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Bacterial infections from various organisms including Vibrio sp. pose a serious hazard
to humans in many forms from clinical infection to affecting the yield of agriculture and
aquaculture via infection of livestock. Vibrio sp. is one of the main foodborne pathogens
causing human infection and is also a common cause of losses in the aquaculture
industry. Prophylactic and therapeutic usage of antibiotics has become the mainstay
of managing this problem, however, this in turn led to the emergence of multidrug
resistant strains of bacteria in the environment; which has raised awareness of the critical
need for alternative non-antibiotic based methods of preventing and treating bacterial
infections. Bacteriophages – viruses that infect and result in the death of bacteria – are
currently of great interest as a highly viable alternative to antibiotics. This article provides
an insight into bacteriophage application in controlling Vibrio species as well underlining
the advantages and drawbacks of phage therapy.

Keywords: bacterial, Vibrio sp., antibiotics, bacteriophages, multidrug resistant strains

INTRODUCTION

The increased occurrence of foodborne disease has led to substantial morbidity and mortality
around the world yearly, frequently associated with outbreaks or food contamination. Foodborne
illness is known to be a ubiquitous, costly, yet preventable public health concern (Centers for
Disease Control and Prevention [CDC], 2014). World Health Organization has stated that food
safety remains an endless challenge to everyone particularly in the management of infectious
and non-infectious foodborne pathogens (Rocourt et al., 2003). Despite the current effective
technologies and the good manufacturing practices, the food safety is constantly threatened by the
factors related to changes in lifestyle, consumer eating habits, food and agriculture manufacturing
processes and also the increased international trade (Newell et al., 2010; Law et al., 2015).

There is no doubt that bacterial infection is a significant threat to mankind in many forms –
human illness as a result of bacterial infection is common, with Vibrio species including
Vibrio cholerae-associated from food contamination or transmission of infection from person
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to person, Vibrio parahaemolyticus- associated with food
contamination and Vibrio vulnificus- associated with wound
infection. Vibrio species are gram-negative curved rod shaped
bacteria that belong to the Vibrionaceae family. They naturally
inhabit the estuarine, coastal and marine environment worldwide
(Letchumanan et al., 2014; Raghunath, 2015). The presence of
this bacterium in the marine environment raises the concern
of human on food safety due to the latter potential in causing
disease outbreaks depending on the environmental conditions
(Ceccarelli et al., 2013). There are many clinically used antibiotics
as a choice of treatment for Vibrio species infections including
cephalothin (first generation cephalosporins), cefuroxime
(second generation cephalosporin), cefotaxime and ceftazidime
(third generation cephalosporins), tetracycline, doxycycline, or
fluoroquinolone (Tang et al., 2002; Han et al., 2007; Al-Othrubi
et al., 2014).

Aside from this, these organisms have also been responsible
for large scale losses in the aquaculture industry due to infection
of the aquatic livestock leading to prophylactic as well as
therapeutic use of antimicrobials (Devi et al., 2009; Manjusha
and Sarita, 2011; Letchumanan et al., 2014, 2015b). In the Asian
aquaculture industry, oxytetracycline, tetracycline, quinolones,
sulphonamides, and trimethoprim are among the antimicrobials
permitted and utilized to control bacterial infections (Rico et al.,
2012; Yano et al., 2014). Our dependence on antibiotics to
control bacterial infections in humans, aquaculture, agriculture,
and veterinary medicine resulted to indiscriminate use which in
turn led to the emergence of multidrug resistant strains in the
biosphere (Rao and Lalitha, 2015).

Studies have reported the isolation of multidrug resistant
Vibrio strains from both clinical and environmental samples
(Letchumanan et al., 2015a; Shrestha et al., 2015; Zavala-
Norzagaray et al., 2015). In Iran, Vibrio cholerae isolated from
clinical samples has been reported to be resistant toward
erythromycin, sulfamethoxazole-trimethoprim, and ampicillin
(Tabatabaei and Khorashad, 2015). Antibiotic resistance was also
observed in a study done in India which reported serogroups
O1 of Vibrio cholerae classical biotype and sub serotype, Ogawa
isolated from clinical strains were resistant to ampicillin, nalidixic
acid, and cotrimoxazole (Shrestha et al., 2015). This bacterium
is the causative agent of cholera and appears to be emerging as
the etiological agent of disease outbreaks in many developing
countries such as India (Garg et al., 2000), Bangladesh, Haiti
(Sjölund-Karlsson et al., 2011), Vietnam (Tran et al., 2012), and
Africa (Dalsgaard et al., 2001). Vibrio cholerae from clinical
samples is reported to be resistant to many clinically used
antibiotics including tetracycline (Roychowdhury et al., 2008),
ampicillin (Petroni et al., 2002), nalidixic acid (Khan et al.,
2015), streptomycin, sulfonamide, trimethoprim, gentamicin
(Dalsgaard et al., 1999), and ciprofloxacin (Khan et al., 2015).

A study in Thailand has revealed that shrimp farmers were
highly dependent on various antibiotics as a preventive measure
against shrimp bacterial infections with 14% of farmers using
antibiotics on a daily basis in their farms (Holmstrom et al.,
2003). In Malaysia, Vibrio parahaemolyticus strains isolated from
seafood and environmental sources were reported to be resistant
toward cefalexin and ciprofloxacin (Al-Othrubi et al., 2011).

