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Cancer immunotherapy has been established as standard of care in different tumor

entities. After the first reports on synergistic effects with radiotherapy and the induction

of abscopal effects—tumor shrinkage outside the irradiated volume attributed to

immunological effects of radiotherapy—several treatment combinations have been

evaluated. Different immunotherapy strategies (e.g., immune checkpoint inhibition,

vaccination, cytokine based therapies) have been combined with local tumor irradiation in

preclinical models. Clinical trials are ongoing in different cancer entities with a broad range

of immunotherapeutics and radiation schedules. SDF-1 (CXCL12)/CXCR4 signaling has

been described to play a major role in tumor biology, especially in hypoxia adaptation,

metastasis andmigration. Local tumor irradiation is a known inducer of SDF-1 expression

and release. CXCR4 also plays a major role in immunological processes. CXCR4

antagonists have been approved for the use of hematopoietic stem cell mobilization from

the bone marrow. In addition, several groups reported an influence of the SDF-1/CXCR4

axis on intratumoral immune cell subsets and anti-tumor immune response. The aim of

this review is to merge the knowledge on the role of SDF-1/CXCR4 in tumor biology,

radiotherapy and immunotherapy of cancer and in combinatorial approaches.

Keywords: immunotherapy, cancer radiotherapy, CXCR4, SDF-1 (CXCL12), T cells, dendritic cells, NK cells,

regulatory T cells

INTRODUCTION

In radiation oncology, chemokine receptor CXCR4 and its ligand SDF-1 (stromal cell derived
factor-1, CXCL12) have been described as prognostic factor for head and neck squamous cell
carcinoma [e.g., (1)]. Functional data in glioblastoma models point to a role in migration and
invasion of cancer cells (2). These and other observations strongly suggest SDF-1/CXCR4 signaling
as promising target in anti-cancer therapy, in particular, in combination with radiation therapy
(3). However, clinical development of CXCR4 antagonists has mainly focussed on mobilization of
hematopoietic stem cells from the bone marrow to peripheral blood (4).
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Radiation therapy has proven to elicit both pro-inflammatory,
immunostimulatory activities, and anti-inflammatory,
immunosuppressive mechanisms. These effects are dependent
on radiation dose, tumor biology and the host predisposition
(5). As immunotherapy for cancer has been established as
standard of care for several cancer entities, such as melanoma
(6) and lung cancer (7), the immunologic effects of standard
anti-cancer treatment, such as radiation therapy and targeted
therapies are of major interest. Radiation-induced immune
modulation has been described as direct effects on irradiated
tumor cells (“on-target” immunogenic effects) as well as
indirect effects in the tumor immune microenvironment
(“off-target” effects) (8). Remarkably, recent data also link
CXCR4 blockade with antitumor immunity in the tumor
immune microenvironment suggesting SDF-1/CXCR4-
targeting as a therapeutic tool to interfere with the immune
system.

The present article, therefore, aims to give an overview about
the plethora of functions of SDF-1/CXCR4 signaling in tumor
biology and immune responses in the context of combined
radiotherapy and immunotherapy. The knowledge about these
functions is indispensable for developing new concepts of anti-
cancer therapy that comprise radiotherapy, immunomodulation
and SDF-1/CXCR4 targeting.

INTERFERENCE OF IONIZING RADIATION
WITH IMMUNE RESPONSES

Radiotherapy effects on cancer had been mostly attributed to
direct cytotoxic effects on cancer cells (especially DNA damage)
(9). With the advance of cancer immunotherapies preclinical
and clinical observations pointed toward synergistic effects. The
so-called “abscopal effect” describes responses to radiotherapy
(mostly in combination with immunotherapy) outside the
irradiated volume and has been linked to immune mechanisms
(10). The combination of immune checkpoint inhibitors with
local tumor irradiation seems to induce synergistic effects and is
currently tested in multiple clinical trials (11, 12). In addition,
theoretical rationales and preclinical data provide the basis
for also combining radiotherapy with other immunotherapy
strategies, such as anticancer-vaccines and cytokine-based
therapies (13).

Immune Effects of Tumor Irradiation
The mechanisms of radiation-induced immune effects have been
summarized as immune-stimulating and immunosuppressive
either directly in tumor cells or in the microenvironment
(8). Radiation triggers anti-tumor immune responses directly
in the cancer cells by upregulation of MHC-I molecules
(14, 15) and possible induction of new tumor associated
antigens (14). Cell death mechanisms induced by tumor
irradiation lead to “immunogenic cell death” (ICD) (16, 17)
characterized by the ability to stimulate the innate immune
system and thus indirectly also adaptive immune responses
(18, 19). ICD is characterized by the release of danger
associated molecular patterns (DAMPs), such as calreticulin

(20), high-mobility-group-box 1 (HMGB1) (21) and extracellular
adenosine-tri-phosphate (ATP) (22). Additional mechanisms
include cytokine release, such as CXCL10 (23), and type-1
interferon (24). Indirect immune stimulation has been attributed
to increase and activation of tumor-infiltrating lymphocytes
(25, 26), as well as maturation of dendritic cells (DCs)
(27). The fact that clinically relevant anti-tumor responses
(e.g., abscopal effects after palliative radiotherapy in metastatic
cancer patients) are rare despite of these strong immune-
stimulating effects is most probably due to simultaneously
induced immunosuppression by tumor irradiation. Irradiated
tumor cells upregulate immune checkpoint molecules, such as
PD-L1 (28, 29) and release immunosuppressive cytokines, such
as TGFβ (30, 31). Immunosuppressive cells increased in the
tumor immunemicroenvironment upon local irradiation include
regulatory T cells (32, 33) and myeloid-derived suppressor cells
(MDSC) (34–36).

