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Abstract

Background: Mammalian target of rapamycin (mTOR) is a central controller of cell growth, proliferation, metabolism, and
angiogenesis. Thus, there is a great deal of interest in developing clinical drugs based on mTOR. In this paper, in silico
models based on multi-scaffolds were developed to predict mTOR inhibitors or non-inhibitors.

Methods: First 1,264 diverse compounds were collected and categorized as mTOR inhibitors and non-inhibitors. Two
methods, recursive partitioning (RP) and naı̈ve Bayesian (NB), were used to build combinatorial classification models of
mTOR inhibitors versus non-inhibitors using physicochemical descriptors, fingerprints, and atom center fragments (ACFs).

Results: A total of 253 models were constructed and the overall predictive accuracies of the best models were more than
90% for both the training set of 964 and the external test set of 300 diverse compounds. The scaffold hopping abilities of
the best models were successfully evaluated through predicting 37 new recently published mTOR inhibitors. Compared
with the best RP and Bayesian models, the classifier based on ACFs and Bayesian shows comparable or slightly better in
performance and scaffold hopping abilities. A web server was developed based on the ACFs and Bayesian method (http://
rcdd.sysu.edu.cn/mtor/). This web server can be used to predict whether a compound is an mTOR inhibitor or non-inhibitor
online.

Conclusion: In silico models were constructed to predict mTOR inhibitors using recursive partitioning and naı̈ve Bayesian
methods, and a web server (mTOR Predictor) was also developed based on the best model results. Compound prediction or
virtual screening can be carried out through our web server. Moreover, the favorable and unfavorable fragments for mTOR
inhibitors obtained from Bayesian classifiers will be helpful for lead optimization or the design of new mTOR inhibitors.
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Introduction

Mammalian target of rapamycin (mTOR) is a highly conserved

serine/threonine protein kinase (PK) and a vital component of the

PI3K/Akt/mTOR signal pathway [1,2]. mTOR plays a key role

in integrating signals from metabolism, energy homeostasis, cell

cycle, and stress response. mTOR exists as two complexes,

mTORC1 and mTORC2. The mTORC1 complex is composed

of Raptor, LST8, PRAS40 and Deptor, and is responsible for the

regulation protein synthesis through the phosphorylation of S6K1

and 4E-BP1. The mTORC2 complex consists of Rictor, LST8,

SIN1, Deptor and Protor, and regulates cell proliferation and

survival through the phosphorylation of Akt/PKB [3,4].

Rapamycin and its analogues (rapalogues) have successfully

been developed as treatments for specific cancers through

allosteric binding to the FKBP-12 rapamycin binding (FRB)

domain of mTOR. However, recent reports suggest that existing

rapalogues do not fully inhibit mTORC1 and do not inhibit

mTORC2 [1,5]. The selective inhibition of mTORC1 by

rapalogues has been shown to enhance PI3K signaling through

a negative feedback mechanism [6]. This may limit the efficacy of

rapalogues. The emerging role of mTORC2 in tumor growth and

survival, along with the lack of suppression of this pathway by

rapalogues, has led to a great deal of in discovering clinically ATP-

competitive mTOR inhibitors that target both mTORC1 and

mTORC2, which may offer therapeutic advantages to the

rapalogues.

Recently, many potential ATP-competitive inhibitors of mTOR

have been discovered [7–10]. Based on the selectivity of their

inhibition, these compounds are classified into two varieties,

namely mTOR-selective inhibitors (dual inhibitors of mTORC1/

mTORC2) and dual mTOR/PI3K inhibitors (PI3K is a

structurally related enzyme, upstream of mTOR in the signaling

pathway). Some mTOR selective inhibitors (e.g., AZD8055 [11],

OSI-027 [12], INK-128 [13] and CC-223 [8]) are in clinical trials.

PF-04691502 [14], GSK2126458 [15], BEZ235 [16], and XL-765

[17] have begun clinical trials as dual mTOR/PI3K inhibitors.