Besides, antibiotic resistant Vibrio parahaemolyticus strains have
been isolated from both clinical and environmental samples
in India (Pazhani et al., 2014; Reyhanath and Kutty, 2014;
Sudha et al., 2014). A study assessed the diversity of antibiotic
resistant bacteria and their resistance genes from mariculture
environments of China. It was reported that the strains
exhibited multidrug resistance profile toward oxytetracycline,
chloramphenicol, and ampicillin (Dang et al., 2007). Frequent
use of antibiotics is also widely apparent in other regions such
as Mexico (Roque et al., 2001), Philippines (Tendencia and De La
Pena, 2001), Italy (Lalumera et al., 2004), Malaysia (Al-Othrubi
et al., 2011; Sani et al., 2013; Letchumanan et al., 2015b), Thailand
(Yano et al., 2014), and China (Peng et al., 2010; Zou et al.,
2011; Xu et al., 2014). The various antibiotics used in aquaculture
has led to the occurrence of antibiotic resistant genes (ARGs)
in bacteria. Many different ARGs can be found in bacteria in
the environment. For example, β-lactam and penicillin resistant
genes penA and blaTEM-1 (Srinivasan et al., 2005; Zhang et al.,
2009), chloramphenicol resistant genes catI, catII, catIII, catIV,
and floR (Dang et al., 2007, 2008), tetracycline resistant genes
tatA, tatB, tatC, tatD, tatE, tatG, tatH, tatJ, tatY, tatZ, and
many more (Macauley et al., 2007; Zhang et al., 2009, 2012;
Kim et al., 2013). It is reported that ARGs could be transferred
among bacteria via conjugation, transduction, or transformation
(Manjusha and Sarita, 2011).

The widespread of emergence of antimicrobial resistant
bacteria worldwide has become a major therapeutic challenge
(Giamarellou, 2010). There is need for development of novel
non-antibiotic approach to fight against bacterial infections due
to the shortage of new antibiotics in developmental pipeline
(Rice, 2008; Freire-Moran et al., 2011). Recently, there has been
renewed interest in the application of bacteriophage as a non-
antibiotic approach to control bacterial infections in various
fields including human infections, food safety, agriculture, and
veterinary applications (Wittebole et al., 2014). This article
provides an insight into bacteriophage application in controlling
Vibrio species as well underlining the advantages and drawbacks
of phage therapy.

BACTERIOPHAGES

Historical Background
Early discovery of bacteriophage was reported by M. E. Hankin
in 1896 after observing antibacterial properties of this viral-
like agent against Vibrio cholerae in Ganges River, India (Adhya
and Merril, 2006). The phage’s nature was clearly defined
following the observation of its capability of lysing bacterial
cultures by Frederick Twort and Felix d’Herrelle, in 1915
and 1917, respectively (Adhya and Merril, 2006). It was Felix
d’Herrelle who named this viral-like agents as bacteriophage
and implemented in the treatment of human diseases almost
instantly after their discovery. Bacteriophage therapy appeared
as the frontline therapeutics against infectious disease before the
discovery of the broad spectrum antibiotic and were used in
various countries until The Second World War (Enderson et al.,
2014). Unfortunately, the use of phages as therapeutic agents and
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phage research declined due to the limited knowledge of phage
properties, contradictory results from various published studies
and discovery of antibiotics (Wittebole et al., 2014). However,
over the last decade, the therapeutic value of bacteriophage has
been reconsidered due to the occurrence of multi-drug resistant
bacteria. Bacteriophages are regarded as an alternative non-
antimicrobial tool to treat bacterial infections while controlling
the emergence of antibiotic resistance (Meaden and Koskella,
2013; Payet and Suttle, 2014). The research into phage therapy
has been further encouraged given that regulatory bodies in
charge of food safety have approved the utilization of certain
phages for use in food products such as ListShieldTM, and
Listex P100 (Bren, 2007; Coffey et al., 2010). ListShieldTM, (a
phage which targets Listeria) from Intralytix is approved by the
USFDA for the treatment of food products, and the phages
are classified as Generally Recognized As Safe (GRAS; FDA,
2013).

Morphology
Phages are bacterial viruses that are able to infect bacterial host
cells with high host specificity of strain or species level (Hagens
and Loessner, 2010) and subsequently multiply, eventually
resulting in death of the host cell. While high host specificity
is typical, a few phages do exhibit wide host ranges and are
able to infect a large subset of a given species or even multiple
species (Chen and Novick, 2009). Bacteriophages species can be
differentiated as they vary both in size 24–400 mm in length
and genome length. All bacteriophages have a head that stores
genetic materials and form a part of the overall feature of a
bacteriophage (Orlova, 2012). Structurally, a phage consist of
a core nucleic acid encapsulated with a protein or lipoprotein
capsid which is connected with a tail that interacts with various
bacterial surface receptors via the tip of the tail fibers. This
interaction shows an affinity that is specific to a certain group
of bacteria or even to a particular strain (Deresinski, 2009; Tan
et al., 2014). The capsid is icosahedral in shape and has the main
function to protect the genetic material from the environment.
A bacteriophage head is attached to a tail through a connector
that functions as adaptor between these two structures of the
phage. The tail is a hollow tube which acts as a passage way for
genetic materials to pass thru from capsid to host bacteria (Lurz
et al., 2001). Tail fibers and base plate which are located at the
end structure of the phage are involved in the binding process
of the phage to the bacterial outer membrane (Sao-Jose et al.,
2006).

