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Abstract: We investigated the individual properties of various polyion-coated bubbles 

with a mean diameter ranging from 300 to 500 nm. Dark field microscopy allows one to 

track the individual particles of the submicron bubbles (SBs) encapsulated by the  

layer-by-layer (LbL) deposition of cationic and anionic polyelectrolytes (PEs). Our focus is 

on the two-step charge reversals of PE-SB complexes: the first is a reversal from 

negatively charged bare SBs with no PEs added to positive SBs encapsulated by 

polycations (monolayer deposition), and the second is overcharging into negatively 

charged PE-SB complexes due to the subsequent addition of polyanions (double-layer 

deposition). The details of these phenomena have been clarified through the analysis of a 

number of trajectories of various PE-SB complexes that experience either Brownian 

motion or electrophoresis. The contrasted results obtained from the analysis were as 

follows: an amount in excess of the stoichiometric ratio of the cationic polymers was 

required for the first charge-reversal, whereas the stoichiometric addition of the polyanions 

lead to the electrical neutralization of the PE-SB complex particles. The recovery of the 

stoichiometry in the double-layer deposition paves the way for fabricating multi-layered 

SBs encapsulated solely with anionic and cationic PEs, which provides a simple protocol 

to create smart agents for either drug delivery or ultrasound contrast imaging. 
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1. Introduction 

Microbubbles designate colloidal gas particles in aqueous media possessing diameters of 1 to 100 

micrometers [1–6]. The dispersed microbubbles have been found to be unstable due to the effects of 

their surface tension: the microbubbles tend to leak into aqueous solutions due to a large Laplace 

pressure that drives the dissolution of the bubbles [7,8], and they need to be covered with a variety of 

stabilizing shells [1–23]. The diffusion of the gas can be slowed by coating the gas core, thereby 

increasing the lifetime to a few months [4,5,15]. Recently, we have also found that smaller dispersions 

of gas particles, which will be referred to as submicron bubbles (SBs) below, can exist for more than 

hours even in the absence of stabilizers [1,24–32]. 

The colloidal bubbles, including SBs as well as microbubbles, have many unique properties, such as 

a low rising velocity, a friction reducing effect, and a high pressure inside of the bubble. Thanks to 

these novel features, much attention has been paid to micron and/or submicron bubble suspensions in 

various fields [1]. For example, colloidal bubbles were used for water treatment in the engineering and 

industrial fields [1,21,31–34]. Effective treatment methods for wastewater with microbes, including 

cyanobacteria, were investigated, thereby achieving the removal of negatively charged bacteria from 

water using positively charged microbubble complexes [21]. The low gas permeability of encapsulated 

bubbles also facilitates an efficient trapping of functional gas inside solutions, which is useful for 

agricultural and green-technological applications, such as the industrial food applications [33] and the 

removal of residual pesticides from leaves using ozone microbubbles [34]. 

In terms of biomedical use, it should be noted that microbubbles are similar to red blood cells in 

size and are expected to display a similar rheology. A wide variety of the biomedical applications 

include the exploitation of the colloidal bubbles as agents not only for contrast ultrasound imaging but 

also for targeted drug and gene delivery [1–3,6,11,12,14–16,20,35–43]. The efficiency of delivering a 

drug to the specific target region has been improved by focusing an ultrasound field to destroy the 

microbubble carriers in order to release drugs or therapeutic genes. Furthermore, coating the gas core 

with a shell is significant for loading the drug or DNA molecules as well as for stabilizing the colloidal 

bubbles. These shells have been fabricated using various materials, such as proteins and lipids, and 

with neutral and charged surfactants, yet the thin shell on the gas-filled core itself cannot be used as an 

efficient therapeutic vehicle. The loading capacity of the bubble for drug or gene therapies must be 

further increased [3,6,11,12,35,36]. 

One of the most promising shells for this purpose is the polyelectrolyte (PE) multi-layer formed by 

the layer-by-layer (LbL) method [2,9–12,15,17,18]. The LbL technique is essentially based on charge 

reversal phenomena whereby colloidal particles are overcharged by adding oppositely charged PEs [26,27]. 

