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Abstract: The most common medicinal claims for cannabis are relief from chronic pain, stimulation
of appetite, and as an antiemetic. However, the mechanisms by which cannabis reduces pain and
prevents nausea and vomiting are not fully understood. Among more than 450 constituents in
cannabis, the most abundant cannabinoids are ∆9-tetrahydrocannabinol (THC) and cannabidiol
(CBD). Cannabinoids either directly or indirectly modulate ion channel function. Transient receptor
potential vanilloid 1 (TRPV1) is an ion channel responsible for mediating several modalities of pain,
and it is expressed in both the peripheral and the central pain pathways. Activation of TRPV1 in
sensory neurons mediates nociception in the ascending pain pathway, while activation of TRPV1
in the central descending pain pathway, which involves the rostral ventral medulla (RVM) and the
periaqueductal gray (PAG), mediates antinociception. TRPV1 channels are thought to be implicated
in neuropathic/spontaneous pain perception in the setting of impaired descending antinociceptive
control. Activation of TRPV1 also can cause the release of calcitonin gene-related peptide (CGRP) and
other neuropeptides/neurotransmitters from the peripheral and central nerve terminals, including
the vagal nerve terminal innervating the gut that forms central synapses at the nucleus tractus
solitarius (NTS). One of the adverse effects of chronic cannabis use is the paradoxical cannabis-
induced hyperemesis syndrome (HES), which is becoming more common, perhaps due to the wider
availability of cannabis-containing products and the chronic use of products containing higher
levels of cannabinoids. Although, the mechanism of HES is unknown, the effective treatment
options include hot-water hydrotherapy and the topical application of capsaicin, both activate TRPV1
channels and may involve the vagal-NTS and area postrema (AP) nausea and vomiting pathway.
In this review, we will delineate the activation of TRPV1 by cannabinoids and their role in the
antinociceptive/nociceptive and antiemetic/emetic effects involving the peripheral, spinal, and
supraspinal structures.

Keywords: cannabinoids; ∆9-tetrahydrocannabinol; cannabidiol; TRPV1; resiniferatoxin; antinociception
and antiemesis

1. Introduction

The effects of cannabis have been known since 2737 BC, when the Chinese emperor,
Shen-Nung, used it to treat symptoms associated with gout. Since then, there have been
many claims of the beneficial effects of cannabis, while at the same time, studies have raised
skepticism regarding its usefulness as an antinociceptive and antiemetic agent [1,2]. In this
review, we will focus on the transient receptor potential vanilloid 1 (TRPV1) ion channel
and its interactions with cannabinoids.

Marijuana (cannabis) refers to both the whole marijuana plant as well as a raw, unpro-
cessed preparation. Often, the term “medical marijuana” is used, but these preparations are
not actually approved by the FDA as medicines. The identified phytochemicals are called
cannabinoids. Although there are more than 450 phytochemicals in this plant, the major
components are ∆9-tetrahydrocannabinol (THC) and cannabidiol (CBD) in the Cannabis
sativa species, and the hemp plant also has high concentrations of CBD [3,4].
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Cannabis has been used for centuries for recreational purposes because of its psy-
choactive properties. It has been well-characterized that THC exerts its effects on specific
receptors, which have been identified as cannabinoid receptor 1 (CBR1) and cannabinoid
receptor 2 (CBR2). CBR1 is distributed in the peripheral and central nervous systems,
and the central CBR1 mediates the psychoactive effects of THC. The effects of CBR1 are
mediated by G-protein-coupled receptor pathways [5–7]. Meanwhile, CBR2 is primarily
expressed in the immune system and the nervous system and it modulates responses via
G-protein-coupled receptors as well [5–7].