However, marketed ATP-competitive mTOR inhibitors are not

available; thus the discovery of novel and diverse scaffolds against

mTOR continues to be needed [2,8,10].
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To date, the assessment of inhibition by anti-mTOR agents (i.e.,

mTOR inhibitor) on the mTOR signal pathway can be achieved

experimentally via in vitro or in vivo assays [1,11,15,17]. However,

these experimental assays are expensive, laborious and time-

consuming. They are usually used in later stages of drug design or

optimization when the drug candidates exhibit adequate potency

and acceptable pharmacokinetic properties. Thus, the develop-

ment of in silico models that provide a rapid and efficient screening

platform to identify mTOR inhibitors is vital in the early stages of

drug design or optimization.

Some 3D-QSAR and pharmacophore models have been

developed to predict ATP-competitive mTOR inhibitors and

explain the mechanism of action of some scaffolds. In 2011, Wang

and coworkers built a 3D-QSAR based on a morpholinopyrro-

lopyrimidine scaffold using CoMFA and CoMSIA methods [18].

Their models showed potential predictions that helped in

understanding the structure-activity relationship of morpholino-

pyrrolopyrimidine derivatives and designing new potential mTOR

inhibitors based on the morpholinopyrrolopyrimidine scaffold. A

similar study was conducted by Karunakar Tanneeru and

coworkers based on the triazine scaffold in 2012 [19]. In 2013,

Mohammad and coworkers built a series of common features of

pharmacophore models based on 6 structurally diverse ATP-

competitive mTOR inhibitors. The representative pharmaco-

phore model includes the following four features: a hydrophobic

center, an aromatic feature, and four hydrogen bond acceptors

[20]. The models exhibit potential to predict inhibitors that are not

included in the training set. Similar work was also performed by

Karunakar Tanneeru and coworkers, which resulted in four

features pharmacophore model (two hydrogen bond acceptors, a

hydrophobic center and an aromatic feature) based on 27 ATP-

competitive mTOR inhibitors [21]. A disadvantage of 3D-QSAR

or SAR models for mTOR inhibitors is the use of a series of

compounds based on solely scaffold. Compared with binding

modes of ATP-competitive inhibitors based on recently solved

crystal structures, these published pharmacophore models are not

well consistent with the experimental results [2]. The ATP binding

pocket of mTOR is flexible, which makes it difficult to screen new

inhibitors based on traditional 3D methods [2,22,23]. The broad

multi-specificity of mTOR and the lack of an extensive database of

ATP-competitive mTOR inhibitors have proven to be almost

insurmountable obstacles to establish accurate prediction models.

In the present study, we present a large data set of 1,264 molecules

that are categorized into ATP-competitive inhibitors and non-

inhibitors. In silico classification models were constructed using

recursive partitioning and naı̈ve Bayesian techniques. The

performance and scaffold hopping abilities of in silico models were

successful validated by external test sets, and these models can be

implemented as virtual screening tools in early phases of drug

discovery.

Materials and Methods

Data Set
The whole date set was collected from the ChEMBL database

[24] and BindingDB [25]. The data set was refined with the

following criteria: (1) only human mTOR inhibition assay data

were selected; (2) only mTOR assay data based on enzyme or

enzyme regulation were kept, and allosteric inhibitors were

excluded, e.g., rapamycin and its analogs; (3) duplicated

compounds and compounds without detailed assay values (Ki or

IC50) were abandoned. By applying these criteria, a large diverse

database containing 1,246 unique compounds was first obtained in

our lab. Within this data set, all compounds have Ki or IC50 values

ranging from 0.08 to 10,000,000 nM. (i.e. nine-order of magni-

tude). Among these, 1,015 compounds were considered to be

‘‘active’’ in our study as their reported assay values were below

10 mM. Such a cutoff value appeared to be a reasonable starting

Figure 1. Diversity analysis of the entire data set (n = 1264
compounds) with mTOR inhibitory index. (a) Chemical space
defined by molecular weight and AlogP. The data are colored according
to the chemical mTOR inhibitory index value. (b) Distribution of mTOR
inhibitory index in a chemical space defined by MW and AlogP. Both
figures are used the same color scheme. (c) The chemical diversity of
1264 compounds was calculated by in-house S-cluster algorithm based
on structural features. The color were filled based the number of
hydrogen donor of each compound.
doi:10.1371/journal.pone.0095221.g001
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point for hit-to-lead activity and, in view of the noise level in the

data set, the choice of 10 mM would seem justified.

