypes

(phenotypes that are risk factors for disease) and susceptibility to

common diseases may be caused by differences in gene expression

at a number of interacting loci [11]. Therefore, understanding the

genetic basis of gene expression is likely to lead to a better

understanding of genetic variation of quantitative traits and risk

factors for common diseases.

Transcript abundance is a proximal endophenotype affected by

genetic factors and has already facilitated the identification of

candidate susceptibility genes for metabolic disease traits [12],

psychiatric disorders [13], [14], asthma [15] and Crohn’s disease

[16]. This has mostly been possible when the tissue of expression

was relevant to the interrogated complex trait, as disease

phenotypes tend to manifest themselves only in certain tissues.

Common disease is an endpoint of a complex pathway and there
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are likely to be many possible perturbations, or combinations

thereof, in the pathways that lead to disease. Understanding the

pathway as a whole, including the genetic determination of major

hubs of gene regulation and how they relate to endophenotypes,

will therefore be a major step in understanding the ultimate disease

outcome and may provide information on the optimal choice of

where to intervene in the pathway to prevent or treat disease.

Here we outline a major family-based system genetics study

initiated to enhance our knowledge about common trait

susceptibility by providing genome-wide expression and genotype

data for 962 extensively phenotyped individuals in a family based

design. This study builds on existing genotype and phenotype data

collected at Queensland Institute of Medical Research (QIMR)

through the collection of gene expression levels in whole blood

(WB) (on all individuals) and lymphoblastoid cell lines (LCL) (on a

subset of 50 MZ pairs). This study will help illuminate the genetic

parameters underlying regulation of gene expression and to

understand the genetic basis of complex traits through the

relationship between gene expression and endophenotypes. We

present a detailed description of the BSGS and report results on

the association of expression levels with SNP genotypes from 862

BSGS individuals.

BSGS resource
BSGS comprises genotypic, expression and phenotype data that

can be used to elucidate the genetic basis of gene expression and

the relationship between gene expression and complex pheno-

types. BSGS and its rationale are summarised in figure 1.

Gene expression data were generated for a total of 962

individuals from 314 families, for which we have genotype and

phenotype data. Of the 962 individuals there are 128 MZ pairs (68

female and 60 male) and 206 DZ pairs (51 female, 53 male and

102 opposite sex). For 72 families expression data were collected

on both parents as well as their offspring, allowing us to test

parent-of-origin effects for gene expression. The 314 families

comprise a variety of family structures and sizes, details of which

are given in Figure 2. Details of the pairwise relationships are

given in Table 1.

BSGS comprises the following data;

Expression. Gene expression data were collected in two

stages: Stage I - involving 50 MZ pairs, on whom expression data

were collected for both WB and LCL; Stage II - the remaining

862 individuals, where expression data were collected in WB only.

A full description of the data collection for the stage I study is given

in Powell et al. [17], and so for the sake of brevity, we focus on the

description of stage II here. Transcript expression levels in WB

were measured with over 47,000 genome-wide probes using the

Illumina HT-12 v4.0 microarray chip (see materials and methods).

Of the probes on the HT-12 v4.0 chip, approximately 29,000 are

well characterized and annotated coding transcripts, 11,000 are

coding transcript but poorly annotated, 4,000 are non-coding and

3,000 are experimentally confirmed mRNA sequences that align

to EST clusters.

Genotypic. Individuals are genotyped using the Illumina

610K chip [18–20]. After quality control procedures (see materials

and methods) over 500 k genome-wide SNPs are available.

Phenotypes. A large number of hematology and blood

biochemical phenotypes were measured at time of sample

collection and later studies [19], [20–25]. In many cases these

phenotypes have been analysed as part of a larger QIMR twin

study focusing on linkage, association and heritability analyses. A

brief summary of published results and phenotypes is given in

table 2. Of particular relevance are the phenotypes measured in

blood samples, including biochemical measures, because of their

close relationship to the tissue in which expression levels have been

measured. Such a relationship provides an ideal test case for the

systems genetics approach that we are taking.

Results

Here we present results on expression data quality and an

eQTL analysis using expression data from WB for the 862 (Stage

II) individuals in BSGS. Details of expression quality for stage I

individuals are given in Powell et al. [17].

Stage II expression data quality
Gene expression levels were generated for the 862 individuals

from WB samples using the PAXgeneTM tube system. Expression

levels of extracted mRNA were measured using Illumina

HumanHT-12 v4.0 whole genome chip. For use as a research

resource the quality of the expression data is important, although

quality control procedures are likely to differ depending on specific

analyses. Original data consists of raw, un-normalised, expression

levels with chip background levels subtracted for 47,323 probes.

Illumina software GenomeStudio also calculates a detection p-

value (see methods), which represents the probability that a given

transcript is expressed above the chip background level. A value

below a p-value threshold (i.e. 0.05) indicates a gene is detected

and thus, the number of detected transcripts is a good overall

indicator of sample expression quality, with all samples on a given

chip expected to have similar numbers of transcripts detected. All

862 samples show high numbers of probes detected with p,0.05

(mean = 17,310 and SD = 1,512) with similar numbers within and

between chips (Figure S1). These levels are similar or slightly

higher than other published reports using Illumina chips (for

example in Monocytes [26], Lymphoblastoid cell lines (LCL) [27],

[28], Fibroblasts and T-cells [28]).

