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Background. Long noncoding RNAs (lncRNAs) have been shown to be involved in the mechanism of cisplatin resistance in lung
adenocarcinoma (LAD). However, the roles of lncRNAs in cisplatin resistance in LAD are not well understood. Methods. We
used a high-throughput microarray to compare the lncRNA and mRNA expression profiles in cisplatin resistance cell A549/DDP
and cisplatin sensitive cell A549. Several candidate cisplatin resistance-associated lncRNAs were verified by real-time quantitative
reverse transcription polymerase chain reaction (PCR) analysis. Results. We found that 1,543 lncRNAs and 1,713 mRNAs were
differentially expressed in A549/DDP cell and A549 cell, hinting that many lncRNAs were irregular from cisplatin resistance in
LAD.We also obtain the fact that 12 lncRNAs were aberrantly expressed in A549/DDP cell compared with A549 cell by quantitative
PCR. Among these, UCA1 was the aberrantly expressed lncRNA and can significantly reduce the IC50 of cisplatin in A549/DDP
cell after knockdown, while it can increase the IC50 of cisplatin after UCA1 was overexpressed in NCI-H1299. Conclusions. We
obtained patterns of irregular lncRNAs and they may play a key role in cisplatin resistance of LAD.

1. Introduction

In recent years, a growing proportion of lung adenocar-
cinoma (LAD) has been diagnosed as non-small cell lung
tumor (NSCLC) that is attributable to causes such as environ-
mental pollution. The combination of cisplatin-based chem-
istry plays an important role in comprehensive treatment
program [1].With the widespread use of cisplatin, tumor cells
will inevitably lead to its resistance and the chemotherapy
effect was significantly reduced [2]. Studies show that 70–80%
of patients can temporarily be alleviated in the initial stage
of chemotherapy, but long-term use of cisplatin leads to
60% or more of recurrence rate, and drug resistance rate
of recurrent lung tumor was significantly increased and
chemotherapy response rate was less than 30% [3]. Nowa-
days, chemotherapy response rate of patients with advanced
LAD was only 30–40% and five-year survival rate less than
15% [4]. According to the survey of American Tumor Society,
it was shown that more than 90% of tumor deaths in patients

were related to varying degrees of drug resistance. The
formation of tumor cells once resistant to cisplatin resulted in
multidrug resistance to many first-line chemotherapy drugs,
for example, Adriamycin, vinblastine, fluorouracil, and mit-
omycin, so the harm is particularly serious [5]. Cisplatin
resistance is the leading cause of LAD chemotherapy failure,
affecting the cure rate and long-term survival rate, seriously
affecting the prognosis and quality of life, but also aggravating
the social andmedical burden.Therefore, it is very important
to find the biomarkers and molecular targets related to cis-
platin resistance in LAD and then to reverse its resistance to
improve the prognosis and to avoid and overcome multidrug
resistance.

Recent studies have shown that cisplatin is a nonspecific
cell cycle cytotoxic drug; it mainly plays a role of inhibition
of tumor cell DNA synthesis [6], inducing apoptosis [7].
The mechanism of cisplatin resistance is very complex and
it mainly involved some mechanisms [6, 8–10], including
changes in intracellular drug transport (such as ATP binding
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cassette protein); reducing drug activity interfering with drug
action mechanisms such as glutathione (such as GST-pi) can
increase cell detoxification function and affect DNA damage
repair (breast tumor-associated gene 1, excision repair cross-
complementing gene). Genetic changes of the main signal
pathways (PDK/Akt, MAPK/Erk, and Wnt) lead to block
apoptosis of drug effects. Unfortunately, despite previous
advances in genomics and proteomics, the mechanism of
cisplatin resistance has not been elucidated.

Studies have shown that lncRNAs known to be aberrantly
expressed in normal cells and tumor cells play a role in
the regulation of gene expression; so irregular expression of
lncRNAs can result in abnormalities of gene expression and
tumorigenesis [11–19]. The abnormal expression of lncRNAs
is a symbol ofmany tumors and has been shown to further the
development, invasion, and metastasis of tumors by a variety
of mechanisms [20, 21]. LncRNAs can regulate expression
from the epigenetic, transcriptional, and posttranscriptional
levels [20–22].