The structures of the compounds were built using MDL ISIS/

Draw software. Structures were cross-checked in a search of the

Beilstein database and the original published papers. Each

molecule in the database was optimized using molecular

mechanics (MM) with the MMFF94 force field (Sybyl 7.3). All

molecules were saved to the MACCS sdf file and a SMILES

database for further analysis. Finally, the whole data set was

divided into a training set (964) and test set (300) based on a

randomly algorithm in Discovery Studio 3.5 (Accelrys, Inc.). The

proportion of training set and test set was about 3 to 1, which was

employed in reference [26]. All data are available online: http://

rcdd.sysu.edu.cn/mtor/.

Calculation of molecular descriptors
Herein, thirteen molecular descriptors widely adopted in

ADME, QSAR and QSPR predictions were used in our analysis.

These descriptors include the octanol/water partitioning coeffi-

cient (AlogP) based on Ghose and Crippen’s method, the apparent

partition coefficient at pH = 7.4 (logD) based on the Csizmadia’s

method, molecular solubility (logS) based on the multiple linear

regression model, molecular weight (MW), the number of

hydrogen bond donors (nHBDon), the number of hydrogen bond

acceptors (nHBAcc), the number of rotatable bonds (Nrot), the

number of rings (nRing), the number of aromatic rings (nAR), the

sum of oxygen and nitrogen atoms (N plus O), the molecular polar

surface area (MPSA), the molecular fractional polar surface area

(MFPSA) and the molecular surface area (MSA). All the

descriptors were calculated using the Discovery Studio molecular

simulation package (version 3.5, Accelrys Inc., San Diego, CA.).

Calculation of molecular fingerprints
Here, two types of fingerprints were used to construct the in silico

model, namely SciTegic extended-connectivity fingerprints

(ECFP, FCFP and LCFP) and Daylight-style path-based finger-

prints (EPFP, FPFP and LPFP). For each fingerprint class, two

diameters 4 and 6, were used in the present study. The smaller

diameter 2 was not considered because structural fragments based

on a diameter of 2 are small and general. These fingerprints are

widely used in other ADME, QSAR and QSPR predictions [26–

31]. Twelve fingerprints were calculated using the Discovery

Studio molecular simulation package (version 3.5, Accelrys Inc.,

San Diego, CA.).

Atom center fragments generation
For each compound, the ACFs were derived with the following

steps:

(1) a heavy atom (non-hydrogen atom) was taken as an atom

center for an ACF;

(2) atoms n-bonds (n$1) away from the center atom were taken,

keeping the bonding topology inside the ACF. If n is 1, it is

called as level one ACF (ACF1); if n is 2, it is called as level two

ACF (ACF2); and so on.

Usually, ACFn+1 is larger than ACFn. Larger ACFs are

structurally more specific and result in more accurate prediction,

but lose universality. To find a balance point of the accuracy and

universality, we generated ACF1–6 fragments from the data set

using our in-house program. ACFs were used as a descriptor that

encoded the Bayesian core function to construct a classification

model (called ACFs-NB model) based on the in-house program.

Detailed information of ACFs-NB algorithm is described in Text

S1. The program can be obtained by request.

Recursive partitioning
RP is a statistical method for multivariable analysis. It creates a

decision tree that strives to correctly classify members of the

population based on a dichotomous dependent variable (e.g.,

inhibition class) and a set of independent variables (e.g., molecular

properties and fingerprints). In the present study, 234 RP models

were constructed based on 13 molecular properties and 12

fingerprints. 5-fold cross-validation was used to determine the

degree of pruning required for the best predictive performance.

Detailed descriptions of the RP method can be found in the

literatures [26,32].

Naı̈ve Bayesian
Bayesian inference derives the posterior probability as a

consequence of two antecedents, a prior probability and a

‘‘likelihood function’’ derived from a probability model for the

data to be observed. Bayesian inference computes the posterior

probability directly based on the core function of eq. 1.