Combination Therapies of Irradiation and
Immunotherapy for Cancer
These mechanisms have become the basis for combining
radiotherapy and immunotherapy in order to exploit
pro-immunogenic properties of irradiation and block
immunosuppressive actions. Clinical trials ongoing with
combinatorial approaches include immune checkpoint
inhibition, cytokine based therapies and vaccination strategies
(37, 38). Combination of radiotherapy with immune checkpoint
inhibition has been recently summarized (39). Besides its
use in metastatic cancer patients, durvalumab as adjuvant
treatment after definitive radiochemotherapy for non-small
cell lung cancer has shown significantly improved disease free
survival (40). Vaccination strategies used in combination with
radiotherapy include peptide and mRNA based approaches
(41–43) which showed promising results in syngeneic
mouse xenograft models. IL2 and IL12 as tumor targeted
immunocytokines have been tested in combination with
tumor irradiation in in vivo models showing promising results
(44–47).

In conclusion, the strong rationale and promising results led
to an increasing use of immunotherapeutics in combination with
local tumor irradiation in standard of care treatment of palliative
cancer patients as well as in numerous clinical trials with high
expectations of the oncological field to improve survival and
prognosis of cancer patients.

SDF-1/CXCR4 FUNCTION IN TUMOR
BIOLOGY

SDF-1/CXCR4 signaling has been shown to contribute to
virtually all processes in tumor biology. As described in
this section, SDF-1/CXCR4 signaling reportedly contributes
to neoplastic transformation, malignant tumor progression,
infiltration, metastasis, angiogenesis and vasculogenesis, and
consequently therapy resistance of many different tumor
entities.
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CXCR4, a Marker of Cancer Stem(-Like)
Cells or Tumor-Initiating Cells
CXCR4 chemokine receptors are expressed by hematopoietic
stem cells and are required for the trapping of these cells within
the stem cell niches of the bone marrow. CXCR4 antagonists,
such as AMD3100 (Plerixafor), therefore, can be used to mobilize
stem cells into the peripheral blood for hematopoietic stem cell
donation (see below). Beyond that, SDF-1/CXCR4 signaling has
been shown to be functional in neural progenitor cells and to
direct neural cell migration during embryogenesis (48). Notably,
CXCR4 expression is further upregulated when neural progenitor
cells differentiate into neuronal precursors whereas SDF-1 is
upregulated during maturation of neural progenitor cells into
astrocytes. While CXCR4 is localized in the cell body of neuronal
precursors, expression is primarily restricted to axons and
dendrites in mature neurons (49). In addition, SDF-1/CXCR4
signaling has been reported to contribute to chemotaxis and
differentiation into oligodendrocytes of engrafted neural stem
cells resulting in axonal remyelination in a mouse model of
multiple sclerosis (50). Together this suggests that neurogenesis
requires functional SDF-1/CXCR4 signaling and CXCR4 as
marker of especially the neuronal lineage of neural stem cells.

Primary glioblastoma multiforme (GBM) develops
directly by neoplastic transformation of neural stem cells
and not by malignant progression from astrocytic gliomas or
oligodendroglomas (the latter two are characterized bymutations
in the IDH genes). Not unexpectedly, stem(-like) subpopulations
of GBM functionally express SDF-1/CXCR4 signaling (51–56).
Notably, auto-/paracrine SDF-1/CXCR4 signaling is required for
maintenance of stemness and self-renewal capacity (57–59) since
SDF-1/CXCR4 targeting leads to loss of stem cell markers and
differentiation of stem(-like) cells into “differentiated” tumor
bulk.

Besides glioblastoma, SDF-1/CXCR4 signaling has been
shown to be functional in stem(-like) subpopulations
of retinoblastoma (60), melanoma (61), pancreatic ductal
adenocarcinoma (62), non-small cell lung cancer (63), cervical
carcinoma (64), prostate cancer (65), head and neck squamous
cell carcinoma (66), rhabdomyosarcoma (67, 68), synovial
sarcoma (56), and leukemia (69). In summary, these data might
hint to an ontogenetically early onset of SDF-1/CXCR4 signaling
in mesenchymal and epithelial primordia of the different organs
which might be the reason for SDF-1/CXCR4 expression in
stem(-like) subpopulations of many different tumor entities.

Transition of stem(-like) cells and differentiated tumor
bulk and vice versa seems to be highly dynamic and regulated
by the reciprocal crosstalk with untransformed stroma cells
of the tumor microenvironment (70–72). Beyond that, this
crosstalk seems to induce phenotypical changes of cancer
stem(-like) cells as deduced from the following observation.
Sorted CD133+ stem(-like) cells and CD133− differentiated
bulk cells of GBM did not differ in repair of radiation-
induced DNA double strand breaks in vitro. Upon orthotopic
transplantation in immunocompromized mice, however,
CD133+ cells repaired more efficiently than CD133− cells
indicating tumor-microenvironment-mediated upregulation of
DNA repair selectively in CD133+ GBM cells (73). The next

paragraph introduces the impact of SDF-1/CXCR4 signaling on
the crosstalk of tumor cells with non-transformed stroma cells
and its function for the cancer stem(-like) cell phenotype.