Nature of Bacteriophages
Bacteriophages are the most abundant organisms in the
environment, with the total number of phages on Earth estimated
to be between 1030 and 1031, an approximately 10 times more
than their bacterial hosts (Abedon et al., 2011; Burrowes et al.,
2011). Phages are natural predators of bacteria, self-limiting and
self-replicating in their host cell, and can adapt to resistant
bacteria (Carvalho et al., 2010; Jaiswal et al., 2014). They are
commonly found in large numbers wherever their hosts live;
in sewage, in soil, in hatchery, in deep thermal vents, or in
natural bodies of water (Karunasagar et al., 2007; Kim et al., 2012;

Rong et al., 2014). To date, most of the marine viruses reported
are bacteriophages that belong to order Caudovirales, which
is divided into three families: Siphoviridae (icosahedral capsid
with filamentous non-contractile tail), Myoviridae (icosahedral
symmetrical head with a helical contractile tail separated by
neck) and Podoviridae (icosahedral symmetrical head with
very short non-contractile tail; Suttle, 2005; Rao and Lalitha,
2015).

Genetic and Genome of Phages
Bacteriophages are viruses with either DNA or RNA as their
genetic material. They appear in both single and double stranded
forms. The structure is similar to the living organisms found
in the environments; with a polynucleotide chain consisting
of a deoxyribose (or ribose) phosphate backbone to which are
attached to a specific sequence of the four nucleotides – adenine,
thymine (or uracil), guanine, and cytosine. It is exceptional
in single stranded phages where two complementary chain
are paired together in a double helix (Benett and Howe,
1998).

The complete genome sequence of the T4-like phage,
vibriophage KVP40 has been studied in Japan. This vibriophage
belong to Myoviridae family has a double-stranded DNA genome
sequence in length of 244,835 bp, a prolate icosahedral capsid,
and a contractile tail with associated baseplate and extended
tail fibers. KVP40 has a very broad host range covering several
species of Vibrio including Vibrio cholera, Vibrio anguillarum,
Vibrio parahaemolyticus, and the non-pathogenic species Vibrio
natriegens, and Photobacterium leiognathi. The presence of
several copies of genes encoding proteins linked with phage tail
or tail fibers in the KVP40 genome suggest an increased flexibility
in host range adaptation (Miller et al., 2003). Another genome
study reported on Phage vB_VpaM_MAR isolated from fresh
non-treated seawater samples in Mexico. Phage vB_VpaM_MAR
belongs to Myoviridae family has a high specificity to host,
able to lyse 76% of the Vibrio parahaemolyticus strains tested.
Sequence analysis shows the genome of phage MAR is 41,351 bp
double-stranded DNA with a G+C content of 51.3% and encodes
62 open reading frames (ORFs; Villa et al., 2012). A novel
Vibrio vulnificus-infecting bacteriophage, SSP002, belonging to
the Siphoviridae family, was isolated from the coastal area of the
Yellow Sea of South Korea. Host range analysis revealed that the
growth inhibition of phage SSP002 is relatively specific to Vibrio
vulnificus strains from both clinical and environmental samples.
A comparative genomic analysis of phage SSP002 and Vibrio
parahaemolyticus phage vB_VpaS_MAR10 showed differences
among their tail-related genes, supporting different host ranges
at the species level, even though their genome sequences are
highly similar (Lee et al., 2014). Recently, two broad-host range
phage (H1 and H7) were isolated from Danish fish farms.
Both these phages belong to the Myoviridae family and had
large genome size (194 kb; Demeng et al., 2014). Interestingly,
vibriophage genome provides a detailed characterization on the
phage properties as well as understanding of the phage host
range and interaction. This information is essential in order to
overcome the drawbacks of phage therapy and ensure successful
phage application.
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Life Cycle of Phages
As natural viruses of bacteria, phages their infection in their
bacterial host by reversible adsorption to the specific host cell
via specific cell-surface proteins. They then eject their genetic
material into the cytoplasm of the bacterial host (Burrowes
et al., 2011; Molineux and Panja, 2013). Bacteriophages have
two apparent lifecycles; the lytic cycle and lysogenic cycle.
The lytic cycle is a form of infection which results in direct
damage to the bacterial host. It involves a series of events
that occur between attachment of phage particle to a bacterial
cell and release of daughter phage particles. There are four
phases in the lytic cycle; the adsorption of phage to host
cell by binding to specific host, penetration of phage nucleic
acid, intracellular development and finally destruction of the
cell wall, releasing the newly assembled phages into the
environment. In detail, after binding and injection of phage
genome into the host cell, the virulent bacteriophages will
control the host cell’s protein machinery via the expression
of specific enzyme encoded by phage genome. It redirects
the bacterial synthesis machinery to reproduction of the new
phage particles. The production of phage’s enzyme in the later
stage such as lysins and holins induce destruction of the cell
membrane allowing the newly formed phages burst out from
the lysed host cell into the environment (Young, 1992). This
entire process takes about 20 min to 2 h (Rao and Lalitha,
2015).