R(A Bj )~
R(B Aj )R Að Þ

R Bð Þ , ð1Þ

where P(A) is the initial degree of belief in A; P(B) is the initial

degree of belief in B; P(A|B) is the degree of belief having

accounted for B; and P(B|A) is the degree of belief having

accounted for A. Detailed descriptions of the naı̈ve Bayesian

method can be found in the literature [33]. In our study, Bayesian

analysis and model building were implemented using the Scitegic

Pipeline Pilot Laplacian-corrected Bayesian classifier algorithm

[28]. This implementation of Bayesian statistics uses information

from both the inhibitors (‘‘good’’) and non-inhibitors (‘‘bad’’) in

the training set and removes features from the model that are

deemed to be unimportant.

Performance evaluation of the models
To validate the accuracy and robustness of stability prediction

models, a 5-fold cross validation scheme was employed to evaluate

the RP, Bayesian and ACFs-NB classifiers. True positives (TP),

true negatives (TN), false positives (FP), false negatives (FN),

sensitivity (SE), specificity (SP), the prediction accuracy for

inhibitors (Qi), the prediction accuracy for non-inhibitors (Qni),

overall predictive accuracy (Q) and the Matthews correlation

coefficient (C) have been calculated. In addition, the receiver

operating characteristic (ROC) curve was also plotted. The ROC

curve was used to graphically present the model behavior in a

visual way. It shows the separation ability of a binary classifier by

iteratively setting the possible classifier threshold [34].

SE~
TR

TRzFN
ð2Þ

Figure 2. Distributions of eight chemical properties, AlogP, MW, MSA, MFPSA, nRings, Nrot, nHBAcc and nHBDon for mTOR
inhibitors and non-inhibitors classes. p value: Student’s t test was used to evaluate the significance of the difference between paired samples
and the means.
doi:10.1371/journal.pone.0095221.g002
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SP~
TN

TNzFP
ð3Þ

Qi~
TP

TPzFP
ð4Þ

Qni~
TN

TNzFN
ð5Þ

Q~
TPzTN

TPzFNzTNzFP
ð6Þ

C~
TP|TN{FN|FP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPzFNð Þ TPzFPð Þ TNzFNð Þ TNzFPð Þ

p ð7Þ

The value of C is the most important indicator for the classification

accuracy of the models.

Results and Discussion

Chemical space and structural diversity analysis
The chemical space of the 1,264 compounds is defined in the

molecular weight (MW), AlogP, and mTOR inhibitory values of

the compounds (Figures 1A and 1B). The structural diversity of the

1,264 compounds was calculated by an in-house S-cluster algorithm

based on structural features (Figure 1C) [35]. The S-cluster

program can be obtained by request. Cyclicity is the metric of the

Figure 3. Correlations between eight molecular properties, including AlogP, MW, MSA, MFSA, nRings, Nrot, nHBDor and nHDAcc,
and mTOR inhibition index.
doi:10.1371/journal.pone.0095221.g003

Figure 4. The Matthews correlation coefficient (C) versus the tree depth for (a) the training set and (b) the test set. The 243 RP models
were constructed based on molecular properties (thirteen molecular descriptors) and the different combinational of molecular properties and twelve
different fingerprint sets.
doi:10.1371/journal.pone.0095221.g004
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cyclic degree of a compound, where higher cyclicity value means

the compound has fewer side chains. Each compound is assigned a

compound cluster ID (CID), which is related to the compound’s

complexity. More complicated compounds have higher CID

numbers. Figure 1C suggests that the 1,264 compounds exhibit

large chemical structural diversity. The whole data set was

randomly split into training set (964) and test set (300).