SDF-1/CXCR4 Signaling in the Crosstalk of
Cancer Stem(-Like) Cells With
Non-transformed Stroma Cells
The functional significance of SDF-1/CXR4 signaling between
tumor cells and the tumor stroma is suggested by a retrospective
analysis of genetic SDF-1 variants in patients with colorectal
cancer where a certain SDF-1 polymorphism in fibroblasts is
associated with higher stromal SDF-1 expression and increased
risk for lymph node metastases in stage T3 colorectal cancer
(74). Moreover, diffuse-type gastric cancer probably develops
from quiescent Mist1+ stem cells upon Kras and APC mutation
and loss of E-cadherin. Most importantly, this seems to be
dependent on inflammatory processes triggered by SDF-1-
expressing endothelial cells and CXR4-expressing gastric innate
lymphoid cells that form the perivascular gastric stem cell niche
(75).

Likewise, GBM cells co-opt vessels and home to perivascular
stem cell niches. Reciprocal signaling between endothelial and
GBM cells within these niches has been shown to induce and
maintain a stem(-like) cell phenotype of GBM cells on the one
hand and to promote angiogenesis on the other [for review
see (76)]. Moreover, trans-differentiation of GBM stem-like cells
into endothelial cells (77, 78) and pericytes (79) contributes
to the adaptation of the tumor microvasculature to the needs
of the GBM cells. SDF-1/CXCR4 signaling reportedly exerts
pivotal functions in these processes. In particular, CXCR4 on
GBM cells and SDF-1 produced by endothelial cells direct
perivascular invasion as demonstrated in vitro and in orthotopic
glioma mouse models (79–81). Accordingly, SDF-1-degradation
by the cysteine protease cathepsin K facilitates evasion of
GBM cells out of the niches (82). In addition to chemotaxis,
CXCR4 stimulation by SDF-1 induces the production of vascular
endothelial growth factor (VEGF) in GBM (83) and especially
in CD133+ GBM stem-like cells (84). VEGF, in turn, stimulates
beyond angiogenesis upregulation of CXCR4 (85) and SDF-1 (86)
in microvascular endothelial cells. Moreover, VEGF is required
for trans-differentiation of GBM-derived progenitor cells into
endothelial cells (77). The significance of targeting VEGF and
SDF-1/CXCR4 signaling for stem cell niche formation can be
deduced from the observation that targeting of both, VEGF
and CXCR4, decreases the number of perivascular GBM cells
expressing stem cell markers in an orthotopic glioma mouse
model, which was associated with improved survival of the
tumor-bearing mice (87).

A further example of up-regulation of a stem(-like) cell
phenotype mediated by SDF-1 signaling was reported for
breast cancer cells where SDF-1 release from tumor-associated
fibroblasts is required for the maintenance of tumor initiation
capability (88). Finally, leukemia cells have been demonstrated
to be trapped in stem cell niches of the bone marrow (89–
91), and follicular lymphoma stem(-like) cells to follicular DCs
in the germinal center of lymph nodes (92) by SDF-1/CXCR4
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signaling. Combined, these data suggest that SDF-1 directed
chemotaxis to certain microenvironmental stem cell niches is
a general phenomenon of CXCR4-expressing hematopoietic
and non-hematopoietic cancer cells. Of utmost importance,
interactions with stromal cells within these niches contribute to
a malignant and therapy-resistant phenotype of niche-residing
cancer cells as outlined in the next paragraph.

SDF-1/CXCR4 Signaling in Tumor
Microenvironment-Induced Therapy
Resistance of Cancer Stem(-Like) Cells
Subventricular zones (SVZs) of the brain accommodate
neural stem cells and have been shown to attract human
GBM stem(-like) cells through SDF-1/CXCR4 signaling in
an orthotopic glioma mouse model (93). Importantly, SVZ
residence induces radioresistance of GBM stem(-like) cells in
direct dependence on SDF-1 release by the SVZ stromal cells
(94). Evidence for radioresistance conferred by SDF-1/CXCR4-
dependent residency in perivascular niches was further provided
by the observation that CXCR4 knockdown in mouse GBM cells
resulted in both, diminished perivascular invasion and increased
radiosensitivity (81).

Likewise, in mouse models of acute myeloid leukemia CXCR4
antagonism mobilized leukemia cells out of the bone marrow
niches and, at the same time, enhanced chemosensitivity (90,
91). Mechanistically, bone marrow mesenchymal cells have been
demonstrated to upregulate a signaling complex in the leukemia
cells comprising CXCR4 and activating pro-survival signals
via extracellular signal-related kinase 1/2 (ERK1/2) and the
phosphoinositide 3-kinase (PI3K)/Akt pathway (95). Moreover,
bonemarrow disseminated xenografted head and neck squamous
cell carcinoma (HNSCC) exhibits a higher cisplatin resistance
than lung metastases ex vivo. This difference critically depends
on TGF-β-triggered SDF-1/CXCR4 signaling (96). In summary,
these preclinical in vivo and ex vivo data strongly suggest that
SDF-1/CXCR4-mediated residency of tumor cells in stem cell
niches induces resistance to chemo- and/or radiation therapy
probably by inducing expression of a therapy-resistant cancer
stem(-like) cell phenotype. The maintenance of the latter—
as discussed above and impressively demonstrated by the
ex vivo comparison of bone marrow and lung disseminated
HNSCC—itself crucially depends on SDF-1/CXCR4. Beyond
cancer stem(-like) cell induction, SDF-1/CXCR4 signaling has
been demonstrated to trigger tumor invasion and metastasis as
discussed in the next chapter.