CBD has no psychoactive properties and has been utilized in the treatment of certain
childhood epilepsies [8,9]. Unlike THC, a specific receptor for CBD has not been identified,
but there are studies showing that it interacts with TRPV1 to exert some of its effects [10–12].
The FDA has also approved a CBD-based liquid medication, Epidiolex (cannabidiol), which
has been used for the treatment of two forms of severe childhood epilepsy, Dravet syndrome
and Lennox-Gastaut syndrome [13]. This effect is specific to formulations containing higher
amounts of CBD. It appears that CBD reduces both the frequency and the severity of the
episodes. There is evidence that TRPV1 may be involved in febrile epilepsy [14].

TRPV1, a nonselective cation channel with a high Ca2+ permeability is expressed
in the small-diameter sensory neurons and supraspinally in the central descending pain
pathways that regulate nociception [15–22]. In fact, activation of TRPV1 in the ascending
pain pathway mediates nociception, whereas activation of TRPV1 in the descending pain
pathway mediates antinociception.

Several transient receptor potential (TRP) channels have been cloned and character-
ized. There are 6 families of TRP channels: TRP Vanilloid 1–4 (TRPV1–4), TRP Canon-
ical (TRPC), TRP Melastatin (TRPM8), TRP Ankyrin (TRPA), TRP Polycystin (TRPP),
and TRP Mucolipin (TRPML) [23–25]. TRPV1 channels are activated by phytochemicals,
such as capsaicin, an ingredient in hot chili peppers (Capsicum annuum or frutescens), and
by resiniferatoxin (RTX), which can activate TRPV1, which is obtained from a spurge
(Euphorbia resinifera/poissonii) [15,16,26–28]. Interestingly, cannabinoids obtained from
Cannabis sativa/indica/ruderalis have been shown to activate TRPV1; however, the major psy-
choactive cannabinoid ∆9-tetrahydrocannabinol (THC) does not activate TRPV1, whereas
the other major cannabinoid, cannabidiol (CBD) is a potent activator of TRPV1 [9–12]. Other
minor cannabinoids have also been shown to activate TRPV1 [10]. Cannabigerol (CBG)
is reported to act as a ligand for TRPV1 [10]. THC has been shown to potently activate
TRPV2 [10,29]. A widely used CBR1 agonist, WIN55, 212-2, has been shown to exert some of
its effects through the activation of TRPV1 and TRPA1 [30–32]. Also, it should be considered
that ajulemic acid is a metabolite of THC which shows anti-inflammatory and antifibrotic
effects without exerting psychoactive properties [33]. Tetrahydrocannabivarin (THCV and
THV) is a homologue of THC which acts as an antagonist of CBR1 [5]. Anandamide (AEA)
is an endocannabinoid that activates both CBR1 and TRPV1 receptors [34–36].

There are complex effects resulting from interactions between the effects of THC and
CBD. The actions of CBD on TRPV1 also have an impact on this interaction. Chronic
inflammatory pain is mediated by the sensitization of TRPV1 by various mechanisms,
including its phosphorylation [37–39]. Since CBR1 receptors are negatively coupled to
cAMP via Gi, CBR1-mediated dephosphorylation of TRPV1 may indirectly affect the
downstream effects of TRPV1 by CBD.

One example of the interplay between THC and CBD includes the way in which CBD
reduces the psychosis-like effects of THC. There are studies suggesting that CBD may have
its own antipsychotic effects [40–44]. In animal models, acute exposure to THC affects
cognitive behavior; it induces dose-related effects on decision making, abstract-thinking
abilities, and executive functions [45–47]. The most remarkable effects are on the short-term
working memory, verbal skills, and attention deficits [45–51]. Interestingly, CBD is able to
reduce THC-induced cognitive impairment [43]. As discussed earlier, most preparations
contain unknown amounts of THC and CBD; therefore, the discrepancies found in studies
as to the effects of CBD could be attributed to these interactions.
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Cannabis is also used as an antiemetic agent in various conditions. One of the side
effects of the chronic and improper use of cannabis is hyperemesis syndrome (HES),
which is becoming more common with increased use as a result of the legalization of
marijuana [52–55]. Nausea and vomiting result from complex interactions between afferent
and efferent pathways of the gastrointestinal tract, central nervous system, and autonomic
nervous system [52,53]. The role of TRPV1 has been demonstrated by experiments con-
ducted with resiniferatoxin (RTX), a potent TRPV1 agonist. Lower concentrations of RTX
act as an antiemetic, while higher concentrations induce emesis. The use of CBD alone, via
the activation of TRPV1, is likely to induce antiemetic effects [10]. However, when TRPV1
is downregulated by the activation of CBR1-receptor-mediated dephosphorylation, this
could result in HES [6,7]. As indicated above, the combination ratios of THC and CBD
are critical. Specific formulations have been approved by the FDA, such as dronabinol
(Marinol) and nabilone (Cesamet). These contain THC as the active ingredient, which can
be useful in treating chemotherapy-induced nausea and as an appetite stimulant [56].