The lysogenic cycle, by contrast, involves the replication of
phage nucleic acid along with host genes for several generations
without major destruction to the host cell. It is a latent mode
of infection which happens in a very low frequency (Cochran
et al., 1998). The phage genome remains in a repressed state
in the host genome and is replicated as part of the bacterial
chromosome until lytic cycle is induced. Hence, temperate phages
are not suitable for direct therapeutic use as it may mediate
transduction by transferring genetic material of one bacterium to
another. This process may lead to the development of antibiotic
resistance or even increased virulence of the host by acquiring
genes from the prophage. Lytic bacteriophages which replicate
exponentially and destroy the bacterial host regardless of their
antibiotic resistance profile, are more suitable for the biotherapy
purposes (Sillankorva et al., 2012).

PHAGE THERAPY

Bacteriophages have been used in many countries since 1929 –
before the discovery of broad spectrum antibiotics – as a
therapeutic agent against infectious disease (Tan et al., 2014).
The first bacterium tested against bacteriophage therapy was
Vibrio cholerae but the phage activity was reported to be higher
in vitro compared to in vivo (Adams, 1959). The clinical use
of phages as therapeutic agents and phage research started to
decline and eventually ceased due to the limited knowledge
of phage properties and contradictory results from various
published studies. The therapeutic use of bacteriophages was
further reduced after the emergence of antibiotics (Tan et al.,
2014) although phage research and development still remained

active in former Soviet Union and Poland (Sulakvelidze et al.,
2001). Interestingly, the therapeutic value of bacteriophages has
been reevaluated over the most recent decade because of the rise
of multidrug resistant bacteria.

Vibrio sp. such as Vibrio harveyi, Vibrio parahaemolyticus,
Vibrio campbellii are known to be the causative agent of luminous
vibriosis disease in shrimp farm. This has resulted in 50–100%
mortality rate among shrimps and cause of Vibrio infection in
human (Shruti, 2012; Letchumanan et al., 2014; Wang et al., 2015;
Tan et al., 2016). Bacteriophages isolated from hatchery water
have proven to be effective in controlling luminous vibriosis
disease, suggesting the phage’s potential as a biocontrol agent
for luminous vibriosis (Table 1). Vinod et al. (2006) reported
the isolation and trial of a phage that has potential to control
population of pathogenic Vibrio harveyi in a hatchery setting. The
study isolated a double stranded DNA bacteriophage of Vibrio
harveyi belonging to the family Siphoviridae from shrimp water
farm from the west coast of India. The application of phage
to control luminescent vibriosis of shrimp larvae was tested in
laboratory and hatchery trial. In the laboratory microcosm, a set
up containing post larvae of Penaeus monodon was exposed to
Vibrio harveyi and the level of the pathogen was around 106

cfu ml−1. The treatment with 100 ppm phage twice has led
to two log reduction of Vibrio harveyi counts. Larval survival
without treatment was only 25% at 48 h but 80% with treatment
with two doses of bacteriophage. In the hatchery trial setting,
three sets of 500 L tanks containing 35,000 nauplii of Penaeus
monodon was reared for 17 days. The antibiotic treated tanks
(treated with oxytetracycline 5 ppm and kanamycin 100 pm daily)
resulted to initial reduction of luminous bacterial counts but after
48 h, the disease appeared again and proliferated to a level of
about 106 ml−1. While in the tanks treated with bacteriophage,
luminous bacteria were not detected throughout the 17-day study
period. The luminous bacteria proliferating in control tanks
appeared to be virulent, causing mortalities in the larvae. Overall,
the survival rate in control tank was only 17%, while in antibiotic
treated tanks it was 40% and in the bacteriophage treated tank, it
was 86%. Vinod et al. (2006) concluded that since there is a ban
on the use of most antibiotics in aquaculture, bacteriophages have
the potential to manage luminous vibriosis in the aquaculture
setting.