SDF-1/CXCR4 Signaling in Triggering
Tumor Invasion and Distant Metastasis
Associations between SDF-1/CXCR4 polymorphisms or
SDF-1/CXCR4 abundance in tumor specimens and clinical
outcome in several but not all studies might suggest a role of
SDF-1/CXCR4 signaling in metastatic progression in a variety
of tumor entities, such as renal cell carcinoma (97), prostate
cancer (98), HNSCC (99–102), esophagogastric cancer (103),
colorectal cancer (74), hepatocellular carcinoma (104), or
osteosarcoma (105). In preclinical studies, overexpression of

CXCR4 has been demonstrated to dramatically increase lung
and liver metastases of murine pancreatic cancer in tail vein
metastasis assays in nude mice (106). Consistently, antagonizing
CXCR4 inhibited lung metastasis of human tongue squamous
cell carcinoma (107), esophageal cancer (108), breast cancer
(109) in immunocompromized mice. Intra-arterially injected
circulating CXCR4-expressing melanoma cells require SDF-1
signaling by mesenchymal stem cells that act as pericytes
for extravasation to bone and liver and perivascular niche
formation as demonstrated by humanized heterotopic bone
formation assay (110). Combined, these examples suggest that
CXCR4 expression by cancer cells contribute to their tropism to
metastatic niches.

Along those lines, CXCR4 downregulation by overexpression
of miR-613 reportedly inhibits lung metastasis of osteosarcoma
orthotopically xenografted in nude mice (105). Notably,
epigenetic downregulation of SDF-1 has been demonstrated
to boost metastases of CXCR4-expressing sarcoma in mouse
models (111). Likewise, a SDF-1 polymorphism with low SDF-1
expression in breast cancer has been proposed to associate with
susceptibility to metastases (112). It is, therefore, tempting to
speculate that SDF-1−/CXCR4+ tumor cells are particularly
prone to metastasize. As a matter of fact, high CXCR4 and
low SDF-1 expression by the tumor has been associated with
poor overall survival in osteosarcoma (111) and metastasis-free
survival in head and neck squamous cell carcinoma (113).
The latter association, however, was not confirmed by a recent
study (114). Nevertheless, these reports strongly suggest a
pro-metastatic function of SDF-1/CXCR4 signaling in several
cancer entities.

In GBM which usually does not metastasize outside the
central nervous system, SDF-1/CXCR4 signaling has been
demonstrated in vitro to exert pivotal function in cell migration
and chemotaxis (115–117). Most probably, SDF-1/CXCR4-
dependent migration/chemotaxis does not only contribute to the
above discussed homing of GBM cells to protective perivascular
stem cell niches (see above) but also to deep infiltration of the
brain parenchyma by highly migratory GBM stem(-like) cells.
One driver of glioblastoma dissemination might be hypoxia
through HIF-1α mediated up-regulation of SDF-1 and CXCR4
in GBM cells (85, 86). Unexpectedly, VEGF- or VEGF-R-
targeting has been demonstrated in vitro to directly up-regulate
CXCR4 expression and chemotaxis toward SDF-1 in VEGF-R-
expressing GBM cells in a TGFβ-dependent manner (118). In
accordance with these observations, anti-angiogenic therapy of
orthotopic mouse glioma promotes GBM invasion by CXCR4
upregulation. Additional CXCR4-targeting blunts this effect
(119). Consistently, combined VEGF- or VEGF-R- and CXCR4
antagonism prolongs survival of mice bearing orthotopically
xenografted GBM as compared to only VEGF/VEGF-R-targeted
mice (87, 118, 120). Also along those lines, anti-angiogenic
therapy, such as Bevacizumab which has been demonstrated
in large clinical trials not to improve overall survival of GBM
patients is under suspicion to foster distant spread of the tumor
at recurrence (121). Even if the tumor spread-promoting effect
of Bevacizumab is under debate (122), nevertheless, these data
bear witness to a close interaction between tumor hypoxia and

Frontiers in Immunology | www.frontiersin.org 4 December 2018 | Volume 9 | Article 3018

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Eckert et al. CXCR4 in Cancer Immunology and Radiotherapy

SDF-1/CXCR4 signaling as introduced in more detail in the next
chapter.

SDF-1/CXCR4-Signaling and its Function
for Vasculogenesis
Hypoxia-induced up-regulation of SDF-1 secretion in tumors
reportedly stimulates homing and engraftment of bone marrow-
derived myeloid cells, as well as mesenchymal stem cell-derived
endothelial and pericyte progenitor cells. This recruitment
promotes neovascularization of the hypoxic tumor by transition
of the myeloid and progenitor cells into endothelium and
pericytes. Such SDF-1/CXCR4-dependent vasculogenesis has
been demonstrated in mouse models of several tumor entities,
such as GBM (123–127), HNSCC (128), lung adenocarcinoma
(129), hepatocellular carcinoma (130) or breast cancer (131).
Importantly, irradiation has been shown to induce SDF-1
expression and thus may boost vasculogenesis and tumor
re-growth after end of therapy (125, 131–133) suggesting a
radioresistance-conferring action of SDF-1/CXCR4 signaling as
discussed in the next paragraph.

SDF-1/CXCR4-Signaling and
Radioresistance
In many tumor entities radiation therapy is part of standard of
care. Ionizing radiation has been demonstrated in vitro as well as
in vivo to stimulate SDF-1/CXCR4 signaling in different human
and mouse tumor entities either directly by S-nitrosylation
and stabilization of HIF-1α (134) or indirectly via radiation-
induced endothelial cell killing and resulting hypoxia (135)
or HIF-1α-independent mechanisms (136). Radiation-induced
modifications in SDF-1/CXCR4 signaling, in turn, have been
reported in gliomas (116, 125, 127, 137), mesotheliomas (138),
prostate (139), cervical (140), lung (131, 141) and breast cancer
(131). Aside from the direct effect on cancer cells, radiation-
induced SDF-1 secretion is also observed in different normal
tissues/cells (94, 136, 142–147) or cancer-associated fibroblasts
(144).