It was shown that lncRNAs are related to the mechanisms
of resistance to cisplatin in tumors, including lung tumor
[23–26], providing an important opportunity to elucidate the
mechanisms of cisplatin resistance in tumor cells and to find
ways to reverse cisplatin resistance. At present, the research
of 1ncRNA of cisplatin resistance in LAD is still in its infancy.
Some lncRNAmolecules, includingHOTAIR [27], AK126698
[28],MEG3 [23], H19 [29], and ROR [30], have been screened
and identified. It is shown that HOTAIR-mediated LAD
cisplatin-resistant mechanism may be through the impact
of p21 gene expression to enhance cell apoptosis and G0/G1
phase cell cycle arrest [27], AK126698 regulate non-small cell
lung tumor cisplatin resistance partially by Wnt signaling
pathway [28], MEG3 expression by inducing mitochondrial
apoptosis pathway p53 protein, and Bcl-xl activation of
A549/DDP cells to reduce cisplatin resistance [23]. However,
lncRNAs of LAD cisplatin resistance need to be further
excavated and their mechanisms need to be clarified.

We used a high-throughput microarray to compare the
lncRNA andmRNA expression profiles in cisplatin resistance
cell A549/DDP and cisplatin-sensitive cell A549. Several can-
didate cisplatin resistance-associated lncRNAs were verified
by real-time quantitative reverse transcription polymerase
chain reaction (PCR) analysis. Our results suggest that
lncRNA expression patterns may provide new molecular
biomarkers for the prediction of cisplatin resistance in LAD.

2. Materials and Methods

2.1. Cell Lines. A549, NCI-H1299 cells and cisplatin-resistant
cell line A549/DDP were cultured in RPMI1640 medium
containing 10% fetal bovine serum.The cells were transferred
into cell culture flasks by pipetting.The cells were incubated at
37∘C in a 5%CO2 incubator, while A549/DDP cell was added
to 1 𝜇g/ml of cisplatin maintain the drug resistance. The
mediumwas changed every 2-3 days.The cells were observed
under the good condition and the cell will be digested as the
cell density was 70%–90%.

2.2. RNA Extraction. The test group included three parallel
cultured A549/DDP cell and three parallel cultured A549
cell as the control group. Total RNAs of cells were extracted
using Trizol reagent (Invitrogen, Carlsbad, CA, USA), based
on the manufacturer’s protocol. The integrity of the RNA
was analyzed by electrophoresis on a denaturing agarose gel.
The accurate measurement of RNA concentration (OD

260
),

protein contamination (OD
260

/OD
280

ratio), and organic
compound contamination (OD

260
/OD
230

ratio) was analyzed
with a NanoDrop ND-1000 spectrophotometer

2.3. Microarray and Computational Analysis. An Agilent
Array analysis platform (Agilent Technologies, Santa Clara,
CA, USA) was used for microarray analysis,. Slightly, an
mRNA-ONLY Eukaryotic mRNA Isolation Kit (Epicentre
Biotechnologies, USA) purified mRNA from total RNA after
removal of rRNA. Then, each sample was amplified and
transcribed into fluorescent cRNA along the whole length
of the transcripts without 39 bias with a random priming
method. The labeled cRNAs were hybridized onto a Human
LncRNA Array v3.0 (8660 K; Arraystar including 30,586
lncRNAs and 26,109 coding transcripts). A specific exon or
splice junction probe accurately identified each transcript.
For hybridization quality control, the positive probes for
housekeeping genes and negative probes were also printed
onto the array. The arrays were scanned with an Agilent
G2505C scanner after washing the slides, and Agilent Feature
Extraction software (version 11.0.1.1) was used to analyze the
acquired array images. Quartile normalization and subse-
quent data analysis were performed with the GeneSpring
GX v12.0 software package (Agilent Technologies). Com-
plying with the manufacturer’s standard instructions with
minor modifications, sample preparation and microarray
hybridization were performed [31].Themicroarray study was
performed by KangChen Bio-tech Corporation, Shanghai,
China.