Gene expression is known to vary between individuals due to

differences in environmental [29], [30] and genetic [31] factors.

Additionally, differences in the genetic control of gene expression

between tissues [17], [32], coupled with specific environments of

cell types, lead to certain genes being expressed in some tissues and

not others at the time of sample collection [33]. A consequence is

that we expect many probes not to be expressed in a proportion of

the individuals in our sample. Studies of gene expression data use a

Figure 1. Summary of BSGS study design. The structure of the
study design allows us to investigate fundamental questions about the
genetic basis of gene expression and their correlation with phenotypes
that are known risk factors for disease.
doi:10.1371/journal.pone.0035430.g001
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variety of criteria to select probes for inclusion in analyses. A

commonly used criterion is that a given gene must be detected as

expressed in a certain proportion of the samples, with the

particular proportion decided based on requirements and

constraints of the analyses. Of the 47,323 probes 5,364 (11.3%)

are not detected as expressed in any of the 862 individuals, whilst

6,281 (13.3%) are detected as expressed in all individuals (Figure

S2).

Identification of eQTL
Of the 47,323 probes whose expression levels were measured on

the chip, only probes that were well characterised and detected as

expressed in 10% of the sample were carried forward, leaving a

total of 17,926 probes (corresponding to 13,533 RefSeq genes)

whose expression was tested for association with the 528,509

SNPs. At the study wide significance threshold (5.25610212) a

total of 14,916 associations were identified involving 10,421 SNPs

(eSNPs) and 1,503 probes. In situations where a probe had

multiple significant SNP associations, independent eQTL were

called if the distance between significant SNPs was greater than

2MB. Using this criterion a total of 2,081 eQTL were called for

the 1,503 probes with 1,357 (90%) of probes having a single eQTL

and 19 probes with greater than five eQTL. The median number

of significant SNPs within an eQTL region was 4, although 351

(16.8%) of eQTL contained over 10 significant SNPs and 27

(1.3%) over 50. Of the 10,421 eSNPs the majority (73.6%) were

associated with a single probe whilst the remaining 26.4% have

Figure 2. Samples collected in BSGS comprise of a number of different families. Family structure h represents the 50 MZ pairs comprising
the stage I study. The remaining family structures are from stage II. The numbers of each family structure are given below the pedigree diagram. By
utilising expression information contained between and within twin pairs, siblings and between progeny and parents we are able to estimate genetic
and non-genetic variance components using linear mixed models.
doi:10.1371/journal.pone.0035430.g002

Table 1. Relationship pairing between 962 individuals in BSGS.

Relationship pairs Code N Notes

Monozygotic twins MZ 128 68 female pairs; 60 male pairs; 50 MZ pairs form stage I, where we have expression
data from both WB and LCL RNA sources

Dizygotic twins DZ 206 51 female pairs; 53 male pairs; 102 mixed sex pairs

Siblings SIB 343 81 female pairs; 82 male pairs; 180 mixed sex pairs

Parent – Offspring PO 425 98 father – daughter pairs; 103 father – son pairs; 113 mother – daughter pairs; 111
mother – son pairs

Parent – Parent PP 71

doi:10.1371/journal.pone.0035430.t001
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significant associations with two or more probes, with the

maximum being eight.

Among the 2,081 eQTL the SNP with the smallest p-value had

R2 (proportion of expression variability explained) from 4.6% to

.80% with a median of 12.1% (Figure 3). A total of 328 eQTLs

had R2 greater than 25% and 61 greater than 50%. It is worth

noting that these estimates will be biased upwards because

hypothesis testing and estimation were performed on the same

data (‘‘winner’s curse’’).

Of the 2,081 eQTL, 1,810 (87%) are cis-acting, being located

within a 2MB region either side of the 39 or 59 end of the

Transcription Start Site (TSS). The remaining 271 eQTL are trans-

acting, although the majority of these (232) are located on the same

chromosome as their probes TSS. Twelve probes had both cis-and

trans-acting eQTL. To explore the location of cis-eQTLs, the

distance of the most significant SNP for each cis-eQTL per probe

was mapped relative to the TSS. In agreement with previous studies

[28], [34–35] a strong signal was found close to the TSS, with no

discernable trend in a 39 or 59 direction (Figure 4). This symmetrical

trend is likely to reflect variation in core regulatory sequences such

as promoter elements. Details of the top twelve cis-eQTL (based on

eSNP p-values) are given in table 3.

Regulatory control for gene expression, particularly trans-acting,

is not evenly distributed across the genome [36]. To provide an

outline of the positions of regulatory control for gene expression

across the genome, we produced a Manhattan plot showing the

number of eSNP (each eSNP represents a single eQTL) within

each 1MB region (Figure 5). Cis-acting eSNPs are distributed

across the genome, as has been reported by multiple studies [26–

27], [37]. We observe that trans-acting eSNPs are often found in

close proximity to one another, supporting the concept of trans-

regulatory hotspots [38].