Importantly, radiation-modulated SDF-1/CXCR4 signaling
has been shown to stimulate tumor re-growth (142, 148), EMT
(144), migration (116), invasiveness (81, 127, 138, 141, 144)
and metastases (138, 145), as well as homing of hematopoietic
progenitor cells and accelerated vasculogenesis (125, 127, 131–
133, 136, 137, 142). Thus, radiation-induced SDF-1/CXCR4
signaling may foster radioresistance, malignant progression
and recurrence of tumors (94, 125, 139, 149–151). Preclinical
evidence shows reduced metastases in orthotopic murine models
of cervical cancer with Cisplatin-based radiochemotherapy and
AMD3100 (152).

Thus, as CXCR4 is a prognostic marker for local control
after curative radiotherapy and irradiation interferes with
SDF-1/CXCR4 signaling, there is a strong rationale to develop
translational and clinical interventional studies combining
CXCR4 targeting with curative radio(chemo)therapy. The roles
of SDF-1/CXCR4 signaling in tumor biology are summarized in
Table 1.

SDF-1/CXCR4 Signaling as Druggable
Target in Anti-cancer Therapy
As already touched upon, retrospective clinical data might hint
to associations between SDF-1 polymorphisms or SDF-1/CXCR4
expression levels with susceptibility to neoplastic transformation,
malignant progression or therapy response in a variety of tumor
entities, such as renal cell carcinoma (97), prostate cancer
(98), HNSCC (1, 100, 102, 113, 114), esophagogastric cancer
(103), hepatocellular carcinoma (104), colorectal cancer (74),
breast cancer (153), osteosarcoma (111), low grade glioma (154,
155), or GBM (156, 157). Beyond cancer SDF-1 genetics has
been associated with e.g., the pathogenesis of multiple sclerosis
(158) or prognosis in patients with cardiovascular disease
(159).

Apart from genetic variants, SDF-1 as well as CXCR4 were
shown to be regulated epigenetically by DNA methylation.
DNA methylation status of the genes was suggested as
prognostic biomarkers for e.g., breast or pancreatic cancer
and GBM (160–162). Such prognostic or predictive value of
SDF-1/CXCR4 might be expected from the plethora of SDF-
1/CXCR4 functions in tumor biology mentioned above. These
functions contribute to malignancy, progression and therapy
resistance of the tumors and render SDF-1/CXCR4 signal to an
ideal target in anti-cancer therapy. In particular, a combination
of SDF-1/CXCR4-targeting and radiotherapy seems to be
promising given the above mentioned radioprotective functions
of SDF-1/CXCR4 signaling (Figure 1). Moreover, combinatorial
treatment of conventional chemotherapy with CXCR4 inhibitors
might be an approach to overcome cancer therapy resistance
(163).

In fact, several SDF-1- or CXCR4-targeting drugs have been
applied in preclinical models [e.g., Ulocuplumab (164), ALT-1188
(165), POL5551 (166), PRX177561 (167)], were well-tolerated
in clinical trials [e.g., AMD070 (168), Balixafortide (POL6326,
Polyphor) (169)] or are FDA-approved [AMD3100, Plerixafor
(170)] indicating that SDF-1/CXCR4 targeting is clinically
feasible. Overall, Plerixafor used for stem cell mobilization does
not induce severe side effects (171, 172). A randomized phase
3 trial comparing G-CSF with plerixafor vs. placebo reported
mainly fatigue, gastrointestinal side effects like nausea and
diarrhea and injection site reactions (173).

CXCR4, however, is expressed on immune cells suggesting
that SDF-1/CXCR4-targeted anti-cancer therapy at the same
time interferes with the immune response to cancers and
cancer cells in e.g., circulation or micrometastases. In order
to explore these functions and develop a rationale if trimodal
therapy combining CXCR4 targeting with immunotherapy and
radiotherapy might be of benefit, it is crucial to understand the
function of SDF-1/CXCR4 signaling in immune cells and the
effects of CXCR4 inhibition on the immune response to cancer.

PHYSIOLOGIC ROLE OF CXCR4 IN THE
IMMUNE SYSTEM

In addition to its function in tumor biology, SDF-1/CXCR4
signaling controls multiple physiological processes in
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TABLE 1 | (Patho)physiological role of SDF1/CXCR4 signaling and targeting in cancer.

Cell type (Patho)physiological role of SDF-1/CXCR4 signaling Effects of CXCR4 targeting References

Cancer cells VEGF production in GBM (83)

Mobilization of leukemia cells from BM,

enhanced chemosensitivity

(90, 91)

Association with decreased patient survival Decreased metastasis formation (97–105, 111)

Cell migration in GBM (115–117)

Inhibition of VEGF-mediated migration in GBM,

prolonged survival of mice

(119)

Vasculogenesis (123–133)

Radiation-induced EMT (143)

Radiation-induced invasiveness (81, 127, 138, 141, 144)

Cancer stem(like) cells

(CSC)

Maintenance of stemness, self renewal capacity (51–56)

Loss of stem cell markers, differentiation to

“bulk” cells

(57–69)

VEGF production in GBM CSCs (84)

Attraction to subventricular stem cell niches (93, 94)

Stroma cell/cancer cell

crosstalk

SDF-1 in fibroblasts increases lymph node metastases in CRC (74)

SDF-1 in endothelial cells contributes to gastric cancer

development

(75)

Perivascular invasion of GBM Reduction of perivascular GBM cells, increased

radiosensitivity

(79–81, 87)

SDF-1 in fibroblasts required for tumor initiation in BC (88)

BC, breast cancer; BM, bone marrow; CRC, colorectal cancer; CSC, cancer stem(like) cell; EMT, epithelial mesenchymal transition; GBM, glioblastoma multiforme; VEGF, vascular

endothelial growth factor.