2.4. Functional Group Analysis. GO analysis was derived
from Gene Ontology (http://www.geneontology.org), which
can provide three structured networks of defined terms
describing gene product attributes. The 𝑃 value hints the sig-
nificance of GOTerm enrichment in the unmorally expressed
mRNA list (𝑃 ≤ 0.05 was considered obviously significant).
We also performed pathway analysis for the unmorally
expressedmRNAs based on the latest KEGG (Kyoto Encyclo-
pedia of Genes and Genomes) website. This analysis results
allowed us to determine the biological pathways whether
a significant enrichment of unmorally expressed mRNAs
existed (𝑃 ≤ 0.05 was considered obviously significant).

2.5. Construction of the mRNA-lncRNA Gene Coexpression
Network. The coexpression network is constructed and used
with calculating a pairwise relation matrix between all probe
sets across microarray samples.The result of Pearson relation
matrix was transformed into an adjacency matrix [31].

2.6. Quantitative PCR. Total RNA was then reverse-
transcribed with an RT Reagent Kit (Thermo Scientific, CA,
USA), according to the manufacturer’s protocols. Total RNA

http://www.geneontology.org
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Table 1: LncRNAs gene primers in the study for qPCR.

LncRNA gene Sense primer (5-3) Antisense primer (5-3) PCR product length (bp)
GLYCTK CGTGCTGATCTCAGGTGGTGA CTTCACAGAACGTGGCAGGG 164
HSD17B7P2 GTCAGCAACCTGCAGTCATTC GAGGCTCCAGTTCCCGAATC 283
AP001469.9 TCACACAACCACATCTCGTG TTGGTCTAAGACTGTTGCCAAG 299
NABP1 GGAGGGTGGGAAGCTTTGAC CTCCGATCTCATCCCACACG 260
RP11-909N17.3 AGACCCCTGCTATTCCCAGT AAGGGATGCAGGCAGTTCTC 102
UCA1 ACGCTAACTGGCACCTTGTT CTCCGGACTGCTTCAAGTGT 124
POLD4 GCACCGTCTCTGGCATCTC GTTGAGCCTCTGACACCTCC 180
XLOC 009833 AGCCCCTTTATCACTGTGGC GACATTCAGGAGACGACGGG 147
CTD-2555O16.2 GAGAGAAGGTCCCTTGGTGC CAGTGCTGCGTTTAGTCATGT 79
RP11-299H22.5 AGTCGCCTTTTCCCTTAGCC GCAGCTCTCATCTGGTGCTT 108
BC033241 TCTACACAACGCCAGCACAT TTGACACGTGCTTGGTGAGA 107
AC078883.3 GTGGCAACATCCCTACACCA ACAGGTTCGTGTTCCCAGTC 245
GAPDH TGACTTCAACAGCGACACCCA CACCCTGTTGCTGTAGCCAAA 121

(2 ug) was reverse-transcribed to cDNA. PCRwas performed
in a total reaction volume of 20 𝜇l, including 10 𝜇l of SYBR
Premix (2x), 2 𝜇l of cDNA template, 1 𝜇l of PCR forward
primer (10mM), 1 𝜇l of PCR reverse primer (10mM), and
6 𝜇l of double-distilled water. The qPCR reaction included
an initial denaturation step of 10min at 95∘C; 40 cycles of
5 s at 95∘C, 30 s at 60∘C, and a final extension step of 5min
at 72∘C. The qPCR detected LncRNA with SYBR Premix Ex
Taq and an ABI 7200 instrument (ABI Corporation, CA,
USA). The candidate lncRNAs were analyzed by qPCR and
the sequence information of these gene primers is shown in
Table 1.We verified the expression of these lncRNAs by qPCR
usingGAPDH as a housekeep gene and by calculating 2−ΔΔCT
values [32].