An in vivo study utilizing bacteriophage to control luminous
vibriosis has further proven phage’s potential as a biocontrol
agent of luminous vibriosis in aquaculture (Karunasagar et al.,
2007). The study isolated four bacteriophages; Viha9, Viha10,
Viha11 from oyster, and Viha8 from hatchery water. The
morphological characteristic of both phage Viha8 and Viha10 had
a non-contractile tail and contained double stranded DNA, hence
both the phages were confirmed as members of Siphoviridae.
Both Viha8 and Viha10 were subjected to laboratory trial and
hatchery trials. The results from the laboratory trials revealed that
phage Viha10 was able to lyses 70% of Vibrio harveyi strains tested
while Viha8 had the ability to lyses 68% of the Vibrio harveyi
strains. The Vibrio harveyi strains that were not able to be lysed
by Viha10 were lysed by Viha8, and thus using this combination
of Viha8 and Viha10, 94% of the Vibrio harveyi strains tested were
lysed. Hence, Karunasagar et al. (2007) suggested the use of Viha8
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and Viha10 combination as the biocontrol for Vibrio harveyi in
hatchery trials. In the hatchery trials, four tanks (A, B, C, and D)
of Penaeus monodon larvae were infected with Vibrio harveyi as
evidenced by luminescence. Tank A and B were treated with both
phage Viha8 and Viha10 alternately; first day with bacteriophage
Viha10 at a level of 2 × 106 pfu ml−1 and the following day,
phage Viha8 was used at the same concentration. This treatment
regimen was repeated on the third day with Viha10 and fourth
day with Viha8. On the other hand, tank C was treated with
oxytetracycline and tank D with kanamycin. The results showed
that the survival rate of Penaeus monodon larvae in bacteriophage
treated tank was 86–88% while the antibiotic treated tanks was
65–68% survival rate. The study concluded bacteriophages were
effective in controlling luminous vibriosis in hatchery settings
(Karunasagar et al., 2007).

Further interest on bacteriophage’s potential as a biocontrol
agent has led to the discovery and isolation of a novel phage
in Korea. Phage pVp-1 was isolated from the coastal water
of Yellow Sea in Korea demonstrated efficiency in controlling
Vibrio species (Kim et al., 2012). In addition, this novel marine
siphovirus was also reported to be effective infecting Vibrio
parahaemolyticus ATCC33844, a clinical strain isolated from
patient with food poising in Japan (Kim et al., 2012). Jun
et al. (2014b) demonstrated how phage pVp-1 was utilized
against a multiple-antibiotic resistant Vibrio parahaemolyticus
pandemic strain, CRS 09-17. In the study oysters infected with
CRS09-17 strain was treated with pVp-1 by bath immersion
and surface application. The two different method of phage
treatment was applied considering the oysters processing; oysters
infected model of Vibrio parahaemolyticus encountered during
aquaculture or fishery markets; and second, the oysters surface
contamination model of Vibrio parahaemolyticus, which are
commonly encountered at restaurants. After 72 h of phage
application with bath immersion, bacterial growth reduction
was observed to be 8.9 × 106 CFU/ml (control group) to
1.4 × 10 CFU/ml (treatment group). When pVp-1 was surface-
applied on the flesh of oysters after CRS 09-17 inoculation,
bacterial growth was properly inhibited. After 12 h of phage
application on the surface of oysters, bacterial growth inhibition
was revealed to be 1.44 × 106 CFU/ml (control group) to
1.94 CFU/ml (treatment group). Overall, the phage application
to various aquaculture situation emphasizes the potential use
of the phage to avoid Vibrio parahaemolyticus infection from
aquaculture to consumption (Jun et al., 2014b).

The Siphoviridae phage pVp-1 was used in another in vivo
study by Jun et al. (2014a) involving mice infected with Vibrio
parahaemolyticus. The efficacy of phage therapy was evaluated
in two experiments using the Vibrio parahaemolyticus CRS 09-
17 infection mouse model. In the first experiment, two groups
of mice (control/treatment; five mice in each group) were
challenged by an IP injection of an LD50 of CRS 09-17. Each
mouse was treated with a single IP injection of phage pVp-
1 (2.0 × 108 PFU per mouse) or PBS 1 h after the bacterial
challenge (2.0× 107 CFU per mouse). In the second experiment,
all conditions were similar to those of the first study except that
the bacterial challenge (2.0 × 107 CFU per mouse) and phage
treatment (2.0 × 108 PFU per mouse) were administered orally.

Both experiments were repeated five times, and the health of
the mice was monitored for 72 h. In an additional study, two
groups (five mice per group) were not challenged with bacteria
and received only phage (2.0 × 1011 PFU per mouse) by IP and
oral routes. The health of these mice was monitored for 28 days.
The study concluded that phage-treated mice exhibited from a
Vibrio parahaemolyticus infection and survived lethal oral and
intraperitoneal bacterial challenges (Jun et al., 2014a).

Rong et al. (2014) reported the effectiveness of phage VPp1
application to reduce the population of Vibrio parahaemolyticus
in the oyster depuration. VPp1, a lytic phage that was isolated
from sewage was capable of reducing Vibrio parahaemolyticus
infection on oysters by 2.35–2.76 log cfu/g within 36 h (Rong
et al., 2014). Another study isolated a lytic phage named as
PW2 from shrimp pond water in Songkhla Province, Thailand.
The morphological characteristics showed that this phage has
an icosahedral head and a long non-contractile tail, which can
be categorized under the order Caudovirales and family of
Siphoviridae. This phage PW2 showed lytic properties against
Vibrio harveyi. Based on previous studies, most of the Vibrio
harveyi phages were found to be siphophages with double
stranded DNA (Pasharawipas et al., 2005; Vinod et al., 2006;
Karunasagar et al., 2007; Jun et al., 2014a,b). However, Vibrio
harveyi phages from other families such as Myoviridae and
Podoviridae were also reported (Oakey and Owens, 2000; Oakey
et al., 2002; Shivu et al., 2007).