FIGURE 1 | SDF-1/CXCR-4 signaling in tumors and its contribution to maintenance of tumor stemness, recruiting of distant stroma cells, angio- and vasculogenesis,

and metastasis (for details see text).
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hematopoiesis, T, B and NK cell development and the
organization of the immune system. Ablation of either of
the components of the SDF-1/CXCR4 axis generates a similar
phenotype of deficient B lymphopoiesis and myelopoiesis,
disturbed immune responses leading to cancers, autoimmunity
and inflammatory diseases (174–176). Recently a 16 amino
acid fragment of serum albumin (EPI-X4) was identified as
an effective and highly specific endogenous CXCR4 antagonist
(177). Peptide EPI-X4 is evolutionarily conserved and generated
from the highly abundant albumin precursor by pH-regulated
proteases. It antagonizes SDF-1-induced tumor cell migration
and suppresses inflammatory responses in mice. In human the
peptide is abundant in the urine of patients with inflammatory
diseases. EPI-X4 mobilizes stem cells, which explains in part
why stem cells can directly respond to inflammation with their
migration into the periphery.

Hematopoietic Stem Cell Niche
HSCs (Hematopoietic stem cells) are a rare cell population that
can give rise to all lineages of the immune system. HSCs reside in
the undifferentiated state in the bone marrow, where the binding
of their CXCR4 receptor to its ligand SDF-1—constitutively
provided by the bone marrow (BM) niche—promotes their
survival (178, 179) while negatively regulating their proliferation
(180–182). In addition to direct effects on HSCs, SDF-1/CXCR4
signaling also promotes survival and growth of human bone
marrow stromal stem cells (183). Inhibiting the interaction
between CXCR4 receptor and SDF-1 leads to the migration
of hematopoietic stem and progenitor cells (HSPC) into the
periphery, a process termed mobilization, which is required for
harvesting stem cells for transplantation [either autologous from
the patient (184) or in healthy donors (185)]. A dramatic increase
in mobilization efficiency and yields of progenitor cells compared
to standard G-CSF is achieved when using CXCR4 antagonists,
such as AMD3100, Mozobil R© (184, 186, 187). CXCR4 antagonist
BL-8040 in a recent phase I clinical study (NCT02073019)
besides highly efficientmobilization of pluripotent hematopoietic
progenitors showed also superior yields of CD4+ and CD8+

T cells, NKT, NK, and DCs, suggesting increased engraftment
ability of CXCR4 mobilized populations, a higher anti-tumor
effect and faster immune reconstitution potential. Moreover,
mobilization as a 1-day procedure is less wearing for the
donor and allows faster access to the stem cells (188). Since
HSCs maintain hematopoiesis throughout life, qualitative and
quantitative effects through prolonged pharmacologic blockade
of the SDF-1/CXCR4 axis need to be investigated. Concerns
that the HSC pool in the bone marrow would decrease were
not confirmed, as CXCR4-blockade led to higher repopulating
capacity and exceptional mobilization along with an expansion
of the BM HSC pool, which unexpectedly suggests reversible
inhibition of the SDF-1/CXCR4 axis also as a novel strategy
to restore damaged BM (189). BM HSCs during reversible
long-term CXCR4/SDF1 long term blockade increase their
cycling activity 2- to 3-fold [only 10–20% of Lin-Sca1+Kit-
(LSK) and 30–40% of LSK SLAM cells being quiescent (G0
phase)] compared to 50–60% of LSK and 70% of LSK SLAM
under homeostatic conditions (190, 191). Thus, these findings

together with mounting evidence for direct cytolytic and specific
anti-leukemic effects of CXCR4 inhibition (192–194) suggests
prolonged CXCR4 blockade as a novel safe therapeutic scheme
for treatment of (hematologic) malignancies either alone or in
conjunction with chemotherapy.

Dendritic Cells
The priming of naïve T cells is dependent on efficient antigen
presentation and a strong costimulatory signal both provided
by dendritic cells during Th1 polarized immune responses.
Th1 polarization is thought to be critical for immune rejection
of tumors, while activated T cells polarized to Th2 cytokine
and cell profiles might induce even tumor immune evasion
(195). Plasmacytoid DCs (pDCs) as type I interferon (IFN)-
producing cells play a central role in antiviral and anti-tumor
immunity. pDCs are produced from hematopoietic stem cells
in the bone marrow where they nestle down with reticular
cells in the intersinal space which abundantly provides SDF-1.
Concordantly, the number of pDCs and their earliest progenitors
is severely reduced in the absence of CXCR4 in vitro and
in vivo, underlining the function of SDF-1/CXCR4 axis as a
key regulator of pDC development and the importance of
provision of SDF-1 by cellular niches (196, 197). Upon activation,
CXCR4 expressing DCsmigrate into SDF-1 expressing lymphatic
vessels where they initiate immune responses, a process that
is severely blocked by systemic CXCR4 antagonist application
(198). Since the dysregulated expression of SDF-1/CXCR4 is
associated with the pathology of various autoimmune diseases,
including rheumatoid arthritis, systemic lupus erythematosus,
and multiple sclerosis, targeting SDF-1/CXCR4 axis with
4-F-Benzoyl-TN14003 may be beneficial for prevention of
autoimmune disease (198–201). It is not clear, whether these
effects on DCsmight decrease the efficacy of anti-cancer immune
responses upon CXCR4 inhibition.