2.7. Lentivirus-Mediated siRNA, Overexpression Vector Con-
struction, and Transfection. We constructed siRNA GV248
vector targeting UCA1 and overexpression GV303 vector
targeting UCA1 (Gene Chem, Shanghai, China). SiRNA
sequences were as follows: siRNA1: CCACCTGTAGAGAA-
GACAAA, siRNA2: GAAGAGTAGAAGACAGGT, siRNA3:
GCCTGGACAAGAACAGT. Transfections were performed
by seeding 2× 105 cells in 6-well plate. After 24 h, themedium
was replaced, and the cells were incubated with the transfec-
tion complex based on the manufacturer’s protocol; the mul-
tiplicity of infection (MOI) values was as follows: A549 MOI
= 20 and NCI-H1299 MOI = 5. The cells were infected with
lentivirus for 72 h, and the siRNAor overexpression efficiency
was assessed by qPCR. Puromycin test isolated these cell
lines successfully transfected with the lentivirus-mediated
vector. The study included NCI-H1299 UCA1 overexpression
cell lines (UCA1 OE group), NCI-H1299 was infected with
lentivirus negative control LVCON077 vector (NC group),
NCI-H1299 (control group), and A549 UCA1 siRNA cell line
(UCA1 siRNA group), and A549 was infected with lentivirus
negative control LVCON145 vector (NC group) and A549
(control group).

2.8. CCK-8Assays. IC50 (halfmaximal inhibitory concentra-
tion) was detected by Cell Counting Kit-8 (CCK-8, Corning

Corporation, UAS) abiding by the manufacturer’s protocols.
Briefly, 3000 cells were remixed and seeded into a 96-well
plate with 10% FBS. The next day, the cells were incubated
with CCK-8 for 1 h and the absorbance of 450 nm was
analyzed.

2.9. Statistical Methods. Statistical analysis was performed
for the comparison of two groups in the microarray which
was performed with Student’s 𝑡-test and the fold change. The
false discovery rate (FDR) was calculated for correcting the
𝑃 value. The threshold value used to designate abnormally
expressed lncRNAs and mRNAs according to a fold change
of ≥2.0 or ≤0.5 (𝑃 < 0.05). Differences with 𝑃 < 0.05 were
considered statistically significant.

3. Results

3.1. Overview of lncRNA Profiles. The result showed that
there were 1,543 differentially expressed lncRNAs between
A549/DDP and A549 cell. Among these, compared to A549
group, the 984 lncRNAsupregulatedmore than twofold in the
A549/DDP group, while 559 lncRNAs downregulated (Sup-
plemental Table 1 in SupplementaryMaterial available online
at https://doi.org/10.1155/2017/7498151 and Figure 1). These
lncRNAs might play an important role in the cisplatin
resistance of LAD.

3.2. LncRNA Classification and Subgroup Analysis. There
were 43 differentially intergenic lncRNAs (LincRNAs)
(including 31 upregulated and 12 downregulated) expressed
(fold change ≥ 2.0, 𝑃 < 0.05) between A549/DDP cell and
A549 cell. We also found some nearby coding genes that
may be regulated by these LincRNAs (Supplemental Table
2). LncRNAs with enhancer-like functions (lncRNA-a)
were identified with GENCODE annotation. There were 33
lncRNA-a (including 17 upregulated and 16 downregulated)
differentially expressed between A549/DDP and A549
cell. We also found some nearby coding genes that may
be regulated by these lncRNA-a (Supplemental Table 3).
Otherwise, we also found 52 antisense lncRNAs (including
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Figure 1: Box plots, scatter plots, and heat map showing the variation in lncRNA expression between the A549/DDP and A549 arrays. The
values of the𝑋 and 𝑌 axes in the scatter plot are averaged normalized values in each group (log 2-scaled). The lncRNAs above the top green
line and below the bottom green line are those with a >3-fold change in expression between tissues. (a) Scatter plots of T2 group versus
C2 group. (b) Scatter plots of T3 group versus C3 group. (c) Scatter plots of T5 group versus C5 group. (d) Volcanic map, (e) heat map and
hierarchical clustering of lncRNA, and (f) box plots showing the distribution of the lncRNA.