Given the outcomes of recent legislation, it is likely that marijuana will be legalized
in many states in the U.S. and in other parts of the world in the future [54,55]. There-
fore, rigorous scientific research must be conducted so as to identify the specific targets,
pharmacological effects, and the pharmacokinetic and pharmacovigilance profiles for the
effective use of cannabis, and that should be supported by evidence-based clinical trials.
The purported uses of cannabinoids are for relief of pain and for prevention of nausea
and vomiting. The mechanisms underlying these effects are not fully understood. In
this review, we will delineate the role of TRPV1 in inducing these antinociceptive and
antiemetic properties. We will also discuss the role of TRPV1 in the possible reduction of
the antinociceptive effect and in avoiding hyperemesis syndrome (HES) following the use
of cannabinoids.

2. Role of TRPV1 in Cannabinoid-Induced Antinociception

Pain is carried from the periphery by nociceptors Aδ and C-fibers, which are thinly
myelinated and unmyelinated, respectively. These fibers are further subdivided by their
sensitivities to physical stimuli: the C-fibers that are responsible for sensing mechanical and
heat stimuli are classified as CMH fibers, and there is also a set of C-fibers which is mechano-
insensitive, classified as CMi fibers [56,57]. These nociceptors are TRPV1-expressing pep-
tidergic (CGRP and substance P (SP)-releasing) fibers. Neuropathic pain occurs as a result
of the abnormal activity of Aδ and C nociceptors, which is associated with several condi-
tions, such as peripheral nerve injuries [58], painful DPN [59,60], painful peripheral herpes
neuropathy (PHN) [61,62], painful HIV-associated neuropathy (HIV-AN) [63], complex
regional pain syndrome (CRPS) [64], small-fiber neuropathy in metabolic syndrome [65],
neuropathic pain manifestations in Fabry disease [66], and chemotherapy-induced periph-
eral neuropathy [67,68]. Cannabis use has been claimed to be useful in relieving pain in
these conditions [1,2,69]. In a small number of patients with HIV-AN, one study showed a
30% reduction in reported pain after a week of smoking medicinal cannabis [70].

The classic behavioral effects of cannabis in rodents are called a “tetrad”, which in-
cludes the reduction in body temperature, analgesia, reduced locomotion, and catalepsy [71].
Hypothermia could be explained by the activation of TRPV1, and analgesia could be ex-
plained by the desensitization/downregulation of peripheral TRPV1 or by the activation of
central TRPV1 in the descending pain pathway [72,73]. The interactions of CBD and THC
could occur through TRPV1 channels. CBD potentiated the suppression of locomotion
and reduced hypothermia caused by THC when administered in a 1:1 (CBD:THC) ratio in
mice [74], but it potentiated both the suppression of locomotion and hypothermia when
administered in a 10:1 (CBD:THC) or a 50:1 (CBD:THC) ratio [75]. Administration of CBD
in rats (20 mg/kg, i.p.) prolonged the duration of hyperthermia and hypolocomotion [76].
These studies suggest interactions between THC and CBD, as well as between TRPV1
and CBD.
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TRPV1 channels are expressed in the peripheral nerve terminals of nociceptors (Aδ