Cholera, a water borne disease continues to be a major
public health concern in developing countries and re-emerging
in countries where it disappeared long time ago (World Health
Organization [WHO], 2008). The occurrence of multidrug
antibiotic resistant strains of Vibrio cholerae in the environment
has prompted the search of alternative source of treatment such
as bacteriophage therapy. The usefulness of lytic cholera phage
as a prophylactic agent has been studied in many countries
(Monsur et al., 1970; Marcuk et al., 1971). Jaiswal et al. (2013)
studied the efficacy of five lytic vibriophage cocktail in treating
Vibrio cholerae 01 biotype El Tor serotype Ogawa MAK 757
(ATCC 51352) infection in rabbit model. It was observed
that oral administration of phage cocktail after oral bacterial
administration reduced the shedding of bacteria significantly
(p < 0.01). The rabbits appeared normal without any toxicity
evidence. The study concluded that phage cocktail was more
potent as a lytic agent compared to as individual phages. An oral
administration of suitable phage cocktail would be suitable as
an alternative to antibiotic treatment in case of cholera infection
(Jaiswal et al., 2013).

An oral phage cocktail (ATCC- B1, B2, B3, B4, B5) was
administrated in adult mice model in a study by Jaiswal et al.
(2014). The study performed a comparative analysis between
phage cocktail, antibiotic, and oral rehydration treatment for
orally developed Vibrio cholerae infection. It was reported that
the genome size of vibriophage B1, B2, B3, B4 was around
40 kb and phage B5 had a genome size of around 100 kb. In
vitro characteristic of vibriophages showed theses phages could
withstand variety of pH level (pH 2–pH 12) as well as temperature
range of 25–60◦C. The study reported that combination of five
vibriophages cocktail reduced the number of Vibrio cholerae
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cells in the orally infected mice compared to antibiotic and oral
rehydration treatment (Jaiswal et al., 2014). A previous study
analyzed the usefulness of phage cocktail in a Vibrio cholerae 01
infected RITARD (removable intestinal tie-adult rabbit diarrhea)
model experiment. The study concluded that cocktail of phage
could provide significant protection and act as prophylaxis
against Vibrio cholerae infection (Bhowmick et al., 2009).

In general, the selection of appropriate bacteriophage is a key
factor in the success of phage therapy of Vibrio species (Mateus
et al., 2014). Based on the studies discussed, bacteriophage
belonging to Siphoviridae family is selected to control Vibrio
species. Siphoviridae phage is reported to have a specific host
range and closely related to species of Vibrio harveyi, Vibrio
parahaemolyticus, and Vibrio campbellii (Crothers-Stomps et al.,
2010). In addition phage cocktails have been demonstrated
to be more effective than individual phages in treatment of
Vibrio cholerae infection (Bhowmick et al., 2009; Jaiswal et al.,
2014). By making a phage cocktail, it would become easier to
treat a wide range of drug-resistant bacterial infections (Golkar
et al., 2014). Although bacteriophages are isolated from different
environmental source such as shrimp hatchery, sewage, ponds
or from aquatic animals, they still show the same bacteriolytic
activity and possess advantages over conventional antibiotics
(Gutierrez et al., 2010).

ADVANTAGES OF PHAGE THERAPY

Bacteriophages are natural antibacterial agents that are able to
regulate bacterial populations by inducing bacterial lysis. Phages
are reported to be active against both Gram-negative and Gram-
positive bacteria including multidrug resistant pathogens in the
environment (Biswas et al., 2002; Matsuzaki et al., 2003; Wang
et al., 2006; Vinodkumar et al., 2008; Wittebole et al., 2014).
Bacteriophages have a number of desirable properties that make
them compelling candidates for tackling antibiotic resistance in
bacteria. A bacteria is unable to regain its viability after been
lysed by lytic phage; by contrast antibiotic therapy may not kill
the targeted bacteria, facilitating the development of antibiotic
resistance (Stratton, 2003).

The high specificity for their host cell is another advantage
of bacteriophages relative to antibiotics. Phages are very specific
to their host thus reducing the chances of secondary infections.
They do not affect or alter the gut microbiota nor change
the organoleptic properties of food products (Hagens and
Offerhaus, 2008). Phages are specific bacterial host killers and
do not affect normal microbiota compared to antibiotics which
affect bacterial cells non-selectively (Rao and Lalitha, 2015).
Additionally, there is no adverse effects reported during or after
the phage treatment whereas allergies, secondary infections and
bacterial resistance are common side effects seen after antibiotic
treatments (Sulakvelidze et al., 2001).