There are some potential advantages to LbL encapsulation. First, the overall loading capacity of 

microbubble surfaces can be increased due to the electrostatic sandwiching of anionic DNA between 

cationic layers [11,12]. Additionally, the polymeric shells facilitate the ability to impart a good degree 

of biocompatibility or biodegradability as well as additional functionality, such as molecular recognition. 
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Nevertheless, most of the first coverage on the uncoated microbubbles has been performed using 

non-polymeric materials including lipids and proteins. While there was a previous report that used CO2 

microbubbles for the preparation of multi-layers of pure PEs [15,17,18], it has been suggested that 

uncoated microbubbles of air or oxygen have some difficulty in implementing the charge reversal 

caused by cationic PEs (polycations) that violates the electrical stoichiometry [26,27], though a wide 

variety of colloid-PE complexations have almost satisfied the stoichiometry at the isoelectric point [44]. 

We have ascribed the anomalous phenomena to the anions on the surface of unmodified air or oxygen 

microbubbles that arise from the adsorption of hydroxyl ions on the gas surface [26,27], except for in 

strong acid solutions [1,45,46]; however, the details remain to be addressed, and we need to investigate 

the monolayer deposition regarding various species of polycations and compare the first and second 

charge reversals due to the depositions of mono-and double-layers, respectively. 

In this paper, we aim to experimentally clarify whether the mono-and double-layer deposition 

processes take different courses or not, partly because such comparison serves to judge the validity of 

previous model [27] that theoretically explains the non-stoichiometric anomaly found in the mono-layer 

depositions [26,27]. To this end, we performed in situ observations of SBs using dark field microscopy 

during the LbL deposition procedures followed by gradually adding polycations (mono-layer deposition) or 

polyanions (double-layer deposition). Our focus is on tracking the trajectories of individual gas 

particles that experience either Brownian motion or electrophoresis without forming aggregates. It is 

therefore required that the uncoated colloidal bubbles should not disappear with an experimental time, 

which the bare SBs meet as mentioned above. 

Thus, we analyzed the trajectories of SBs in extremely dilute suspensions so that coagulation might 

be suppressed considerably. With the electrophoresis measurements, our particular concern is the 

isoelectric point where the electrophoretic mobility μ is negligible on average due to the electrical 

neutralizations of either the mono-layered SBs (M-SBs) covered with polycations or the double-layered 

SBs (D-SBs) covered with polyanions on the surface of mono-layered SBs. The isoelectric point is 

specified by the critical monomer density Ccm of the cationic or anionic PEs added to cancel the 

effective charges of the PE-SB complex particles. We will determine Ccm in various complex solutions 

by forming M-SBs or D-SBs to investigate whether the electrical stoichiometry is satisfied at the 

isoelectric points. Furthermore, we have corroborated that the Brownian particles tracked for the 

electrophoresis measurements are neither aggregates nor dust. 

This paper is organized as follows. The next section is the experimental section, where we will 

describe the details regarding the analysis of particle trajectories as well as the materials and 

experimental systems that were utilized in this research. The next section includes the results and 

discussion and will consist of four parts. In the first part, we will discuss the size distribution of bare 

SBs with no shells due to the absence of stabilizers, such as PEs, in the suspension. In the second part, 

we will investigate the pH-dependence of μ and the associated zeta potential for bare SBs, and will 

compare the variations in μ with polycations, polyanions and neutral polymers added, respectively.  

In the third section, we will demonstrate the different behaviors between the mono- and double-layer 

deposition processes by focusing on the stoichiometry in terms of the total charge ratio at the isoelectric 

points of M-SBs and D-SBs. The fourth part will provide the size distributions of M-SBs and D-SBs for a 

comparison. Finally, the last section will contain concluding remarks on the implications of creating 

smart agents for either drug delivery or ultrasound contrast imaging. 
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2. Experimental 

2.1. Materials 

The SB particles made of air were produced by a fine bubble generator (OM4-GP-040, Aura Tec, 

Kurume, Japan) in water that had been deionized and filtered using a 200-nm-pore-size filter (Minisart, 

Sartorius, Hannover, Germany) in advance. The SB suspensions were diluted to fix the SB density at 

approximately 3 fM by adding salt-free water or PE solutions. A previous study of the same SBs 

evaluated by the comparison of the micrographs of SBs and silica colloids with known concentrations 

found that the density of 3 fM was maintained for several hours, at least [26], which was sufficient to 

finish the measurements while suppressing the coagulation between SB particles surrounded by 

various polymers. 