Many studies mapping eQTL consider just associations within

the cis-region: the main benefit being a considerably reduced

burden of multiple testing compared to studies including trans-

acting SNPs. Given correlations exist between both SNP

genotypes and probe expression levels, it is likely that our study-

wide significance threshold (corrected for all SNP by probe tests)

results in true associations being missed. By reducing the

significance threshold to less conservative levels, the number of

trans-eQTL considerably increased, as expected by chance

(Table 4). However, the number of cis-eQTL only moderately

increased, indicating that conservative threshold used did not

result in a considerable under estimation of the true number of cis-

eQTL (Table 4).

Discussion

Through understanding the genetic control of gene expression

and its relationship with indicators of common disease we can gain

a better understanding of disease itself. Common disease is an

endpoint of a complex pathway of genetic and environmental

factors and there are likely to be many possible perturbations in

the pathways that lead to disease. Gaining insights into the

pathway as a whole, including the genetic control of major hubs of

gene regulation and how they relate to endophenotypes, is a major

step in understanding the ultimate outcome of (disease) and may

provide information on the optimum choice of where to intervene

in the pathway to prevent or treat disease. Recent success at

identifying genetic determinants for networks of regulatory control

affecting metabolic disease [39] has highlighted the application of

systems genetic approaches in understanding the aetiology of

complex phenotypes. We aim to use BSGS for the identification of

polymorphisms, or combinations thereof, that affect gene

regulation in one or more genes which in turn cause differences

between individuals in endophenotypes or susceptibility to disease

and may lead to drug discovery or other treatments to decrease the

burden of common disease in society.

The cellular origin of many biochemical and blood phenotypes

is often complex with some traits originating in other tissues but

displayed in blood. For example, insulin originates from b-cells in

the pancreas but is carried in the blood where is performs its role

of regulating glucose levels. However, insulin levels are regulated

Table 2. Central phenotypes in BSGS and a brief summary of previous studies identifying genetic parameters and association
signals.

Phenotypes Summary Reference

Hemoglobin concentration Hemoglobin phenotypes have been associated with SNPs in
TMPRSS6, LRRC16A, HK1 and HK2.

[19], [20]

Red blood cell count Association with SNPs close to IRX6. [20]

Platelet count Platelet count has suggestive association with SNPs in KCNIP. [20]

White blood cell count White blood cell count has suggestive association with SNPs
in MACF1.

[20]

Monocytes Monocyte count is associated with SNPs close to BAG4 and ITGA4. [20]

Eosinophils Eosinophil count has suggestive association with SNPs in ITPR1. [20]

CD4+/CD8+ T-cell ratio Collectively, these phenotypes are associated with SNPs in the MHC
and the Schlafen family of genes. They are also endophenotypes for Type 1
Diabetes, HIV-1 immune control and autoimmune diseases.

[25]

Plasma Cholesterol (HDL and LDL) and Triglyceride
concentrations

A known endophenotypes for cardiovascular disease. Data comprising part
of BSGS have shown strong associations between Cholesterol and genes on
chromosome 19 and between Triglyceride and genes on chromosome 7.

[18], [22]

Blood pressure An important endophenotype for hypertension. Data comprising part of
BSGS have shown strong associations between blood pressure and genes
on chromosomes 4,5,14 and 17.

[23], [24]

Iron, Ferritin and Transferrin levels Collectively, these phenotypes show association with SNPs in TMPRSS6,
HFE, PGM1 and TF.

[19], [61],
[62]

doi:10.1371/journal.pone.0035430.t002
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Figure 3. Distribution of the R2 observed for the best eSNP from the 1,885 eQTLs.
doi:10.1371/journal.pone.0035430.g003

Figure 4. The distribution of cis-eSNPs distance from the Transcription Start Site (TSS). The distances of eSNPs from the TSS were divided
into 50KB bins across the cis-region.
doi:10.1371/journal.pone.0035430.g004
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by multiple factors, many relating to blood components and so it is

reasonable to expect that the expression of some genes in blood

will have an effect on insulin levels. Thus, using a tissue closely

related to phenotypes we are able to relate transcript abundance to

the blood and biochemical traits and hopefully expound the role of

gene regulation in mediating endophenotypes and complex

disease. Nevertheless, findings should be analysed with caution

as we and others [17], [32], have recently shown that the genetic

basis for gene expression is often different between tissues.

We hypothesise that the indirect route from genotype to

phenotype via gene expression is more informative to elucidate the

nature of complex trait variation than the direct route from

genotype to phenotype. The expression data collected from

families allows us to estimate quantitative genetic variance

components through the use of linear mixed models and

estimation methods such as restricted maximum likelihood

(REML) [40]. By utilising information contained between and

within twin pairs, siblings and between progeny and parents we

are able to estimate additive and non-additive genetic effects of

gene expression and can explicitly test a variance partition model

that includes parent-of-origin effects.