Phages have the capability to replicate selectively at the
site of infection where they are needed to lyse their bacterial
hosts in contrast to antibiotics which distribute throughout the
body fluids and tissues based on their inherent pharmacokinetic
properties rather than becoming concentrated at the site of

infection (Golkar et al., 2014). Phages are very environmentally
friendly and evolved based on natural selection. Isolating and
identifying suitable phages for therapy is a relatively simple,
rapid process compared to development of new antibiotics which
takes several years and require costly clinical trials prior to use
(Weber-D et al., 2000). Furthermore, owing to the abundant
and ubiquitous nature of bacteriophages, phages against the
major pathogenic bacteria are readily discovered and isolated
from environments that are habitats for host bacteria, especially
from sewage, soil, water, and waste materials which contain high
bacterial concentration, hence aiding in lowering the cost of
production (Vinod et al., 2006; Skurnik et al., 2007). Phages are
considered to have low environmental impact as they consist
of nucleic acids and proteins only and have narrow host ranges
(Loc-Carrillo and Abedon, 2011). In addition, phages can easily
be applied as sprays or by directly mixing with water. In
2006, the Food and Drug Administration (FDA) approved a
bacteriophage mixture, called a “lytic cocktail,” in a spray-on
form designed to reduce the presence of Listeria monocytogenes
bacteria in meat and deli products (Zach, 2010). For example,
ListShieldTM (Intralytix, Inc.) is a commercial product marketed
in a concentrated aqueous phage that is stored in 2–6◦C. For
direct food applications, the diluted working solution is typically
applied directly on food surfaces by spraying at a concentration of
approximately 1–2 mL per 250 square cm of food product surface.
The recommended application rate for foods with complex
surfaces is usually 1–4 mL of the diluted working solution
per pounds of food. While, for environmental applications, the
diluted working solution is typically applied onto the surfaces by
spraying, or with a cloth, mop, or sponge, so that the targeted
surface is thoroughly covered. About 50 mL of the diluted
working solution is able to treat approximately 4 ft2 of surface.

Currently, Biologix, an Australian biotechnology company
is developing phage therapy for Vibrio sp. associated with
mortalities in the aquaculture. Jafral, an independent contract
manufacturing organization (CMO) and contract research
organization (CRO) located in Slovenia has been manufacturing
bacteriophages. Here, bacteriophages has been successfully
manufactured using manufacturing processes that have up to 10-
time higher productivity. The end product can be used either in
food industry or for animal and human treatments where it is
desirable that phage titres are high and impurities levels are low.

The usage of antibiotics in the aquaculture industry has led
to the increase of antibiotic resistant bacteria and development
of ARGs in the environment which shade health risks to
humans and animals (Kemper, 2008; Letchumanan et al., 2015a).
Bacteriophages have the potential to reduce the dependency of
aquaculture industry on use of antibiotics. The phages could be
utilized instead of antibiotics to control bacterial infections that
occur in aquaculture industry. Hence, plasmid mediated ARGs
profile among bacteria would reduce when there is no antibiotics
present in the environment. This eventually will preserve the
ecosystem and reduce the effects on humans and animals.

In addition, bacteriophages have ability to disrupt bacterial
biofilms (Azeredo and Sutherland, 2008). Bacteriophages have
the capabilities to produce depolymerases which could hydrolyze
extracellular polymers in bacterial biofilms. The use of phages
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FIGURE 1 | Illustration on bacteriophage application in the aquaculture and the advantages. (1) Bacteriophages are isolated from environmental sources
such as hatcheries, sewage, ponds, or aquatic animals. (2) The isolated bacteriophage are purified and identified. The three common phages used as biocontrol
agent for Vibrio sp; Siphoviridae, Myoviridae, and Podoviridae. (3) In the hatchery, the bacteriophage is added to the hatchery water. The amount of phage need to
be added depends on size of the pond and amount of shrimps or cockles or fish in the pond. (4) Once added, the bacteria on host cell will undergo lytic cycle.
Adsorption step would take place when the phages come in contact with the infected host cell. Then the phage’s DNA would penetrate into the host cell and
replicate. It is followed by transcription and translation of the phage and DNA. Then the phage would assemble, host will lysis and phages will be released out from
the host cell. (5) Bacteria such as Vibrio sp. would be eliminated from the hatchery. (6) Advantages of bacteriophages applications in a bacterial infection.

were reported useful in the treatment of biofilm forming
pathogens such as Pseudomonas aeruginosa (Fu et al., 2010),
Escherichia coli (Doolittle et al., 1995), and Staphylococcus aureus
(Sass and Bierbaum, 2007). It has been reported that around
80% of bacterial cases in the United States are associated with
biofilms (Janssens et al., 2008). Biofilm has been a problematic
disease in many food industries including seafood processing
(Shikongo-Nambabi, 2011), dairy processing (Chmielewski and
Frank, 2003), poultry processing (Harvey et al., 2007), and meat
processing (Sofos and Geornaras, 2010). A study in USA has
offered an insight into the potential use of phages to treat biofilm
diseases by using an in vitro catheter model that was treated with
phages. The results demonstrated that while phage treatment
never fully prevented biofilm formation, biofilm biomass and
cell density was significantly reduced (Curtin and Donlan, 2006;
Fu et al., 2010). Luo et al. (2015) isolated two phages P4A and
P4F which belong to the Siphoviridae family from seawater of an
abalone farm and applied the phages to reduce Vibrio biofilm.

In the study, the both phages were able to bring about 2 logs
reduction in a Vibrio harveyi biofilm cell density after 24 h of
phage treatment (Luo et al., 2015).