Relationships between molecular properties and mTOR
inhibition activity

A variety of molecular properties, such as lipophilicity,

hydrogen bonding ability, molecular flexibility and molecular

bulkiness, have been proven to be useful for QSAR, QSPR and

ADME predictions [26–31]. To increase the interpretability of the

models, the relationships between the mTOR inhibition index of

1264 chemicals and 9 key physicochemical descriptors, including

ALogP, MW, MSA (molecular surface area), nRing (number of

rings), nHBAcc (number of hydrogen bond acceptors), nHBDon

(number of hydrogen bond donors), MFPSA (molecular fractional

polar surface area), Nrot (the number of rotatable bonds), and N

plus O (the sum of oxygen and nitrogen atoms), are presented in

Figure 2 and Figure S1. The student’s t test was used to evaluate

the significance of the difference between paired samples and their

means. As a complementary test, the linear correlations between

each of these nine molecular properties and the mTOR inhibition

index (mTOR inhibition index = PIC50/PKi+2) of 1015 active

compounds are shown in Figure 3 and Figure S2.

MW is an estimation of molecular size and complexity. The

MW is distributed between 143.18 and 694.83, with a mean of

448.38 (Figure 2). The mean MW values were 460.97 and 396.97

for 1,015 mTOR inhibitors and 249 non-inhibitors, respectively,

with a p value of 1.49610219 at the 95% confidence level. These

results suggest that MW shows potential classification capability

for mTOR inhibitors and non-inhibitors. Similar results are

obtained in Figure 3. MW shows a better liner correlation (r =

20.439) with the mTOR inhibition index (1,015 active

compounds). As shown in Figure 2, molecules with MW.300

are more likely to be mTOR inhibitors. However, the two MW

distributions for inhibitors and non-inhibitors are still strongly

overlapped. The MSA of chemicals indicated a highly significant

difference of the mean MSA of mTOR inhibitors and non-

inhibitors as shown by the p value of 1.14610218 (Figure 2). The

mean values of MSA were 375.16 and 433.98 for non-inhibitors

and inhibitors, respectively, and it has a good linear correlation

with the mTOR inhibition index (r = 20.424). This result

indicates that molecules with low MSA are unfavorable for

mTOR inhibition (e.g., MSA,250).

nRings can be considered as a descriptor that characterizes the

complexity or bulkiness of a molecule, because a larger molecule

usually has more rings. As shown in Figure 2, the nRings of the

chemicals suggests a significant difference between the mean

nRings of mTOR inhibitors and non-inhibitors with a p value of

7.69610236. In fact, nRings of the molecules has a relatively

obvious linear correlation with the mTOR inhibition index (r =

20.445). Similar results can be obtained based on the analysis of N

plus O (Figure S1 and Figure S2). Hydrogen binding ability is

commonly represented by nHBAcc and nHBDon. The p values

for the mean nHBAcc and nHBDon values for mTOR inhibitors

and non-inhibitors were 1.24610210 and 2.9961024, respectively,

indicative of minor significant difference for nHBDon. Compared

to the nHBDon contribution, nHBAcc plays an important role in

the classification of mTOR inhibitors and non-inhibitors. Our

findings are well consistent with the recently X-ray experimental

results (only nHBAcc was observed in three classes mTOR

inhibitors) [2]. Based on the p-value and linear correlations

(Figure 2 and 3), the other three descriptors (AlogP, MFPSA and

Nrot) do not show any capability to discriminate between mTOR

inhibitors and non-inhibitors.

Based on the analysis above, it is obvious that using individual

or several simple chemical descriptors is not good criteria for

classifying mTOR inhibitors and non-inhibitors.

Table 1. Performance of the best RP classification models for the training set and test set using different combinational of
molecular properties and fingerprints.

Descriptors Training set Test set

TP FN TN FP SE SP Qi Qni C AUC TP FN TN FP SE SP Qi Qni C AUC

MPa 637 140 143 44 0.820 0.765 0.935 0.505 0.508 0.846 196 42 53 9 0.824 0.855 0.956 0.558 0.590 0.851