and C-fibers). Upon activation, it depolarizes the nerve terminals, generates action po-
tentials, and propagates noxious information to the higher brain centers via the spinal
cord [15,21,77–79]. Activation of TRPV1 can also cause the release of neuropeptides, such as
CGRP and SP, from the peripheral and central nerve endings. CGRP is known to be a potent
vasodilator [80,81]. Blood vessels are strongly stained for TRPV1 [82]. Cannabinoids have
been shown to exert powerful hypotensive effects [83]. TRPV1 channels are also expressed
in the central nerve terminals of sensory neurons, where peripheral afferents form synapses
at the spinal dorsal horn, vagal nerve afferents at the NTS, and trigeminal nerve afferents at
the caudal trigeminal nucleus [84–90]. TRPV1 channels are expressed in specific locations
in the higher centers of the brain, such as the descending pain pathway involving the
rostral ventral medulla (RVM) and the periaqueductal gray (PAG) [91–96]. However, there
are controversies regarding the extent of TRPV1 expression in the central nervous system.
Studies have shown that its expression is restricted to the peripheral nervous system [82].
TRPV1 channels expressed in the periphery mediate nociception, whereas TRPV1 channels
expressed in the descending pain pathway mediate antinociception. The sustained activa-
tion of these channels at nerve terminals can cause the desensitization/depolarization block
of the nerve terminals, preventing the generation and propagation of action potentials.
RTX, an ultrapotent agonist of TRPV1, is very effective in inducing the depolarization block
resulting in antinociception [26–28].

In order to account for the interaction, the effects of phosphorylation on TRPV1 must
be taken into consideration. PKC- and PKA-mediated phosphorylation robustly poten-
tiates TRPV1 functions by sensitizing the receptors, and thereby the nociceptors (C and
Aδ fibers) [16,37–39]. This effect underlies the basis for inflammatory pain and the devel-
opment of TRPV1 antagonists as analgesic and anti-inflammatory agents to treat certain
modalities of pain. However, in clinical trials, it became apparent that the TRPV1 blockade
increased the core body temperature, which led to the abandonment of developing TRPV1
antagonists as analgesics [97]. Also, it should be taken into consideration that the block-
ade of central TRPV1 in the descending pain pathway mediates antinociception [91–96].
In regard to cannabinoids, if CBR1 and TRPV1 are expressed in the same neuron, the
CBR1-mediated reduction in cAMP levels could downregulate TRPV1 expression and
function by reducing the phosphorylated state of the channel. Therefore, when a mixture
of THC and CBD in a preparation is consumed or administered, depending upon the
quantities of each of the active ingredients, the activation of TRPV1 by CBD and the down-
regulation of TRPV1 by the activation of CBR1 could mutually nullify the effects [98–102].
Some of the well-known formulations, such as nabiximols, have a combination of THC
and CBD [103,104]. Another added complexity is that some of the minor cannabinoids,
such as THCV, act as antagonists of CBR1 [10]. A careful analysis should be carried out
using pure ingredients with known proportions in the mixtures to delineate the ultimate ef-
fects of cannabinoids [104]. The United Kingdom, Canada, and several European countries
have approved nabiximols (Sativex), which is an equal ratio (1:1) mixture of THC (2.7 mg)
and CBD (2.5 mg), formulated as a mouth spray to alleviate neuropathic pain, incontinence,
spasticity, and multiple sclerosis, but it has not been approved by the FDA. It should be
mentioned that CBD is freely available for online purchase from several companies in
different concentrations accompanied by analytical data regarding possible contaminants,
including pesticides [105].