DRAWBACKS OF PHAGE THERAPY

Despite all the listed advantages above, bacteriophage therapy
does have its drawbacks. One of those that caused much
concern is the potential emergence of phage-resistant
bacteria, similar to that seen with antibiotic treatments.
Typically, resistance would develop toward a particular
phage when the bacterial surface proteins facilitating phage
attachment are lost or lack of adsorption, thus preventing
the phage from infecting its host. However, from the
literature, the rate of developing resistance to phages is
approximately 10-fold lower than to antibiotics (Tanji
et al., 2004). Besides, other concern of Vibrio phage therapy
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is that some bacteriophage may be involved in the transfer of
virulence genes to the bacteria. It was reported that toxicity of
Vibrio harveyi to Penaeus monodon is induced by bacteriophage
(Munro et al., 2003). Therefore, before using a bacteriophage for
therapy it is important to test if they carry any virulence genes
and would it be safe to use the bacteriophage (Vinod et al., 2006).

Another potential drawback on phage therapy is the
bacterial defense system called CRISPR/Cas (clustered regularly
interspaced short palindromic repeats). This CRISPR base
immunity acts by integrating short virus sequences in the
bacteria’s CRISPR locus, allowing the bacteria to recognize
and clear infections. However, it has been demonstrated that
this system can be utilized by the bacteriophages to promote
infection. Vibrio cholerae ICP1 phages carry a Type I-F CRISPR–
Cas system that targets a host locus, PLE, containing an anti-
phage system. Vibrio cholerae ICP1 phage uses the CRISPR/Cas
system to target the PLE for host cell destruction and successfully
replicate. Due to bacteria cell death and DNA damage by lytic
phage infection, CRISPR-mediated DNA cleavage of the PLE
does not affect Vibrio cholerae ICP1 infection (Seed et al.,
2013).

In addition, there is also a need to overcome the
understandable stigma among consumers regarding safety of
intentional consumption of viruses in spite of certification by the
regulatory bodies. Additional work should be carried out in order
to assess consumer knowledge and acceptance of phage therapy
followed by targeted educational campaigns to raise awareness
and acceptance.

CONCLUSION

Vibrio species infection poses a threat in many fields, the
treatment and control of which is currently dependent on
antibiotic therapy; however, the use of antibiotics needs to be
restricted due to the increase of antibiotic resistant bacteria
(World Health Organization [WHO], 2006). Bacteriophage
therapy is regarded as a highly viable alternative to prevent
and control bacterial infections and in some conditions it
has been proven to be superior to antibiotics. A schematic
figure is been represented to illustrate the application of
bacteriophage in the aquaculture and the advantages (Figure 1).
The phages poses great advantages such as having host specificity,
environmental friendly, readily discovered and isolated from
the environment, and cost effective compared to antibiotics.
Bacteriophages have the ability to control luminous vibriosis
among Vibrio species (Vinod et al., 2006; Karunasagar et al.,
2007). The phages have great potential as a bio-control agent
to control and inhibit virulence of Vibrio species isolated
from both clinical and environmental samples (Jassim and
Limoges, 2014). In addition, it can be utilized in the agriculture
and aquaculture industries instead of antibiotics to control
bacterial infections that occur in aquaculture industry. This
eventually will reduce the dependency toward antibiotics that
leads to resistant genes profile in the environment (Golkar

et al., 2014). Bacteriophages – being natural products are
also generating less adverse effects compared to antibiotics.
In 2006, US Food and Drug Administraion (FDA) approved
the use of commercial phage cocktail ListShieldTM targeting
Listeria monocytogenes. This is a confirmation that FDA has
viewed phages are safe for human application and opens
the doors for phage commercialization for human application
and consumption (Housby and Mann, 2009). In March 2016,
Intralytix, a biotechnology company received USDA, NIFA
Phase II SBIR Grant to develop a phage based application to
protect hatchery raised oysters from Vibrio tubiashii and Vibrio
coralliilyticus. Moreover, there are many vibriophages that has
been patented including phage patent number CN 103992990
A, CN 102524131 B, and US 20140105866 A1. The phage
(US 20140105866 A1) is specific against Vibrio anguillarum
was identified belonging to Siphoviridae family with a genome
size of 48 kb. It possess prophylaxis properties, control and/or
treatment of infection caused by Vibrio anguillarum in all types
of species of fish, mollusks and crustaceans (Espejo et al.,
2014). A lytic phage VP4B was reported to cause a significant
growth inhibition effect of pathogenic Vibrio harveyi, and this
patented phage can be used for biological prevention or control
of vibrio diseases in mariculture (CN 103555671 A; Zhuhua
et al., 2014). Qiu et al. (2012) reported a technique that utilize
aquatic invertebrate larvae and adults to harmlessly carry Vibrio
phages. The phages obtained through this technique are not
virulent and can retain the lysis activity for host bacteria during
a long period of time (CN 102550458 A). Jinyong et al. (2012)
patent a phage BPH-VP-1 (CN 101798568 B) that exhibited broad
lysis properties against Vibrio parahaemolyticus. It was reported
that phage BPH-VP-I could be used alone or in combination,
and as fungicides sprayed on food production plants in order
to control Vibrio parahaemolyticus contamination. In summary,
all the above listed advantages make bacteriophage therapy an
attractive and promising tool as a biological control of bacterial
infections.
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