Here we have presented results of an eQTL study involving

,18 k probes, each tested against .500 k SNPs. Despite

numerous large scale studies reporting eQTL [26–28], [34],

[37], [41–42], generating eQTL results for a particular study is

important as differences in the genetic control of gene expression

between populations [43–45] and between tissues [17], [32] is well

known. Furthermore, here, and elsewhere [26], [41–42] large

sample sizes have permitted the investigation of trans-acting eSNP

often ignored by smaller studies [28], [34].

Table 3. Top cis-eQTL results.

Probe ID Gene Probe Chromosome TSS bp Top SNP Top SNP location -log10 p-value R2

ILMN_1715169 HLA-DRB1 6 32654825 rs9271170 6 - 32577889 131.5 73.5

ILMN_1743145 ERAP2 5 96274820 rs10051637 5 - 96279490 131.0 81.6

ILMN_1798177 CHURC1 14 64471249 rs7143432 14 - 65379146 130.4 83.0

ILMN_2209027 RPS26 12 54722494 rs10876864 12 - 56401085 122.0 74.6

ILMN_2403228 CLEC12A 12 10029119 rs7313235 12 - 10132283 121.3 75.8

ILMN_2352023 RIPK5 1 203378372 rs12139373 1 - 205054879 114.4 70.2

ILMN_2312606 IRF5 7 127973722 rs6965542 7 - 128655918 112.6 74.8

ILMN_1791511 TMEM176A 7 150133038 rs7806458 7 - 150476888 107.5 66.4

ILMN_2038775 TUBB2A 6 3154070 Rs9392465 6 - 3162378 107.2 66.7

ILMN_3298167 ZSWIM7 17 15879944 rs1045599 17 - 15879910 105.5 65.9

ILMN_1661266 HLA-DQB1 6 32736001 rs9273349 6 - 32625869 102.0 61.2

ILMN_2313901 PAM 5 102340879 rs28092 5 - 102149795 99.7 66.2

The chromosome and base pair position of the probe transcription start site (TSS) are given for each probe. R2 is the proportion of transcript level variance explained by
the SNP with the strongest association.
doi:10.1371/journal.pone.0035430.t003

Figure 5. Positions of cis (A) and trans (defined as greater than 2MB from the transcription start site) (B) eSNP across the genome.
The number of eSNP within 1MB bins is shown. A single eSNP represents a unique eQTL.
doi:10.1371/journal.pone.0035430.g005
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Methods

Sample Collection
Individuals present in this study were recruited as part of the

Brisbane Twin Nevus and cognition studies (known as BTN and

MAPS respectively). This study was approved by the Queensland

Institute for Medical Research-Human Research Ethics Commit-

tee. All participants gave informed written consent. As described in

detail elsewhere [21], [46–50], adolescent MZ and DZ twins, their

siblings, and their parents have been recruited over a 16 year

period into an ongoing study of the genetic and environmental

factors influencing pigmented nevi and the associated risk of

developing skin cancer and cognition. The sample is of northern

European origin (mainly Anglo-Celtic). A Principal Component

Analysis (PCA) comparing individuals in this study to HapMap3

[51] and GenomEUtwin [52] populations shows the close

similarity of ancestry to northern European populations (Figure

S3). All participants gave informed consent, and the study protocol

was approved by the appropriate institutional review boards.

Analysis of Stage II data
Genotyping. DNA samples from each individual were

genotyped by the Scientific Services Division at deCODE

Genetics, Iceland, using the Illumina 610-Quad Beadchip.

Genotypes were called with the Illumina BeadStudio software.

Full details of genotyping procedures are given in Medland et al.

[53]. Standard QC filters were applied so that further analysis was

on samples and SNPs with high data quality. We first applied

filters to SNP data before evaluating genotyping quality per

individual. After removing SNPs with minor allele frequencies

(MAF) ,1% with a mean BeadStudio GenCall ,0.7 a total of

528,509 remained for further analysis.

Gene expression quantification. Whole blood for

expression profiling was collected directly into PAXgeneTM tube

(QIAGEN, Valencia, CA). Total RNA was extracted from

PAXgeneTM tubes using the WB gene RNA purification kit

(QIAGEN, Valencia, CA). RNA from all samples was run on an

Agilent Bioanalyzer to assess quality and to estimate RNA

concentrations RNA was converted to cDNA, amplified and

purified using the Ambion Illumina TotalPrep RNA Amplification

Kit (Ambion).

Expression profiles were generated by hybridising 750 ng of

cRNA to Illumina HumanHT-12 v4.0 Beadchip according to

Illumina whole-genome gene expression direct hybridization assay

guide (Illumina Inc, San Diego, USA). Briefly, 500 ng of total

RNA were used to generate biotinylated cRNA, which was

fragmented and hybridised to an Illumina whole genome

expression chip, HumanHT-12 v4.0 for 18 h at 58uC. Beadchips

were then washed and stained and subsequently scanned to obtain

fluorescence intensities. Samples were scanned using an Illumina

Bead Array Reader. Samples were randomised across chips and

chip positions, with check for balance across families, sex and

generation.

eQTL analysis
Normalisation and processing. The following

normalisation procedures were applied to the raw expression

data for the eQTL analysis. Pre-processing of data generated by

the Illumina Bead Array Reader was done using Illumina

software, GenomeStudio (Illumina Inc., San Diego). Pre-

processing included; correction for chip background effects,

removal of outlier beads, computation of average bead signal

and calculation of detection p-values using negative controls

present on the array. Removal of chip background effects can lead

to negative expression levels for transcripts with low levels of

measured expression. To avoid problems with further

normalisation procedures, negative values were changed to

missing data identifiers. Thus, in subsequent normalisation

procedures and analyses probes coded as missing are ignored.