BioMed Research International 5

Table 2: Some upregulated or downregulated mRNAs in A549/DDP.

Probe name Fold change Regulation Gene symbol
ASHGA5P001180 39.0517312 up USF2
ASHGA5P016060 3.9089125 up EFTUD2
ASHGA5P005374 3.2721382 up TTC39C
ASHGA5P034316 3.2788507 up ZNF836
ASHGA5P006930 2.1690486 down TUBD1
ASHGA5P050222 4.1895085 down PAFAH1B3
ASHGA5P006058 9.1726844 down TACC3
ASHGA5P010515 2.6021545 down QKI
ASHGA5P037999 2.193611 down FAM159A
ASHGA5P009559 2.2639906 down DIAPH2
ASHGA5P001190 3.9636124 up CPA4
ASHGA5P002598 2.1978303 up SNX24

21 upregulated and 31 downregulated) (Supplemental Table
4).

3.3. Overview of mRNA Profiles. In total, 1,712 mRNAs were
found to be differentially expressed between the A549/DDP
and A549 cell, including 795 mRNAs upregulated and 917
mRNAs downregulated (Table 2 and Figure 2).ThesemRNAs
might play a role in the cisplatin resistance of LAD.

3.4. GOAnalysis. Thegenes corresponding to downregulated
mRNAs included 979 genes involved in biological processes,
120 genes involved in cellular components, and 137 genes
involved in molecular functions (Figures 3(a)–3(c)). The
genes corresponding of upregulated mRNAs included 558
genes involved in biological processes, 93 genes involved in
cellular components, and 77 genes involved in molecular
functions (Figures 3(d)–3(f)).

3.5. Pathway Analysis. The 30 upregulated pathways were
found, including chemical carcinogenesis, drug metabolism,
and p53 signaling pathway (Figure 3(g) and Table 3). 37
downregulated pathways were identified, like DNA repli-
cation, cell cycle, Fanconi anemia pathway, and so on.
(Figure 3(h) and Table 3). These pathways might play a role
in the cisplatin resistance of LAD.

3.6. LncRNA-mRNA Coexpression Network. We build the
lncRNA-mRNA coexpression network. See Figure 4(a). The
results imply that UCA1 (uc002nbr.3), ENST00000443252,
ENST00000510562, ENST00000565689, ENST00000558690,
ENST00000397340, ENST00000440955, ENST00000507916
are closely related to many mRNAs and they together
prompted resistance of cisplatin in LAD.

3.7. Real-Time Quantitative PCR Validation. Based on
the features (such as fold difference, gene locus, and
nearby encoding gene, and so on.) of the differentially
expressed lncRNAs, we initially identified a number of
interesting candidate lncRNAs for further analysis (including
HSD17B7P2, GLYCTK, NABP1, AP001469.9, RP11-909N17.3,

UCA1, POLD4, XLOC 009833, CTD-2555O16.2, RP11-
299H22.5, BC033241, and AC078883.3). We found that the
microarray results for several of the lncRNAs were consistent
with the results of RT-PCR (Figure 4(b)). Of these, UCA1
exhibited significantly changed expression in 20 samples
from A549/DDP and A549 cell. The expression of UCA1
in cisplatin-resistant A549/DDP cells was significantly
higher than that in cisplatin-sensitive A549 cells (𝑡 = 71.14,
𝑃 = 0.0002, Figure 4(c)).These results suggest that UCA1 and
candidate lncRNAs may play an important role in cisplatin
resistance in LAD.