Cationic PEs added to the bare SB suspension were poly (diallyldimethyl ammonium) chloride 

(pDADMAC), poly-L-lysine (PLL), and poly(allylamine hydrochloride) (PAH). The distributions of 

the weight-averaged molecular weight (Mw) were in the order: Mw < 100,000 (pDADMAC, Sigma,  

St. Louis, MO, USA), Mw = 150,000–300,000 (long PLL (L-PLL), Sigma), Mw = 70,000–150,000 

(short PLL (S-PLL), Wako), Mw = 56,000 (long PAH (L-PAH), Sigma), and Mw = 17,000 (short PAH  

(S-PAH), Sigma). We also used polyethylene glycol (PEG, Mw 5000–7000, Fluka, Tokyo, Japan) as a 

neutral polymer and anionic PEs of sodium poly(styrenesulfonate) (NaPSS, Pressure Chemical, 

Pittsburgh, PA, USA) with narrowly distributed molecular weights (polydispersity index < 1.5):  

Mw = 990,00 (L-NaPSS), Mw = 208,000 (M-NaPSS), and Mw = 8,000 (S-NaPSS). We passed all 

species of the polymer solutions through a 200-nm-pore-size filter (Minisart, Sartorius) prior to mixing 

with the salt-free SB suspension to eliminate aggregates or dusts in the polymer solutions with no SB 

particles added. To adjust the solution pHs, we used a phosphate buffer (Wako) as well as HCl and 

NaOH (Sigma). 

Mono-layer deposition processes were investigated by performing Brownian and electrophoretic 

measurements of various SB-polycation suspensions, each of which was prepared by mixing a bare SB 

suspension and a polycation solution with its monomer density varying in a range of Cm < 5 μM. 

Polyanions for double-layer deposition, on the other hand, were added to a positively charged M-SB 

suspension which had been prepared beforehand in an S-PLL solution with its monomer density fixed 

at 2 μM. Similarly to the investigation of mono-layer formation, different courses of double-layer 

deposition were compared using mixtures of the M-SB dispersion and polyanion solutions with its 

monomer density changed within a range of Cm < 5 μM. 

2.2. Experimental Setup 

The concentration of SB particles was fixed at a low density of 3 fM for all experimental conditions.  

We characterized the varying solution conditions using a pH and conductivity meter (Seven Easy, 

Mettler Toledo, Columbus, OH, USA). The dispersed SBs undergoing Brownian motion or 

electrophoresis were detected at 25 °C via dark field microscopy using a zeta potential analyzer 

(Zeecom, Microtech Nition, Funabashi, Japan). Video observations of the migrating particles  

(see Movie S1 in Supplementary Materials) enable one to measure the individual velocities by tracking 

the particles, respectively; this method has been referred to as the microscopic electrophoresis method. 
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We used a rectangular cell with dimensions of 1-cm in height (2h = 10 mm), 0.75-mm in depth  

(2d = 0.75 mm), and 9-cm in length, which is equal to the electrode gap length. 

As control experiments, we prepared a variety of solutions without the use of a bubble generator for 

observing, in the absence of SBs, a salt-free solvent of deionized water, a polycation solution with a 

monomer density of Cm = 2.0 μM, and a mixture of polyanions and polycations whose monomer 

densities were set to be 2 μM and 3 μM, respectively. These solutions were filtered and the monomer 

density adopted was much lower than the overlapped density beyond which PE solutions can be 

regarded as semidilute solutions [47]. Accordingly, dark field microscopy of these bubble-free 

solutions was unable to detect any particles undergoing Brownian or electrophoretic motions.  