Despite decades of research and clinical usage of cannabis in treating chronic pain
conditions, incontrovertible evidence for its efficacy has yet to be established [106]. This
may be due to the lack of a clear understanding of the mechanism of action and the use of
unregulated combinations of cannabinoids in treatment regimens [10,103,104]. Changes in
legislation are being promulgated in different countries; therefore, it is likely that use will
increase worldwide. These products are most commonly used for chronic pain conditions—
apart from their recreational use [107].
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Chronic pain is considered to be the most significant cause of disability globally.
Several preclinical and clinical studies have been undertaken, but the results are conflicting.
Some studies show significant effects, and other show minimal effects. A review has been
compiled recently using the outcomes specified in the Initiative on Methods, Measurement,
and Pain Assessment in Clinical Trials (IMMPACT), which quite controversially concludes
that it is unlikely that cannabinoids are effective as medicine for treating chronic noncancer
pain [106].

Capsaicin, a competitive TRPV1 agonist, when applied peripherally, induces intense
burning pain. It has been shown that TRPV1 expression and function are increased and
decreased in hyper- or hypoalgesia, respectively, in the periphery and at the first sen-
sory synapse in the spinal dorsal horn [108]. The role of TRPV1 has been confirmed
using a potent TRPV1 agonist, RTX, that induces a depolarization block by persistently
activating TRPV1 expressed in the nerve terminals in the short-term, as well as nerve
terminal desensitization/depletion in the long-term and reversed thermal hyperalge-
sia [26,27,108]. RTX is currently in clinical trials for the treatment of certain terminal-cancer
pain conditions [109–116].

Pain involving the head and neck is carried by trigeminal neurons. Trigeminal neurons
that synapse at the caudal trigeminal nucleus express TRPV1, and TRPV1-mediated CGRP,
a potent vasodilator, release has been implicated in migraine-type headaches [117,118],
and cannabis has been shown to be effective in the treatment of migraines. In a study,
11% of migraineurs reported complete resolution [119]. Given the knowledge we have
gained regarding TRPV1 and pain, and also that regarding TRPV1 and CGRP levels in
migraine, it is conceivable that cannabinoids could play a role in migraines. The activation
of CBD might worsen the symptoms as a result of a further increase in TRPV1-mediated
CGRP-release, causing the vasodilation of the meningeal vessels, while on the other hand,
THC activation of CBR1 may downregulate TRPV1 function and decrease CGRP-release
and aid in the relief of migraine pain. It has been suggested that cannabinoids may be
useful in relieving craniofacial pain associated with dental problems, anxiety, trigeminal
neuralgia, and temporomandibular joint dysfunction [120–122].

Our bodies also produce their own cannabinoid chemicals, called “endocannabinoids”.
They play a role in regulating pleasure, memory, thinking, concentration, body movement,
awareness of time, appetite, pain, and the senses (taste, touch, smell, hearing, and sight).
Neuronal activity increases the production of endovanilloids/cannabinoids during chronic
pain conditions and play a role in anxiety [123–125]. Endovanilloids, such as N-arachidonyl
ethanolamine (anandamide, AEA) and 2-arachidonyl glycerol (2-AG), are synthesized
and released on demand and metabolized by fatty acid amide hydroxylase (FAAH) and
monoacylglyceride lipase (MAGL), respectively [126–128]. The activation of CBR1 and
CBR2 receptors stimulates the production of oleoylethanolamide (OEA), which is known
to activate peroxisome proliferator-activated receptor-α (PPAR-α) [129], which is involved
in fat metabolism; therefore, it could be useful in treating obesity [130]. Interestingly, the
activation of TRPV1 by OEA enhances metabolism in brown fat cells [131].

Liao et al., 2011 [132] have concluded from their experiments in the PAG that the
activation of TRPV1 in the glutamatergic terminals releases glutamate, which in turn
activates the metabotropic glutamate receptors (mGluR) in the postsynaptic cells. The
activation of mGluRs is involved in the synthesis of 2-AG, which retrogradely activates
CBR1 in the presynaptic terminal in ventrolateral PAG (vlPAG), causing reduced gamma
aminobutyric acid (GABA) release and mediating antinociception in the descending pain
pathway [133–135].