3.8. UCA1 Significantly Reduces the IC50 of Cisplatin in
A549/DDP Cell after Knockdown. We used CCK-8 method
to detect the sensitivity of A549/DDP cells to cisplatin. The
results showed that the IC50 of A549 was 2.09 𝜇g/ml ±
0.08𝜇g/ml, IC50 of A549/DDP was 10.7 𝜇g/ml ± 0.28 𝜇g/ml,
and the resistance index was 5.2 (Figure 4(d)). The IC50 of
cisplatin in UCA1 siRNA group was significantly lower than
that in NC group (𝑡 = 17.51, 𝑃 < 0.0001), control group (𝑡 =
37.65, 𝑃 < 0.0001). The IC50 of A549/DDP cells decreased
from 10.7 𝜇g/ml ± 0.28 𝜇g/ml to 3.6 𝜇g/ml ± 0.12𝜇g/ml after
UCA1 knockdown, as shown in Figure 4(f). The results
showed that UCA1 siRNA, A549/DDP cisplatin resistance
can be significantly reversed.

3.9. UCA1 Overexpression Significantly Increased the IC50 of
Cisplatin in NCI-H1299 Cell. The results showed that the
IC50 of cisplatin in UCA1 OE group was significantly higher
than that in NC group (𝑡 = 23.21, 𝑃 < 0.0001), control
group (𝑡 = 29.34, 𝑃 < 0.0001). The IC50 of NCI-H1299 cells
increased from 1.20𝜇g/ml ± 0.04 𝜇g/ml to 4.5 𝜇g/ml ±
0.13 𝜇g/ml after UCA1 was overexpressed, as shown in Fig-
ure 4(f). The results showed that UCA1 was overexpressed;
NCI-H1299 cisplatin resistance can be significantly increased.

4. Discussion

LncRNAs are involved in many biological processes, as X-
chromosome inactivation, gene imprinting [33, 34]. Other-
wise, lncRNAs are important factors in the control of gene
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Figure 2: Box plots, scatter plots, and heat map showing the variation in mRNA expression between the A549/DDP and A549 arrays. The
values of the𝑋 and𝑌 axes in the scatter plot are averaged normalized values in each group (log 2-scaled).ThemRNAs above the top green line
and below the bottom green line are those with a >3-fold change in expression between tissues. (a) Scatter plots of T2 group versus C2 group,
(b) Scatter plots of T3 group versus C3 group. (c) Scatter plots of T5 group versus C5 group. (d) Volcanic map. (e) Heat map and hierarchical
clustering of lncRNA. (f) Box plots showing the distribution of the lncRNA.
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Figure 3: Continued.
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Figure 3: GO and pathway analysis of mRNA from cisplatin resistance in lung adenocarcinoma. (a) Biological processes of downregulated
mRNA. (b) Cellular components of downregulated mRNA. (c) Molecular functions of downregulated mRNA. (d) Biological processes of
upregulated mRNA. (e) Cellular components of upregulated mRNA. (f) Molecular functions of upregulated mRNA. (g) Pathway analysis of
downregulatedmRNA from cisplatin resistance in lung adenocarcinoma. (h) Pathway analysis of upregulatedmRNA from cisplatin resistance
in lung adenocarcinoma.

expression in tumor [35] and play an important role in the
development, progression, and drug resistance of tumors
[36]. Recently, disease-lncRNA association prediction is a
recent trend for the identifying potential disease-related
lncRNAs [37, 38]. Developing powerful computational mod-
els for potential disease-related lncRNAs identificationwould
benefit biomarker identification and drug discovery for
human disease diagnosis, treatment, prognosis, and preven-
tion [37, 38].