The consistently null results in the control observations conversely reveals that the observed particles 

in the presence of bubbles are SBs and/or PE-SB complex particles. 

The number of SB particles tracked and analyzed in a set of Brownian or electrophoretic 

experiments was fixed at fifty, and we repeated three to five 50-particle measurements at each 

experimental condition. Thanks to careful filtering prior to mixing SB suspension and a PE solution, 

there were only a few aggregates that were distinguishable due to the obviously high intensity of 

scattered light while collecting trajectory data of 50 particles. Therefore, the microscopic observations 

can exclude the aggregates from the analyses, other than the dynamic light scattering (DLS) method 

that necessarily analyzes an integrated intensity of all scattered light. 

2.3. Analysis 

The video analysis of Brownian particles provides the mean square displacement (MSD), which is 

proportional to a time interval t:  

 2 2t dDtr  (1)

where r(t) denotes the particle displacement and D the diffusion constant of the SBs. We adopted d =2 

as the spatial dimension because r(t) lies in a two-dimensional plane in the measurement of the MSD 

in the movies. The hydrodynamic diameter 2a of the SB is thus evaluated from combining the 

diffusion constant D obtained from Equation (1) and the Stokes-Einstein relation:  

B

6πη

k T
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a
  (2)

with the viscosity of water and the thermal energy denoted by η and kBT, respectively. 

We evaluated the inherent electrophoretic drift velocity vd from fitting the theoretical velocity 

profile v(x) to the mean velocity distribution obtained experimentally, with the average of fifty particles 

tracked using dark field microscopy. In the case of the rectangular housing, v(x) is given by [48] 
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where veo denotes the electroosmotic velocity in the vicinity of the cell walls. 
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For all of the experiments, we have verified a range of an effectively applied electric field E that 

satisfies the linear relationship of electrophoretic velocity vd versus E; therefore, the slope of the fitting 

line provides the electrophoretic mobility μ. 

There are various equations relating the zeta potential ξ to μ. From them, we used Henry’s equation, 

which has been found to cover a wide range of solution conditions [49]:  

 r 0ε ε ζ
μ κ

η
f a  (4)

where εr and ε0 are the permittivities of the water and the vacuum, respectively, and f (κa) denotes 

Henry’s coefficient as a function of the length ratio, κa, of the hydrodynamic radius a to the Debye 

length к−1 which was determined from the measured conductivity. Thanks to the analytical form 

derived by Oshima et al. [49], the zeta potential ξ directly provides the mean surface charge density σ, 

or the average effective charge ZB = 4πa2σ that an SB carries. 

We use the charge ratio, α = Qp/QB, between the added charges Qp of the ionic groups on the PE 

chains in total and the sum of the charges of the SBs, QB, as indicators of the aforementioned 

stoichiometry. Fixing the volume at 1 L for brevity, QB is given by QB = eZBCB, using the density, CB, 

of the SBs, whereas we have Qp = eCcm with e denoting the elementary charge and the supposition that 

every constituent monomer used herein has a monovalent ionic group. Accordingly, α can be 

determined by α = Ccm/(ZBCB), where CB is set to be a constant under the conditions in generating the SBs.  

3. Results and Discussion 

3.1. Evaluating Hydrodynamic Diamters of Bare SBs 

Figure 1a shows a typical result of the MSD versus time lag t for a bare SB in salt-free water at 25 °C. 

In Figure 1a, the line delineates the fitting results of Equation (1). It was determined from Equation (1) 

that the slope of the fitted line in Figure 1a was proportional to the diffusion constants of a bare SB in a 

two-dimensional plane. We further evaluated the hydrodynamic diameter, 2a, from Equation (2), 

providing that 2a = 250 nm for the targeted SB in Figure 1a. 

 

Figure 1. Time-interval (t) dependence of the MSD of a bare SB (a) and histogram 

representation of the diameter distribution of 50-particles that were recognized as bare SBs (b). 

(a) The line delineates Equation (1) that was fitted to the measured MSD (red crosses). 