PAG is a midbrain structure whose role in the descending control of pain has been
quite well-established. Glutamatergic neurons project from vlPAG to the adjacent RVM.
Physiologically, this system tends to suppress pain signals [133,134]. Three kinds of neurons
(ON-, OFF- and neutral cells) from the RVM project to the dorsal horn of the spinal cord.
The OFF-cells in the RVM can be stimulated by the glutamatergic axonal projections from
the vlPAG [135–137]. Any intervention that increases OFF-cell firing in the PAG or the
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RVM inhibits the transmission of pain signals from the periphery. On the contrary, ON-cell
activity facilitates pain transmission [137–139]. One of the most studied central analgesic
mechanisms of cannabinoids and opiates is the disinhibition of vlPAG glutamatergic-
projecting neurons that results in the stimulation of RVM OFF-cells. The mechanism of
disinhibition by these agents is the attenuation of GABA release from interneurons in the
PAG [140,141].

Increased glutamatergic transmission in the projecting neurons in vlPAG induces
antinociception. The administration of the TRPV1 agonist capsaicin into vlPAG increases
glutamatergic neuronal firing and increases GABA release. However, CBR1-receptor
activation by WIN55, 212-2 induces antinociception by decreasing GABA-release, leading
to the disinhibition of the glutamatergic neurons. In painful diabetic peripheral neuropathy,
the TRPV1-mediated antinociceptive effect is attenuated as a result of the reduction of the
expression of the TRPV1 receptors. On the other hand, when CBR1-receptor expression is
increased, that could lead to a reduction in GABA release, thereby further augmenting the
disinhibition of the glutamatergic transmission [92].

Administration of intra-vlPAG palmitoylethanolamide (PEA), a PPAR-α agonist, in-
duces antinociceptive effects, which are seen as a decrease in the RVM ON- and OFF-cell
activities. PPAR-α responses are mediated by the activation of the CBR1 and TRPV1 re-
ceptors. The TRPV1 blocker, iodo-RTX, had no effect on the ON-cell activity or tail-flick
latency, whereas it blocked the PEA-induced decrease in the ongoing activity of the OFF-
cell [142]. The roles of CBR1 and TRPV1 receptors have been further confirmed by blocking
the degradation of AEA (which activates both the CBR1 and TRPV1 receptors) by FAAH
inhibitor, which revealed the modulation of synaptic transmission in the PAG [143,144].
It has been shown that, in cells expressing CBR1 and TRPV1 receptors, the activation of
the CBR1 receptor either stimulates or inhibits, and the inhibition is dependent upon the
activation of cAMP signaling [145]. dlPAG determines the core affective aspects of aversive
memory formation controlled by the local TRPV1/CBR1 balance [146].

5-HT1A, an autoreceptor of serotonin expressed presynaptically, can modulate neuro-
transmitter release. If the coupling mechanism is similar to that of CBR1, TRPV1 receptors
expressed in the vicinity could be downregulated. CBD administration into dlPAG has
been shown to decrease anxiety, which is mediated by 5-HT1A receptors, but not by CBR1
because a CBR1-receptor antagonist (SR141716 or SR144528) had no effect [147]. The dorsal
raphe nucleus (DRN) is involved in nociception [20,148–151]. There are reports that, fol-
lowing the induction of neuropathic pain, 5-HT neurons in DRN show a decrease in firing
rate [152], but other studies have shown an increase in neuronal firing [153]. In animal
models of neuropathic pain, CBD is able to reverse mechanical allodynia, but not the
antianxiety effects mediated by the 5-HT1A receptors which could be reversed by TRPV1
antagonists [10,11,154].