Myeloid Derived Suppressor Cells
As reviewed in (202), MDSCs are highly immunosuppressive
cells in the tumor microenvironment and mainly suppress
intratumoral T cells. SDF-1 secreted by tumor associated
fibroblasts induces MDSCs and impairs anti-tumor immune
responses as shown in a hepatic carcinoma model (203). Another
liver cancer model (metastases of colorectal carcinoma) showed
less MDSC infiltrates in the metastases after treatment with
AMD3100, accompanied by reduced metastases growth (204).
Patient samples of ascites also showed that CXCR4 signaling is
involved in MDSC recruitment. SDF-1 release of cancer cells as
well as CXCR4 signaling in MDSCs could be abrogated by COX2
inhibition.

Regulatory T Cells (nTreg and iTreg)
Regulatory T cells (Tregs) constitute 5–10% of peripheral
CD4+ T cells in humans (205, 206). Tregs maintain immune
homeostasis, peripheral tolerance and prevent autoimmunity by
suppressing and terminating immune responses. They constitute
a major barrier for an effective antitumor immunity, and
the number of peripheral and intratumoral Treg cells is an
independent prognostic factor in malignancies (207). Cancer
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cell- and M2 macrophages derived SDF-1 attracts Treg cells
into the tumor lesion where they robustly induce FOXP3
and other Treg signature molecules in human naïve CD4+

T cells which display enhanced FOXP3 stability and low
expression of pro-inflammatory cytokines (208). Treg cells limit
immune effector cell function via cytokines (209–212), direct
lysis (213), inhibitory receptors on their cell surface (214–
217), via metabolic disruption (218), by starving effector cells
via depletion of local IL-2 (219) or indirectly by turning
secondary cell types into suppressive ones i.e., IDO (220) and
tolerogenic cytokine producing DCs with low costimulatory
potential (221). Treg depletion dramatically reduced tumor
growth or induced full remission (222–224). In contrast to
conventional chemotherapeutic agents which also deplete T
effector cells and may induce autoimmunity due to the systemic
elimination of T-regs (225), CXCR4 targeting allows the specific
targeting of Tregs, since intratumoral Tregs consistently express
higher CXCR4 levels than CD4+CD25− and CD8+ cells
(226). In intraperitoneal papillary epithelial ovarian cancer,
CXCR4 antagonism increased tumor cell apoptosis and necrosis,
reduced intraperitoneal dissemination, and selectively reduced
intratumoral FoxP3 Tregs (226). Superior immune responses as
shown for CXCR4 antagonist BL-8040 is not solely owing to a
selectively reduced recruitment of Treg cells into the tumor, and
an increase in the number of immune and progenitor cells (227).
CXCR4 antagonists have shown to also reverse Tregs’ suppressive
activity. Plerixafor and the antagonistic CXCR4 peptide R29
(228) inhibited Treg-suppressive activity significantly (by 10-
fold) in Tregs from primary renal cancer specimens in which
high numbers of activated Tregs (expressing CTLA-4/CXCR-
4/PD-1/ICOS) were detected. A possible mechanistic explanation

involves the demethylation of Treg-FOXP3 promoter (229).
Thus, inhibition of Tregs by blocking SDF-1/CXCR4 is one of
the major rationales for a better anti-tumor immune response via
CXCR4 inhibition.

Effector Cells
T effector (Teff) cells also constitutively express the chemokine
receptor CXCR4. Besides T cell migration along SDF-1 gradients,
CXCR4 after T cell receptor crosslinking is recruited to and
accumulates at the immunological synapse, resulting in stronger
T cell-APC interaction, shutdown of T cell responsiveness to
chemotactic gradients, and in higher levels of T cell proliferation
and IFN-γ production (230). Vice versa, the presence of
competing external chemokine signals has been shown to disrupt
the stability of T-APC conjugates as a result of impaired
recruitment of the receptor to the immunologic synapse (231).
CXCR4 confers the homing of antiviral T cell responses to
bone marrow. Ablation of CXCR4 thus impairs memory cell
maintenance due to defective homeostatic proliferation in the
bone marrow niche, yet allows fully functional asymmetric
cell fates after antigenic rechallenge in CD8+ T cells (232).
Antitumoral activity was shown for CXCR4 antagonist BL-8040
in tumor bearing mice, where it induced robust mobilization
of CD4+ and CD8+ T lymphocytes and DC in numbers
that were significantly higher compared to tumor free naïve
counterparts. The authors did not discriminate the lymphocytic
population with respect of Teff/Treg ratio or CD8+ content
though (233), yet showed in pre-clinical in vivo pancreatic
cancer models, immune cells mobilized from the bone marrow
into the circulation accumulate within the tumor lesion where
they inhibit tumor growth. Such a dramatic effect on the

TABLE 2 | (Patho)physiological role of SDF1/CXCR4 signaling and targeting in immune processes.

Cell type (Patho)physiological role of SDF-1/CXCR4

signaling

Effects of CXCR4 targeting References

Hematopoietic stem cells Survival in BM (178, 179)

Decreased proliferation in BM (180–182)

Survival and growth of bone marrow stromal

stem cells

(183)

Mobilization (184–187)

Dendritic cells Dendritic cell development (196, 197)

Impaired immune response (198)

Effector T cells T cell proliferation and IFN-γ production (230)

Increased tumor infiltration (233)

Increased cytotoxicity (234, 235)

Natural killer cells Migration to periphery, maturation (238)

Increased NK cell mediated antitumor immunity (239)

Regulatory T cells (Tregs) Attraction to tumor lesions (208)

Reduced intratumoral Tregs (226)

Reduced Treg suppressive activity (228)

Myeloid derived suppressor cells

(MDSCs)

Induction and hampered immune response Decreased metastases formation via reduced

MDSCs

(203, 204)

MDSC recruitment to tumors (203, 204,

240)