Error bars lie within symbols. (b) A percentage denotes a mean fraction of 50 particles 

which depends on a range of hydrodynamic diameter. For example, the label “100” in the 

transverse axis represents the range 100 ≤ 2a < 200. 
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Repeating the MSD measurements as shown in Figure 1a, we created the histogram in Figure 1b that 

represents the distribution of the hydrodynamic diameter for the suspensions of bare SBs. The mean 

diameter 2a of the bare SBs was 2a = 320 nm, which agrees with the previous results obtained from the 

DLS method [25,28,31]. Incidentally, we can estimate the upper limit of the bubble density CB using the 

mean radius, a = 160 nm, in addition to the injected air volume Va in 1 liter of the suspensions: we have 

 B a A B 6 fMC V N v   consistently with the actual density adjusted to CB = 3 fM (see Section 2.1), 

where NA and  3
B 4π 3v a  denote Avogadro’s number and the volume of a single SB, respectively. 

3.2. pH Effects on Bare SBs and M-SBs 

Following the treatment based upon Henry’s Equation (4), we calculated the zeta potentials of the 

bare SBs from the obtained values of μ for the various solvents with different pHs (Table 1). It has 

been explained that bare microbubbles carry charges due to the adsorption of either a hydroxyl ion 

OH− or a hydronium ion H3O+, which naturally caused the pH-induced charge reversal. The pH 

dependence in Table 1 indicates that lowering the pH converts anionic bubbles into cationic ones, 

which is similar to that of the microbubbles that were previously reported [45,46]. We also find from 

Table 1 that the absolute value of the zeta potential increases when increasing the solution pH. The 

results at both the low and high pHs were consistently explained by the existence of SBs at pH 7.1 that 

were negatively charged due to the adsorption of the OH− that was dissociated from the water molecules. 

Table 1. Mean zeta potentials of bare SBs at various pHs. 

Salt conditions pH Zeta potential (mV)

HCl (0.1 mM) 4.1 +14 
Buffer (1 mM) 7.1 −38 

Salt free 7.1 −40 
NaOH (0.1 mM) 10.4 −50 

Figure 2 shows variations of the elecrophoretic SB-mobilities, μ, due to the addition of a polycation 

(S-PLL), a polyanion (L-NaPSS), and a neutral polymer (PEG). In Figure 2, we observe two  

Cm-dependencies of μ, which is indicative of the charge reversals that were induced by the addition of 

the oppositely charged polycations to the negatively charged SB suspensions in the buffer solution and 

with the addition of 0.1 mM-NaOH. The resulting pHs fell within the range of 7.0 to 7.2 in the buffer 

solution and were maintained at a pH between 10.0 and 10.5 in the 0.1 mM-NaOH solutions.  

The mobility of the SB particles at a pH of 4.2 in 0.1 mM-HCl solutions, on the other hand, remained 

positive irrespective of Cm though this is not included in Figure 2.  

The contrasted behaviors of μ at different pHs strongly suggest that the charge reversals in Figure 2 

were not induced by the pH changes, but were driven by the electrostatic attractions between the anionic 

SBs and the polycations. To verify the electrostatic mechanism, we also performed control experiments 

that investigated the variations in μ in the presence of neutral polymers or similarly charged polyanions. 

Figure 2 further shows that SBs with the addition of neutral or anionic polymers possessed negative 

mobility as well as that of the bare SBs, thereby revealing that the electrostatic attractions are indispensable 

for inducing the present charge reversals due to the addition of the oppositely charged polycations. 
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Figure 2. Changes of electrophoretic mobilities due to the addition of polycations (S-PLL) at 

pHs of 7.1 and 10.4, neutral polymers (PEG) and polyanions (L-NaPSS). Error bars lie 

within symbols if unspecified. 

From Figure 2, we can evaluate the isoelectric point, specified by a critical monomer density Ccm,  

at which μ vanishes due to the electrical neutralizations of the SBs, and beyond which the sign of μ is 

reversed. Figure 2 provides the different ranges of 0.5 μM < Ccm < 1.2 μM and 1.7 μM < Ccm < 2.4 μM 

where neutral and basic solvents were used, respectively. Meanwhile, it should be noted that,  

as observed in Table 1, the zeta potential increases with an increase in pH, arising from the difference of μ 

at Cm = 0 μM in Figure 2, which indicates that the SBs carry more negative charges in the basic 

solvents than in neutral solutions. Combining these results, we can ascribe this delay of the charge 

reversals with the increase of pH to the increasing number of anions adsorbed onto the SB surfaces. 