MP+ECFP_4 709 68 177 10 0.912 0.947 0.986 0.722 0.780 0.946 210 28 56 6 0.882 0.903 0.972 0.667 0.708 0.898

MP+ECFP_6 709 68 177 10 0.912 0.947 0.986 0.722 0.780 0.946 210 28 58 4 0.882 0.935 0.981 0.674 0.732 0.917

MP+EPFP_4 707 70 177 10 0.910 0.947 0.986 0.717 0.776 0.980 213 25 53 9 0.895 0.855 0.959 0.679 0.692 0.941

MP+EPFP_6 714 63 178 9 0.919 0.952 0.988 0.739 0.795 0.974 220 18 52 10 0.924 0.839 0.957 0.743 0.731 0.873

MP+FCFP_4 715 62 178 9 0.920 0.952 0.988 0.742 0.797 0.959 216 22 56 6 0.908 0.903 0.973 0.718 0.748 0.917

MP+FCFP_6 699 78 176 11 0.900 0.941 0.985 0.693 0.755 0.945 216 22 56 6 0.908 0.903 0.973 0.718 0.748 0.929

MP+FPFP_4 710 67 178 9 0.914 0.952 0.987 0.727 0.786 0.982 216 22 57 5 0.908 0.919 0.977 0.722 0.760 0.937

MP+FPFP_6 704 73 176 11 0.906 0.941 0.985 0.707 0.765 0.944 215 23 53 9 0.903 0.855 0.960 0.697 0.706 0.891

MP+LCFP_4 692 85 170 17 0.891 0.909 0.976 0.667 0.717 0.942 210 28 52 10 0.882 0.839 0.955 0.650 0.660 0.895

MP+LCFP_6 692 85 170 17 0.891 0.909 0.976 0.667 0.717 0.942 210 28 52 10 0.882 0.839 0.955 0.650 0.660 0.995

MP+LPFP_4 709 68 177 10 0.912 0.947 0.986 0.722 0.780 0.966 206 32 55 7 0.866 0.887 0.967 0.632 0.672 0.903

MP+LPFP_6 709 68 171 16 0.912 0.914 0.978 0.715 0.757 0.943 210 28 55 7 0.882 0.887 0.968 0.663 0.696 0.895

aMP represents thirteen molecular properties. The best tree depth is 8 for RP models (MP, MP+EPFP_4 and MP+LPFP_6), 10 for RP models (MP+ECFP_6 and MP+LPFP_4),
11 for RP models (MP+FCFP_4, MP+FCFP_6, MP+LCFP_4, MP+LCFP_6 and MP+FPFP_6) and 12 for RP model (MP+FPFP_4). The detailed results can be found in Table S1
and Table S2 in Supporting Information.
doi:10.1371/journal.pone.0095221.t001
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Performance of recursive partitioning models
To develop more precise and understandable classification

models, the RP technique was used to establish decision trees to

classify mTOR inhibitors and non-inhibitors. Compared with ‘‘the

blind operations’’ of the ANN and SVM methods, the RP results

can be converted into simple hierarchical rule trees that are easily

Figure 5. Decision tree to classify compounds into mTOR inhibitor and non-inhibitor classes based on best RP method. The decision
tree was constructed using combinational MP and FPFP_4 fingerprint, and the tree depth is 12. FP: Fingerprint; yes: contain this fingerprint; not: not
contain; red font represents non-inhibitors; black font represents inhibitors.
doi:10.1371/journal.pone.0095221.g005

Table 2. Performance of the 13 Bayesian classification models for the training set and test set using different combinational of
molecular properties and fingerprints.

Descriptors Training set Test set

TP FN TN FP SE SP Qi Qni C AUC TP FN TN FP SE SP Qi Qni C AUC

MPa 673 140 121 66 0.828 0.647 0.911 0.464 0.422 0.772 163 75 48 14 0.685 0.774 0.921 0.390 0.378 0.794