The Illumina HT-12 v4.0 chip contains 47,323 probes,

although some probes are not assigned to RefSeq genes. To avoid

spurious associations, we removed 678 probes for which at least

one HapMap 3 (NCBI build 36, dbSNP b126) SNP was within the

probe sequence [54]. For the eQTL analysis we removed any

probes where less than 10% of samples had a detection p-

value,0.05. Of the 24,317 probes retained, the mean of the

proportion of samples with p-values,0.05 was 97%, implying that

relatively little missing data remained within the expression

dataset. After removing 6,322 putative and/or not well-charac-

terised genes i.e. probe names starting with HS (n = 1,841), KIAA

(n = 158) and LOC (n = 4,323), 17,926 well-characterised detected

probes remained for analysis, which corresponds to 13,486 RefSeq

genes.

To minimise the influence of overall signal levels, which may

reflect RNA quantity and quality rather than a true biological

difference between individuals, the following standardisation

procedures were applied to the 17,926 probes. Adjusted expression

levels for each probe were transformed using a quantile

transformation [55], [56] to achieve a stabilized distribution

across average expression levels. Further normalisation was

performed to allow expression levels to be compared across chips

and genes. This was achieved fitting a linear mixed model;

Table 4. Number of associations and eQTL at various levels of significance threshold.

Significance
threshold Total associations

Expected number
of associations

Total significant
SNPs

Probes with 1+
significant SNP eQTL Cis-eQTL Trans-eQTL

10e28 31,032 951 20,068 3,969 5,679 2,673 3,006

10e210 20,049 9.5 13,319 1,933 2,512 1,953 559

5.25e212 14,210 0.05 10,160 1,503 1,885 1,529 256

10e215 10,519 0 7,468 1,126 1,507 1,256 251

10e225 4,362 0 3,382 572 731 639 92

10e250 896 0 764 185 199 172 27

.10e2100 60 0 55 27 27 22 5

The study-wide significance threshold employed for our eQTL analysis is highlighted. The expected number of associations is the number of association that are
expected to be observed under the null hypothesis of no associations between probe expression levels and SNPs.
doi:10.1371/journal.pone.0035430.t004
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yijk~mzCjzPkzeijk ð1Þ

Where yijk is the log-transformed expression level for individual i

on chip j. The variable m represents the mean expression level

across all individuals and Cj and Pk are random effects removing

variation in the data due to chip j and chip position k respectively,

and eijk is the residual. The between chip variance is expected to

be small due to the scaling that was performed during the pre-

processing of the data. The residuals from this model were used in

all further analyses. To increase robustness, the distribution of

normalised expression levels for each probes were tested for

deviation from normality using the Shapiro-Wilk test. All 17,926

probes had normally distributed (p,0.05) expression levels.
Testing for association. We tested for association between

the 528,509 genotyped SNPs and the normalised expression levels

of the 17,926 probes using the FASTASSOC component of

MERLIN [57], [58]. The FASTASSOC option fits a simple linear

regression model to estimate an additive effect for each probe and

SNP combination, with SNP genotypes coded as the number of

copies of the minor allele (0, 1 or 2) carried by each individual. We

used the Lander-Green algorithm [58], [59], implemented in

Merlin, to estimate expected genotype scores for individuals with

missing genotype data. Covariates of sex and generation were

included in the model, where generation denotes either the

parental or the adolescent generation. Previous analysis has shown

(not published) that generation is a useful substitute for age without

the burden of additional degrees of freedom. The model applies a

variance component approach to account for the correlations

between different expression levels within each family. The model

fit is evaluated using a score test, which substantially reduces

computational time compared to maximum-likelihood methods, at

the expense of a slight loss of power [58].

Conditional regression analysis was used to address the potential

to miss secondary eQTL in linkage disequilibrium (LD) with other

eQTL. For each probe with an identified eQTL we corrected for

the main effects of the top eSNP (SNP with the largest R2) by

regressing its genotypes against the expression levels. Residuals

from this analysis were then used for second round of eQTL

mapping, allowing us to detect independent eQTL. If additional

eQTL were identified from this second round of analysis, the

process was repeated, correcting for the main effects of the top

eSNP from the first and second eQTL using multivariate

regression.

Associations were evaluated in two categories depending on the

location of the SNP relative to the transcription start site (TSS).

Cis-eQTL were defined as associations between SNPs within 2MB

of either the 39 or 59 end of the TSS. We defined trans-associations

as associations involving SNPs elsewhere in the genome. To

correct for multiple testing, we used a study-wide significance level

of 0.05, corrected for the number of SNP by probe associations

tested, corresponding to a p-value threshold of 5.25610212.