3.3. Comparison of the Charge-Reversal Phenomena Due to the Mono-and Double-Layer Depositions 

Figure 3a depicts the Cm dependencies of μ in five kinds of salt-free polycation solutions. It should 

be noted that no salt was added in Figure 3a, as opposed to Figure 2; nevertheless, the resulting pHs of 

the salt-free solutions were maintained in the range of 6.6 to 7.4 overall for the monomer density 

adopted. Despite the small variance in the pHs, we observed from Figure 3a that Ccm ranges from the 

minimum of Ccm < 1 μM to the maximum of Ccm > 2 μM, and the diversity of Ccm is as large as the 

aforementioned difference of Ccm at pH values of 7.1 and 10.4. Such variety in the Ccm arises from the 

differences of polycation species or the molecular weight Mw (equivalent to the chain length) of the same 

species. First, the species dependency of Ccm suggests that the effective dissociation of the ionic groups 

was affected by the constituent molecules due to various factors such as the counterion condensation, even 

though the degree of dissociation was chemically indiscernible. Actually, the difference of Ccm 

associated with the distinction of the constituent molecules has also been reported in previous charge 

reversal phenomena of conventional colloids, such as silica particles and polystyrene colloids [45]. 

More attention should be paid to the other variations of Ccm for the identical species of PLL and PAH. 

Figure 3a shows that Ccm increased when the polycation was longer, indicating that the isoelectricity of 

the individual SBs is not governed by the electrical stoichiometry of the anionic SBs and the 

polycations other than that for the previous charge reversal phenomena of usual colloids [26,27,45]. 
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Figure 3. Charge reversals due to the formations of a polycationic mono-layer (a) and of a 

polyanionic and polycationic double-layer (b). (a) Electrophoretic mobilities of the M-SBs 

where various species of polycations (S-PLL (red triangles), L-PLL (red diamonds), 

pDADMAC (green circles), S-PAH (blue triangles), and L-PAH (blue diamonds)) were 

added. (b) Double-layered SB complexes formed by the addition of polyanions (S-NaPSS 

(red), M-NaPSS (green) and L-NaPSS (blue)) with three kinds of molecular weights to the 

positively charged M-SBs. Error bars lie within symbols. 

We introduce the charge ratio α = Ccm/(ZBCB), defined in Section 2.3, in order to determine the 

extent to which the conventional stoichiometry was violated. The effective charge number ZB per  

SB can be obtained from μ at Cm = 0 as described above, providing that ZB ≈ 400 as reported  

previously [26,27]. Incidentally, as described in Section 2.1, we set that CB = 3 fM. Table 2 lists the 

various values of α, which have been obtained from Ccm in Figure 3a. The above dependencies of Ccm 

on the polycation species and Mw were reflected by the variations of these results in Table 2. It is far 

more anomalous that all of the results of α are on the order of 104, which is much larger than the 

stoichiometric condition of α = 1. 

Table 2. The critical monomer-concentrations of the various polycations added for 

overcharging, and the charge ratio at the charge reversal. 

Polycations Ccm (μM) Charge ratio α (×104) 

pDADMAC 0.4–0.7 6–12 
L-PLL 1.0–1.7 16–28 
S-PLL 0.4–0.8 6–13 
L-PAH 2.1–2.6 35–42 
S-PAH 1.0–1.4 16–23 

Next, Figure 3b displays three kinds of charge reversals induced by the addition of polyanions 

(NaPSS) to the positively charged M-SBs, where we used the same type of M-SBs equally formed in  

2 μM-solutions of S-PLL. The added polyanions with short, medium and long chain lengths  

(S-, M- and L-NaPSS) possess narrow distributions of their molecular weights, as described in Section 2.1. 