The pain relief could be associated with psychoactive properties of cannabinoids [155,156].
Combinations of THC + CBD have been useful to reduce anxiety and could be useful in
generalized social anxiety disorder. It has been reported that CBD alone could be useful in
reducing anxiety and cognitive impairment [156]. Some of these effects could be related to
the concentration of THC and CBD in a given preparation. The effects of CBD have been
compared to a known antidepressant drug, imipramine [157]. This observation raises the
question as to whether cannabinoids cause depression. In an elaborate study involving
6900 subjects, with an age ranging from adolescent to mature adult, there was no indication
that cannabinoids cause depression [158–160].

Multiple sclerosis (MS) is a debilitating condition; it causes neuronal inflammation
and muscle spasticity. MS patients benefit from use of cannabis [161]. Two patient surveys
have revealed that, in spinal cord injuries, 50% of respondents reported that marijuana
reduced muscle spasticity, and 97% of MS patients who used cannabis in conjunction with
their therapy reported that cannabis improved spasticity, chronic pain, tremor, weight loss,
and other symptoms [162].
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3. Role of TRPV1 in Cannabinoid-Induced Antiemesis

One of the uses of cannabis is to prevent nausea and vomiting in various conditions. It
is useful in improving appetite, probably acting as an antiemetic agent. There is widespread
use of cannabinoids as antiemetic agents, especially during cancer chemotherapy [52,53].
Antiretroviral therapy for HIV/AIDS treatment results in a number of side effects, such
as neuropathic pain, lack of appetite, anxiety, and depression. In this group of patients,
cannabis has been shown to improve quality of life [163]. Although it has been shown
that cannabis could be useful as an antiemetic, it can be also proemetic [52]. It is not
recommended for use against pregnancy-induced nausea because the effects of cannabis
on the unborn have not yet been established [164]. However, chronic use of higher lev-
els of cannabinoids induces hyperemesis syndrome (HES). Antiemesis and HES caused
by cannabinoids could be explained by their actions on TRPV1 channels in the emesis
pathway [52,53].

The precise neurocircuitry involved in nausea and vomiting is not fully understood.
It involves structures within the medullary reticular formation of the hindbrain, which
includes the AP, NTS, and dorsal motor nucleus of the vagus (DMV) [160,165,166]. Al-
though the effects are attributed to THC, there is increasing evidence that CBD may play
a role in nausea and vomiting [167]. There is a clear link between TRPV1 and nausea
and vomiting. Since CBD activates TRPV1, there could be an interaction. Given these
findings, it is possible that chronic nausea caused by cannabinoids could be mediated via
central TRPV1, similar to the antinociceptive effects of central TRPV1 in the descending
pain pathway.

Therefore, it is necessary to understand the correlation between the activation of
TRPV1 by CBD and its role in nausea and vomiting. Nausea and vomiting involve complex
interactions between the afferent and efferent pathways of the gastrointestinal tract, the
central nervous system, and the autonomic nervous system. Afferents from the vagus nerve,
vestibular system, and chemoreceptor trigger- zone project to NTS, which in turn relays
signals to initiate multiple downstream pathways mediating nausea and vomiting [165,168].
There appears to be a distinction between acute and chronic nausea; acute nausea originates
from the GI tract in response to the consumption of toxic substances, whereas chronic nau-
sea originates from the central neuronal circuits that can be equated to centrally mediated
chronic neuropathic pain [169]. Several neuromodulators, including cannabinoids, have
been shown to be efficacious in the treatment of nausea and vomiting. It is noteworthy that
conventional antiemetic therapies used for the treatment of acute vomiting are not effective
in treating chronic vomiting, suggesting disparate mechanisms [170].

However, long-duration, excessive use of cannabis can lead to HES, which is character-
ized by symptoms of cyclic abdominal pain, nausea, and vomiting. Hot-water hydrotherapy
is a mainstay self-treatment for cannabinoid-induced HES, suggesting that the heat-induced
activation of TRPV1 may play a role in the antiemetic effect [53,171–173]. Furthermore,
topical capsaicin is a treatment option for HES, further suggesting the role of TRPV1. The
downstream signaling pathway include the vagus nerve, NTS, and AP, acting via the
SP/NK1 receptors [174].