We tested for the effects of population structure and cryptic

relatedness between individuals by applying the method ‘genomic

control’ [60] to results of the association analysis. We derived a

coefficient of 1.002, indicating negligible population stratification.

Supporting Information

Figure S1 GenomeStudio provides a p-value for each
transcript in each sample. For a given sample the number of

transcripts with p-values below a given threshold provides an

indication of its quality. Figure S1 shows the number of transcripts

with p,0.05 for each sample with each colour representing a

single chip.

(DOCX)

Figure S2 The distribution of the number of probes
detected as expressed in stage II. A total of 47,323 are

measured on the Illumina HT-12 v4.0 chip, of these 5,364 (11.3%)

are not detected as expressed in any of the individuals, whilst 6,281

(13.3%) are detected as expressed in all individuals.

(DOCX)

Figure S3 A Principle Component Analysis (PCA) of 16
global populations and the individuals collected in this
study. Principal Component one (PC1) and two (PC2) values

were derived from approximately 280,000 autosomal markers.

Populations samples marked with *1 were collected as part of the

HapHap3 project [1] and *2 as part of the GenomEUtwin project

[2]. ASW*1 African Americans, CEU*1 European Americans,

CHB*1 Han Chinese, CHD*1 Chinese, GIH*1 Guajarati-Indians,

JPT*1 Japanese, LWK*1 Luhya Kenyans, MEX*1 Mexicans,

MKK*1 Maasai Kenyans, TSI*1 Italians, TRI*1 Yorubans

Nigeria, DEN*2 Danish, FIN*2 Finish, NET*2 Dutch, SWE*2

Swedish, UK*2 British.

(DOCX)

Acknowledgments

We gratefully acknowledge the participation of the individuals sampled in

this work. We would like to thank Lisa Bowdler and Steven Crooks for

their technical assistance with the microarray hybridizations, Alison

Mackenzie, Marlene Grace and Ann Eldridge for data collection and

Dale Nyholt and Scott Gordon for data management.

Author Contributions

Conceived and designed the experiments: JEP AFM ETD PMV GWM.

Performed the experiments: AKH AC SS. Analyzed the data: JEP.

Contributed reagents/materials/analysis tools: JBW MJW NGN. Wrote

the paper: JEP PMV GWM.

References

1. Donnelly P (2008) Progress and challenges in genome-wide association studies in

humans. Nature 456: 728–731.

2. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, et al. (2009)

Potential etiologic and functional implications of genome-wide association loci

for human diseases and traits. Proc Natl Acad Sci U S A 106: 9362–9367.

3. Maher B (2008) Personal genomes: The case of the missing heritability. Nature

456: 18–21.

4. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, et al. (2009)

Finding the missing heritability of complex diseases. Nature 461: 747–753.

5. Weiss KM, Terwilliger JD (2000) How many diseases does it take to map a gene

with SNPs? Nature Genet 26: 151–157.

6. Tan HY, Callicott JH, Weinberger DR (2008) Intermediate phenotypes in

schizophrenia genetics redux: is it a no brainer? Mol Psychiatr 13: 233–238.

7. Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, et al. (2010) Trait-

Associated SNPs Are More Likely to Be eQTLs: Annotation to Enhance

Discovery from GWAS. PLoS Genet 6: e1000888.

8. Schadt EE, Lamb J, Yang X, Zhu J, Edwards S, et al. (2005) An integrative

genomics approach to infer causal associations between gene expression and

disease. Nat Genet 37: 710–717.

9. Emilsson V, Thorleifsson G, Zhang B, Leonardson AS, Zink F, et al. (2008)

Genetics of gene expression and its effect on disease. Nature 452: 423-U422.

10. Naukkarinen J, Surakka I, Pietilainen KH, Rissanen A, Salomaa V, et al. (2010)

Use of Genome-Wide Expression Data to Mine the ‘‘Gray Zone’’ of GWA

Studies Leads to Novel Candidate Obesity Genes. PLoS Genet 6: e1000976.

11. Khor B, Gardet A, Xavier RJ (2011) Genetics and pathogenesis of inflammatory

bowel disease. Nature 474: 307–317.

Brisbane Systems Genetics Study

PLoS ONE | www.plosone.org 8 April 2012 | Volume 7 | Issue 4 | e35430



12. Chen YQ, Zhu J, Lum PY, Yang X, Pinto S, et al. (2008) Variations in DNA

elucidate molecular networks that cause disease. Nature 452: 429–435.
13. Iwamoto K, Bundo M, Washizuka S, Kakiuchi C, Kato T (2004) Expression of

HSPF1 and LIM in the lymphoblastoid cells derived from patients with bipolar

disorder and schizophrenia. J Hum Genet 49: 227–231.
14. Kato T, Iwayama Y, Kakiuchi C, Iwamoto K, Yamada K, et al. (2005) Gene

expression and association analyses of LIM (PDLIM5) in bipolar disorder and
schizophrenia. Mol Psychiatry 10: 1045–1055.