In these experiments, an overwhelming excess of free polycations surrounding M-SBs had not been 

removed, and most of the 2-μM polycations were uniformly dispersed instead of covering the M-SBs, 

as inferred from the tremendous values of α in Table 2.  
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In contrast to the above diversity of Ccm (see Figure 3a), the Cm-dependencies of μ in Figure 3b 

were quite similar; these results exhibited not only the coincidence with the Ccm, but also the identical 

reduction in μ prior to the isoelectric point. From Figure 3b, we can find the location of Ccm as before, 

which is in a relatively narrow range of 1.8 μM < Ccm < 2.0 μM. Since the number density of M-SBs is 

equal to that of bare SBs as confirmed from microscopic observations, the present range of Ccm 

remains anomalous in terms of α. Considering the existence of free polycations, however, the anion 

density, which is equally close to 2 μM irrespective of molecular weights, is balanced with the 

concentration of free and deposited cations in total, indicating that the electrical neutrality of the entire 

system is satisfied at the isoelectric point of the double-layer deposition. 

3.4. Particle Size Distributions with Polyelectrolytes Added 

Our preceding discussions in Section 3.3 have been made supposing that the particles tracked for 

evaluation of the individual mobilities were PE-SB complex particles. Indeed, the validity of the above 

analyses during the deposition processes is corroborated by continuous changes such that the 

mobilities gradually vary with an increase in Cm as shown in Figures 2 and 3, and yet it remains to be 

verified whether the measured particles are actually SB-included ones. Hence, we further analyzed the 

dark field micrographs regarding three kinds of Brownian particles as follows: negatively charged M-SBs 

(NM-SBs) with polycations (S-PLL) of Cm = 0.2 μM added (corresponding to the second red triangle 

from the left in Figure 3a), positively charged M-SBs (PM-SBs) with polycations (S-PLL) of Cm = 2 μM 

added (the sixth red triangle from the left in Figure 3a), and negatively charged D-SBs (ND-SBs) at  

Cm = 2.8 μM of polyanons (S-NaPSS) which are represented by the fifth red diamond from the left in 

Figure 3b. 

First, dark field microscopy at any of the above suspensions detected no apparent change in SB 

density (see also Movie S1 in Supplementary Materials), compared with the bare SB concentration. 

We also investigated variation in the size distribution of the Brownian particles using Equation (2) as 

before. Because the added concentrations of PEs are so low, as mentioned in Section 2.1, that viscosity 

measurement cannot provide a relevant increase in PE-solution viscosity [47], we used the same water 

viscosity at 25 °C as that of bare SB suspensions when the hydrodynamic diameter 2a was determined 

from Equation (2); actually, applying such an evaluation of particle size to that of negatively charged 

SBs with neutral polymers or polyanions added (green and red diamonds in Figure 2), we obtained 

mean diameters in a reasonable range of 300 to 400 nm, which is close to that of bare SBs. 

Figure 4a–c show the diameter distributions of the NM-SBs, PM-SBs, and ND-SBs, from which we can 

determine mean diameters of 310, 420, and 400 nm, respectively. Comparison between the histograms of 

Figure 1b, Figure 4a–c indicates not only a similarity in the distributions between Figure 1b and  

Figure 4a, but also a resemblance between Figure 4b,c, so that they can be classified into two groups: 

one (Figure 2b and Figure 4a) and the other (Figure 4b,c). The difference is that both distributions of 

Figure 4b,c have longer tails extended to a larger size than those of bare SBs (Figure 1b) and NM-SBs 

(Figure 4a); correspondingly, the mean diameters of overcharged particles (PM-SBs and ND-SBs) are 

longer than that of bare SBs by approximately 100 nm. It should be also noted that, despite the distribution 

similarity, the surrounding PE solutions are in distinct states: while PM-SBs are surrounded by an 

excess amount of polyanions, ND-SBs exist in complex PE solutions of polycations and polyanions. 
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Figure 4. Histogram representations of diameter distributions regarding polycation-deposited 

SBs (NM-SBs (a) and PM-SBs (b)) and polyanion-polycation-deposited SBs (ND-SBs (c)). 