In this study, we analyzed lncRNA abnormal expres-
sion profiles and ascertained the potential role of cisplatin

resistance in LAD. High-throughput microarray techniques
revealed a variety of differentially expressed lncRNAs, includ-
ing 984 lncRNAs upregulated and 559 lncRNAs downregu-
lated in A549/DDP cell compared to A549 cell. LncRNAs are
usually divided into five categories: sense, antisense, bidirec-
tional, intronic, and intergenic. LncRNAs are known to func-
tion by a variety of mechanisms. However, a common and
important function of lncRNAs is to change the expression
of nearbymRNAs by influencing process of transcription [39]
or directly playing an enhancer-like role [40, 41]. In the study,
we increased the accuracy of target prediction by comparing
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Figure 4: Some lncRNA expression in LAD and A549/DDP, A549 cell. (a) LncRNA-mRNA coexpression network, the results imply
that UCA1, ENST00000443252, ENST00000510562, ENST00000565689, ENST00000558690, ENST00000397340, ENST00000440955, and
ENST00000507916 are also closely related tomanymRNAmolecules. (b) Comparison between gene chip data and qPCR result.The validation
results of the 12 lncRNAs indicated that the microarray data correlated well with the qPCR results. UCA1 expression level in LAD and
A549/DDP,A549 cell. (c)The expression ofUCA1 in cisplatin-resistantA549/DDP cells was significantly higher than that in cisplatin-sensitive
A549 cells. (d)We used CCK-8method to detect the sensitivity of A549/DDP cells to cisplatin. (e)The IC50 of cisplatin inUCA1 siRNA group
was significantly lower than that in NC group, control group. (f)The IC50 of cisplatin in UCA1 overexpression group was significantly higher
than that in NC group, control group.
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abnormally expressed mRNAs with differentially expressed
lncRNAs. The expression profiles of 43 intergenic lncRNAs
(lincRNAs) hinted that they were differentially expressed
between A549/DDP cell and A549 cell. Among these, 31
were upregulated and 12 were downregulated.The expression
profiles of 33 lncRNA-a indicated that they were differentially
expressed between A549/DDP and A549 cell. Among these,
17 were upregulated and 16 were downregulated. Otherwise,
we found 52 antisense lncRNAs, among these, 21 were
upregulated and 31 were downregulated. So as to get insights
into lncRNA target gene function, GO analysis and KEGG
pathway annotation were applied to the lncRNA target gene
pool. GO analysis uncovered that the number of genes
corresponding to downregulatedmRNAswas larger than that
relating to upregulated mRNAs. KEGG annotation unveiled
that there were 30 upregulated pathways (including chemical
carcinogenesis, drugmetabolism, and p53 signaling pathway)
and 37 downregulated pathways (including DNA replication,
cell cycle, and Fanconi anemia pathway). These pathways
might be involved in the occurrence and development of
cisplatin resistance in LAD.

We found that 12 of the lncRNAs identified in the
microarray analysis were confirmed by qPCR to be aberrantly
expressed in A549/DDP cell. Among these lncRNAs, UCA1
was the significantly upregulated. Furthermore, we built the
lncRNA-mRNA coexpression network and it is shown that
UCA1 and some lncRNAs were individually related to some
mRNAs; it hinted that lncRNA-mRNA coexpression network
might contribute to the development of cisplatin resistance in
LAD. UCA1 has also been reported to be related to cisplatin
resistance in bladder carcinoma [42, 43]. The expression of
UCA1 in A549/DDP cells was significantly higher than that
in A549 cells, suggesting that UCA1 may play an important
role in cisplatin resistance in LAD. Subsequently, we found
the IC50 of A549/DDP cells decreased from 10.7 𝜇g/ml ±
0.28 𝜇g/ml to 3.6 𝜇g/ml ± 0.12𝜇g/ml after UCA1 knockdown,
while the IC50 of NCI-H1299 cells increased from 1.20 𝜇g/ml
± 0.04 𝜇g/ml to 4.5 𝜇g/ml ± 0.13 𝜇g/ml after UCA1 was
overexpressed; it hinted that UCA1 might contribute to the
development of cisplatin resistance in LAD and further study
of the biological function ofUCA1will be required to confirm
this notion.

Our study revealed a set of lncRNAs with differential
expression from cisplatin resistance in LAD. Furthermore,
potential roles for these lncRNAs in the regulation of chem-
ical carcinogenesis and DNA replication signaling pathways
were identified. Moreover, we found that UCA1 might con-
tribute to the development of cisplatin resistance in LAD.
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