15. Moffatt MF, Kabesch M, Liang L, Dixon AL, Strachan D, et al. (2007) Genetic

variants regulating ORMDL3 expression contribute to the risk of childhood
asthma. Nature 448: 470–473.

16. McCarroll SA, Huett A, Kuballa P, Chilewski SD, Landry A, et al. (2008)
Deletion polymorphism upstream of IRGM associated with altered IRGM

expression and Crohn’s disease. Nat Genet 40: 1107–1112.
17. Powell JE, Henders AK, McRae AF, Wright MJ, Martin NG, et al. (2012)

Genetic control of gene expression in whole blood and lymphoblastoid cell lines

is largely independent. Genome Res 22: 456–466.
18. Middelberg RP, Martin NG, Montgomery GW, Whitfield JB (2006) Genome-

wide linkage scan for loci influencing plasma triglycerides. Clin Chim Acta 374:
87–92.

19. Benyamin B, Ferreira MA, Willemsen G, Gordon S, Middelberg RP, et al.

(2009a) Common variants in TMPRSS6 are associated with iron status and
erythrocyte volume. Nat Genet 41: 1173–1175.

20. Ferreira MA, Hottenga JJ, Warrington NM, Medland SE, Willemsen G, et al.
(2009) Sequence variants in three loci influence monocyte counts and

erythrocyte volume. Am J Hum Genet 85: 745–749.
21. Wright M, De Geus E, Ando J, Luciano M, Posthuma D, et al. (2001) Genetics

of cognition: outline of a collaborative twin study. Twin Res 4: 48–56.

22. Beekman M, Heijmans BT, Martin NG, Whitfield JB, Pedersen NL, et al. (2003)
Evidence for a QTL on chromosome 19 influencing LDL cholesterol levels in

the general population. Eur J Hum Genet 11: 845–850.
23. Hottenga JJ, Whitfield JB, Posthuma D, Willemsen G, de Geus EJ, et al. (2007)

Genome-wide scan for blood pressure in Australian and Dutch subjects suggests

linkage at 5P, 14Q, and 17P. Hypertension 49: 832–838.
24. O’Connor DT, Zhu G, Rao F, Taupenot L, Fung MM, et al. (2008) Heritability

and genome-wide linkage in US and australian twins identify novel genomic
regions controlling chromogranin a: implications for secretion and blood

pressure. Circulation 118: 247–257.
25. Ferreira MA, Mangino M, Brumme CJ, Zhao ZZ, Medland SE, et al. (2010)

Quantitative trait loci for CD4:CD8 lymphocyte ratio are associated with risk of

type 1 diabetes and HIV-1 immune control. Am J Hum Genet 86: 88–92.
26. Zeller T, Wild P, Szymczak S, Rotival M, Schillert A, et al. (2010) Genetics and

Beyond – The Transcriptome of Human Monocytes and Disease Susceptibility.
PLoS One 5: e10693.

27. Stranger BE, Nica AC, Forrest MS, Dimas A, Bird CP, et al. (2007) Population

genomics of human gene expression. Nature Genet 39: 1217–1224.
28. Dimas AS, Deutsch S, Stranger BE, Montgomery SB, Borel C, et al. (2009)

Common Regulatory Variation Impacts Gene Expression in a Cell Type-
Dependent Manner. Science 325: 1246–1250.

29. Choi JK, Kim SC (2007) Environmental effects on gene expression phenotype
have regional biases in the human genome. Genetics 175: 1607–1613.

30. Choy E, Yelensky R, Bonakdar S, Plenge RM, Saxena R, et al. (2008) Genetic

Analysis of Human Traits In Vitro: Drug Response and Gene Expression in
Lymphoblastoid Cell Lines. PLoS Genet 4: 16.

31. Cheung VG, Spielman RS (2009) Genetics of human gene expression: mapping
DNA variants that influence gene expression. Nat Rev Genet 10: 595–604.

32. Price AL, Helgason A, Thorleifsson G, McCarroll SA, Kong A, et al. (2011)

Single-Tissue and ross-Tissue Heritability of Gene Expression Via Identity-by-
Descent in Related or Unrelated Individuals. PLoS Genet 7: e1001317.

33. Jongeneel CV, Delorenzi M, Iseli C, Zhou DX, Haudenschild CD, et al. (2005)
An atlas of human gene expression from massively parallel signature sequencing

(MPSS). Genome Res 15: 1007–1014.

34. Veyrieras JB, Kudaravalli S, Kim SY, Dermitzakis ET, Gilad Y, et al. (2008)
High-resolution mapping of expression-QTLs yields insight into human gene

regulation. PLoS Genet 4: e1000214.
35. Nica AC, Parts L, Glass D, Nisbet J, Barrett A, et al. (2011) The Architecture of

Gene Regulatory Variation across Multiple Human Tissues: The MuTHER
Study. PLoS Genet 7: e1002003.