Both of the transverse and longitudinal axes denoted the same as those of Figure 1b where 

the distribution of bare SBs has been shown. 

Combining these features of both the number density and the diameter distribution of observed 

particles in PE solutions, it is verified that the charge reversal phenomena shown in Figures 2 and 3 are 

due to the LbL depositions of polyelectrolytes on the surface of submicron particles. In other words, 

Figures 2 and 3 evidently demonstrate the overcharging phenomena of PE-SB complex particles, and 

the broader distributions of overcharged particles as seen from Figure 4b,c were caused not by bubble-free 

complexes of polyanions and polycatios, but by clustering, such as dimerization, of PE-SB complex 

particles whose shells were mono-layered or double-layered. 

4. Conclusions 

In conclusion, the use of dark field microscopy has clarified the properties of the individual SB 

particles instead of the averaged results of the SB suspensions. It was experimentally significant that 

the initial size of the SBs was maintained for more than several hours [24–31]. Thanks to the existence 

of the stable SBs, we were able to compare the detailed processes of the mono- and double-layer 

depositions by the addition of polycations and polyanions, respectively, though such a long lifetime of 

the uncoated SBs remains to be rationalized. Our measurements were devoted to extensively tracking 

the trajectories of the Brownian and electrophoretic motions (see again Movie S1 in Supplementary 

Materials). It should be noted here that our concern has not been with the size distribution of all 

particles existing in the suspensions, but rather with the sizes of the particles that undergo 

electrophoreses. The dark field microscopy method can meet this requirement, other than the DLS 

technique. We have found from the MSD analysis regarding Brownian particles that the major part of 

the clusters consisted of a few SBs due to the suppressed emergence of the huge aggregates, as far as 

our observations were restricted to the dispersed particles undergoing electrophoreses. The size 

distributions given in Figures 1 and 4 validate that our microscopy method for investigating extremely 

dilute suspensions is able to characterize the electric properties of submicron bubbles without forming 

micron aggregates during the LbL processes. As a consequence, comparison of the first and second 

charge reversals using microscopic electrophoresis experiments has revealed the peculiarity of SB 

systems more definitely than before. 

Evaluating the number ratio of the added cations to the anions on the uncoated SB surfaces in the 

formation of the positively charged M-SBs, the ratio was enormously large and far beyond the 
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stoichiometric condition of the unity ratio (α = 1). In contrast, the double-layer deposition followed the 

conventional behavior in two respects. First, we obtained identical concentrations of Ccm irrespective 

of the molecular weights for the same species of NaPSS. Second, the close monomer concentrations of 

the added polycations and polyanions implied that the charge reversal of the PE-SB particles occurred 

after the completion of the stoichiometric complexation of the cationic and anionic PEs, meaning that 

the conventional stoichiometry applies to the double-layer deposition. 

These findings verified that the attractive electrostatic interactions played a secondary role in the 

formation of the first layer of polycations on the bare SBs. However, at the same time, our results 

demonstrated that one can manage to create encapsulated SBs without using additional materials or 

specific gases as long as a tremendous amount of excess polycations were added in the formation of 

the first layer. The results shown in Figure 3b further clarified that subsequent LbL coverage can be 

performed under normal conditions determined by the electrical stoichiometry. Coating SBs solely 

with polycations is a promising strategy to create smart agents of colloidal fine bubbles, because the 

exclusive use of polymers facilitates the attachment of targeting ligands in order not only to 

accomplish the site-specific delivery of drugs or genes, but also to provide the stimulus-responsive 

agents for ultrasound imaging [1–3]. 

Supplementary Materials 

Movie S1 shows sequentially the electrophoretic migration of negatively charged bare SBs in 

parallel to the external electric field applied in the left direction on the movie, the reverse 

electrophoresis of positively charged M-SBs by adding 1.2 μM S-PLL at pH 7.1 under the same 

electric field, and the Brownian motion of M-SB particles, where both bare SBs and M-SBs are 

observed as white dots by dark-field microscopy. 

Supplementary materials can be accessed at: http://www.mdpi.com/1996-1944/8/7/4176/s1. 
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