Gut–brain signaling via the vagal nerve mediates motor functions and emesis, which
could involve cannabinoid and TRPV1 receptors [175]. A similar mechanism that mediates
nociception/antinociception via the activation of TRPV1 could also be involved in mediat-
ing the emetic/antiemetic effects of cannabinoids. The activation of TRPV1 by cannabinoids
in the central emesis pathway may mediate antiemetic effects [176–179]. Similar to the
effects in the central descending pain pathway, chronic use of higher concentrations of
THC-containing mixtures of cannabinoids may downregulate TRPV1 via the activation of
CBR1, resulting in an emetic response.

The role of TRPV1 has been confirmed by experiments conducted with RTX, a potent
TRPV1 agonist. RTX is one of the most potent emetic substances described so far in animal
models, mediated by TRPV1 located on neurons in the brainstem containing substance
P [53,179,180]. However, RTX has also been shown to induce antiemetic effects. Very low
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concentrations of RTX irreversibly activate TRPV1, leading to depolarization block, but
at higher concentrations, it leads to the desensitization/depletion of TRPV1-expressing
nerve terminals, which may explain the concentration-dependent opposing effects of
RTX [26,27,53]. Therefore, a dual effect could be expected with RTX; at lower concentra-
tions, it is antiemetic, but at higher concentrations, it induces emesis. The downstream
mechanism may involve the release of CGRP and SP and the activation of their respective
receptors [80,81]. As discussed earlier, RTX is a unique compound, in that it can induce
depolarization block by irreversibly activating TRPV1, resulting in the gradual inactivation
of sodium channels, resulting in a failure to generate action potentials. Several TRPV1
agonists, such as arvanil, arachidonamide, AEA (which activates both CBR1 and TRPV1),
and N-arachidonoyl-dopamine (NADA), all induce antiemetic effects [175]. Since CBD is
known to activate TRPV1 [10], it is expected that it has antiemetic properties. However,
constant, high-dose cannabis use results in HES. This is likely due to TRPV1 downregu-
lation/desensitization via constant activation by CBD, as well as by CBR1 mediated by
TRPV1 hypofunction. The area responsible for the action appears to be NTS, where vagus
nerve terminals express TRPV1 and modulate synaptic transmission [179–182].

The involvement of substance P and its receptor, tachykinin (NK1), has been demon-
strated by the direct application of SP to the dorsal brainstem in the AP, which induced
emesis in ferrets [179]. This suggests that TRPV1-mediated CGRP and SP release from
nerve terminals play a role in emesis [53]. NK1-receptor antagonists have been success-
fully used along with 5-HT3-receptor antagonists to treat chemotherapy-induced eme-
sis [183,184]. Morphine and 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) act as
antiemetics [185]. The role of TRPV1 in the descending pain pathway has been estab-
lished; in fact, antinociception induced by TRPV1 activation in the descending pathway
involves the release of encephalin and endorphin at the level of RVM and PAG [91–96].
A similar mechanism could exist at the brainstem area to cause endorphin/encephalin-
release-mediating antiemetic effects.

4. Concluding Remarks and Future Directions

The activation of the central TRPV1 channels by cannabinoids (CBD, but not THC) in
the descending pain pathway that involves RVM and PAG plays a key role in the antinoci-
ceptive effects of cannabinoids. However, when CBR1 is also activated, the TRPV1 receptor
is downregulated via a Gi-coupled mechanism by inhibiting protein kinase A-mediated
phosphorylation and impairs the antinociceptive effects. Similarly, the activation of TRPV1
channels by cannabinoids in the NTS and AP circuitry mediates the antiemetic effects,
whereas the downregulation of TRPV1 in this circuitry could result in HES. Therefore,
maintenance of the central TRPV1 function is critical for mediating the analgesic effect and
mitigating the adverse effect of HES.
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