36. Montgomery SB, Dermitzakis ET (2011) From expression QTLs to personalized

transcriptomics. Nat Rev Genet 12: 277–282.
37. Dixon AL, Liang L, Moffatt MF, Chen W, Heath S, et al. (2007) A genome-wide

association study of global gene expression. Nature Genet 39: 1202–1207.

38. Breitling R, Li Y, Tesson BM, Fu J, Wu C, et al. (2008) Genetical genomics:
spotlight on QTL hotspots. PLoS Genet 4: e1000232.

39. Small KS, Hedman AK, Grundberg E, Nica AC, Thorleifsson G, et al. (2011)
Identification of an imprinted master trans regulator at the KLF14 locus related

to multiple metabolic phenotypes. Nature Genet 43: 561-U590.

40. Lynch M, Walsh B (1998) Genetics and the analysis of quantitative traits.
Sinauer associates, Sunderland MA.

41. Myers AJ, Gibbs JR, Awebster J, Rohrer K, Zhao A, et al. (2007) A survey of
genetic human cortical gene expression. Nature Genet 39: 1494–1499.

42. Schadt EE, Molony C, Chudin E, Hao K, Yang X, et al. (2008) Mapping the
genetic architecture of gene expression in human liver. PLoS Biol 6: 1020–1032.

43. Spielman RS, Bastone LA, Burdick JT, Morley M, Ewens WJ, et al. (2007)

Common genetic variants account for differences in gene expression among
ethnic groups. Nature Genet 39: 226–231.

44. Storey JD, Madeoy J, Strout JL, Wurfel M, Ronald J, et al. (2007) Gene-
expression variation within and among human populations. Am J Hum Genet

80: 502–509.

45. Idaghdour Y, Czika W, Shianna KV, Lee SH, Visscher PM, et al. (2010)
Geographical genomics of human leukocyte gene expression variation in

southern Morocco. Nature Genet 42: 62–U79.
46. Aitken JF, Green AC, MacLennan R, Youl P, Martin NG (1996) The

Queensland Familial Melanoma Project: study design and characteristics of
participants. Melanoma Res 6: 155–165.

47. McGregor B, Pfitzner J, Zhu G, Grace M, Eldridge A, et al. (1999) Genetic and

environmental contributions to size, color, shape, and other characteristics of
melanocytic naevi in a sample of adolescent twins. Genet Epidemiol 16: 40–53.

48. Wright MJ, Martin NG (2004) Brisbane Adolescent Twin Study: Outline of
study methods and research projects. Australian Journal of Psychology 56:

65–78.

49. Zhu G, Montgomery GW, James MR, Trent JM, Hayward NK, et al. (2007) A
genome-wide scan for naevus count: linkage to CDKN2A and to other

chromosome regions. Eur J Hum Genet 15: 94–102.
50. Falchi M, Bataille V, Hayward NK, Duffy DL, Bishop JAN, et al. (2009)

Genome-wide association study identifies variants at 9p21 and 22q13 associated
with development of cutaneous nevi. Nat Genet 41: 915–919.

51. International HapMap 3 Consortium (2010) Integrating common and rare

genetic variation in diverse human populations. Nature 467: 52–58.
52. Peltonen L (2003) GenomEUtwin: a strategy to identify genetic influences on

health and disease. Twin Res 6: 354–360.
53. Medland SE, Nyholt DR, Painter JN, McEvoy BP, McRae AF, et al. (2009)

Common variants in the trichohyalin gene are associated with straight hair in

Europeans. Am J Hum Genet 85: 750–755.
54. Alberts R, Terpstra P, Li Y, Breitling R, Nap JP, et al. (2007) Sequence

polymorphisms cause many false cis eQTLs. PLoS ONE 2: e622.
55. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of

normalization methods for high density oligonucleotide array data based on
variance and bias. Bioinformatics 19: 185–193.

56. Smyth GK, Speed TP (2003) Normalization of cDNA microarray data. Methods

31: 265–273.
57. Abecasis GR, Cherny SS, Cookson WO, Cardon LR (2002) Merlin–rapid

analysis of dense genetic maps using sparse gene flow trees. Nat Genet 30:
97–101.

58. Chen WM, Abecasis GR (2007) Family-based association tests for genomewide

association scans. Am J Hum Genet 81: 913–926.
59. Lander ES, Green P (1987) Construction of multilocus genetic linkage maps in

humans. Proc Natl Acad Sci U S A 84: 2363–2367.
60. Devlin B, Roeder K, Wasserman L (2001) Genomic control, a new approach to

genetic-based association studies. Theoretical Population Biology 60: 155–166.

61. Benyamin B, McRae AF, Zhu G, Gordon S, Henders AK, et al. (2009b)
Variants in TF and HFE explain approximately 40% of genetic variation in

serum-transferrin levels. Am J Hum Genet 84: 60–65.
62. Kutalik Z, Benyamin B, Bergmann S, Mooser V, Waeber G, et al. (2011)

Genome-wide association study identifies two loci strongly affecting transferrin
glycosylation. Hum Mol Genet 20: 3710–3117.

Brisbane Systems Genetics Study

PLoS ONE | www.plosone.org 9 April 2012 | Volume 7 | Issue 4 | e35430