APC, antigen presenting cell; BM, bone marrow; MDSC, myeloid derived suppressor cells.
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intratumoral T cell compartment function is reflected in a study
by Elda Righi (226) where CXCR4 antagonist AMD3100 by
favorably modulating the intratumoral Teff/Treg ratio 6-fold,
created a phenotype reminiscent of two studies that—although
in different contexts—depleted intratumoral T-regs which highly
significantly improved cytotoxic T-cell function in the tumor
tissue and prolonged survival (234, 235). Along those lines,
epigenetic down-regulation of SDF-1 expression in osteosarcoma
has been demonstrated to impair cytotoxic T-cell homing to
the tumor site (111). In contrast, SDF-1 overexpression by
melanoma cells in the B16-ova melanoma model has been
shown to chemo-repel antigen-specific cytotoxic T cells (236)
suggesting a complex and fine-tuned control of Teff infiltration
by SDF-1/CXCR4 signaling.

Chemokines control also the trafficking of developing and
mature natural killer cells (NK) in the bone marrow (237). While
several CCRs are expressed during progression from precursor
to immature and mature NK cells CXCR4 was only detected on
immature NK cells. Administration of the CXCR4 antagonist,
AMD3100, induced strong reduction of mature NK and
immature NK cells in the BM in a murine model and increased
their number in blood and spleen, which suggests that this
chemokine axis also regulates NK cell subsets localization in the
bone marrow niche and their migration to the periphery for their

maturation (238). Notably, genetic deletion of CXCR4 inmyeloid
cells in a melanoma mouse model fostered NK cell-mediated
antitumor immunity suggesting indirect suppression of NK cell
activity by CXCR4 signaling (239).

In summary, SDF-1/CXCR4 signaling affects most subsets
of immune cells, the most prominent and clinically applied
effect being the mobilization of HSCs by blocking CXCR4 as
summarized in Table 2.

Combined Immunotherapy and CXCR4
Targeting
The promotion of antitumor immunity by CXCR4-antagonists
was reported for a mouse model of ovarian cancer (226)
and in an orthotopic preclinical hepatocellular carcinoma
(HCC) model where a CXCR4 antagonist was combined with
a checkpoint inhibitor. In this HCC model multi-kinase-
inhibitor sorafenib treatment-induced hypoxia fostered SDF-1
production, leading to the recruitment of immunosuppressive
tumor-associated macrophages, myeloid-derived suppressive
cells, and Tregs all with increased PD-L1 expression. CXCR4
antagonist plerixafor combined with anti-PD-1 therapy showed
the most pronounced tumor growth delay, and was associated
with increased intratumoral penetration and activation of
CD8+ T lymphocytes (241). A novel strategy for the treatment

FIGURE 2 | Immunosuppressive and immunostimulatory action of SDF-1/CXCR4 signaling in tumors induced by radiation-therapy and hypoxia (for details see text;

DAMPs, danger-associated molecular patterns; DC, dendritic cells; MDSC, myeloid derived suppressor cell; PD-1, programmed cell death protein-1; PD-L1, PD-1

ligand; TAA, tumor-associated antigens; TAM, tumor-associated macrophage; Treg, regulatory T-cell).
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of drug-resistant ovarian cancer combines chemotherapy to
increase immunogenic cell death and virally delivered CXCR4
to reverse the immunosuppressive tumor microenvironment
(242). Ovarian cancer of murine and human ovarian tumor
variants resistant to paclitaxel and carboplatin were infected
with oncolytic vaccinia virus expressing a CXCR4 antagonist
and were +/– treated in combination with doxorubicin. The
chemo-resistant variants’ augmented expression of CXCR4 was
associated with an increased susceptibility to viral infection and
doxorubicin-mediated killing compared to parental counterparts
in vitro and in tumor-challenged mice. Antitumor immune
responses in this model culminated in the control of metastatic
tumor growth and tumor-free survival. Mechanistically, the
authors showed combination treatment increased apoptosis
and phagocytosis of tumor material by DCs which efficiently
induced adaptive antitumor immunity, reflected by increased
intratumoral infiltration of antitumor CD8+ T cells and
reduced immunosuppressive Tregs (242). Based on these results
(Figure 2), the MORPHEUS clinical trials were started including
treatment arms combining immune-checkpoint inhibitors
with CXCR4 inhibition (NCT03193190, NCT03281369 and
NCT03337698 for pancreatic cancer, gastric cancer and
non-small cell lung cancer, respectively).

CONCLUDING REMARKS

With combinatorial approaches of radiotherapy and
immunotherapy on the rise, it is important to evaluate
novel treatment strategies in radiation oncology with respect
to tumor and radiation biology as well as immunologic effects.
For SDF-1/CXCR4 targeting both perspectives provide a strong
rationale for combination therapies. The SDF-1/CXCR4 axis
plays pivotal roles in various aspects of tumor biology, and in
particular in the stress response of tumors to ionizing radiation.
In preclinical in vivo models CXCR4 targeting increases
the efficacy of radiation therapy and blunts adverse effects,
such as radiation-stimulated metastases and vasculogenesis.

Mobilization of HSCs, a significant increase of immune and
progenitor cells in the periphery that are able to migrate
into the tumor and the selective targeting of Treg cells in
the tumor lesion provide the rationale for an increased anti-
tumor immune response upon CXCR4 inhibition. Preclinical
mechanistic studies as well as translational and clinical
evaluation of the role of the SDF-1/CXCR4 axis in the context
of cancer radiotherapy and immunotherapy might lead to novel
treatment strategies implementing SDF-1/CXCR4 targeting
in this context using the small molecule inhibitors already
approved for the use in patients and healthy donors for HSC
mobilization.
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