MP+ECFP_4 730 47 174 13 0.940 0.930 0.983 0.787 0.818 0.958 205 33 59 3 0.861 0.952 0.986 0.641 0.714 0.970

MP+ECFP_6 731 46 177 10 0.941 0.947 0.987 0.794 0.832 0.959 214 24 58 4 0.899 0.935 0.982 0.707 0.758 0.971

MP+EPFP_4 713 64 157 30 0.918 0.840 0.960 0.710 0.712 0.921 185 53 54 8 0.777 0.871 0.959 0.505 0.548 0.916

MP+EPFP_6 662 115 179 8 0.852 0.957 0.988 0.609 0.695 0.932 190 48 56 6 0.798 0.903 0.969 0.538 0.597 0.945

MP+FCFP_4 699 78 174 13 0.900 0.930 0.982 0.690 0.747 0.955 206 32 57 5 0.866 0.919 0.976 0.640 0.696 0.96

MP+FCFP_6 722 55 176 11 0.929 0.941 0.985 0.762 0.806 0.958 209 29 57 5 0.878 0.919 0.977 0.663 0.714 0.967

MP+FPFP_4 698 79 164 23 0.898 0.877 0.968 0.675 0.706 0.926 187 51 57 5 0.786 0.919 0.974 0.528 0.595 0.934

MP+FPFP_6 687 90 168 19 0.884 0.898 0.973 0.651 0.699 0.932 188 50 57 5 0.790 0.919 0.974 0.533 0.600 0.952

MP+LCFP_4 721 56 176 11 0.928 0.941 0.985 0.759 0.804 0.958 209 29 59 3 0.878 0.952 0.986 0.670 0.738 0.965

MP+LCFP_6 718 59 180 7 0.924 0.963 0.990 0.753 0.812 0.957 215 23 58 4 0.903 0.935 0.982 0.716 0.765 0.965

MP+LPFP_4 661 116 180 7 0.851 0.963 0.990 0.608 0.697 0.948 204 34 59 3 0.857 0.952 0.986 0.634 0.708 0.964

MP+LPFP_6 695 82 180 7 0.894 0.963 0.990 0.687 0.762 0.949 206 32 58 4 0.866 0.935 0.981 0.644 0.708 0.969

aMP represents thirteen molecular properties.
doi:10.1371/journal.pone.0095221.t002
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understood. In RP analysis, the depth of the decision tree is a key

parameter that dominates its complexity. Usually, larger tree

depth can increase the accuracy on the training data but risks

over-fitting, while small depth tends to increase the applicability of

a tree to new data sets, but at the risk of decreased accuracy and

failing to identify important features in the training data [26]. The

best tree depth parameter should be defined according to the

predictions for the test data. In present study, the tree depth was

changed from 3 to 20 and the corresponding performance of 234

RP models on training and test sets was evaluated (Figure 4). The

5-fold cross-validation technique was used to evaluate the model

robustness.

First, 18 decision tree models were constructed based on the

thirteen molecular properties (MP). According to the Matthews

correlation coefficient (C) value from the test set, the best tree

depth is 8 (Figure 4 and Table S2). The performance of the best

RP model based on MP is shown in Table 1. For the training set,

the sensitivity and specificity are 82.0% and 76.5%, the C value

and AUC are 0.505 and 0.846, and the prediction accuracy of the

model in terms of correspondence to the test set (SEtest = 82.4%,

SPtest = 85.5%, C = 0.590 and AUC = 0.851, Table 1) is compa-

rable with that of training set. However, the low C and AUC

values suggest that the best RP models based on MP may not have

good well prediction accuracy for inhibitors or non-inhibitors

(50.5% for training set and 55.8% for test set, Table 1). Molecular

properties (MP) can depict whole-molecule properties, but they

cannot characterize the important substructures or molecular

fragments that play a key role in mTOR inhibition. Therefore, a

combination of MP and molecular fingerprints were used

simultaneously to establish RP models. Here, 216 RP models

based different combinations of 12 sets of fingerprints with MP

were constructed and evaluated (Figure 4, Table S1 and Table S2).

Obviously, the addition of fingerprints can improve the perfor-

mance of the RP models because the C values of the RP models

based on fingerprints and MP are higher than those of RP models

solely based on MP (Figure 4 and Table S1). For different

combinations fingerprints and MP, the performances of the best

RP models were screened according to the C value from different

Figure 6. The performance of different models depicted
graphically via receiver operating characteristic (ROC) plot of
Bayesian model based on molecular properties (MP) and
fingerprints for (a) training set and (b) for test set.
doi:10.1371/journal.pone.0095221.g006

Figure 7. The distributions of Bayesian score predicted by the
Bayesian classifier based on molecular properties and the
LCFP_6 fingerprint set for the inhibitor and non-inhibitor
classes for (a) the training set and (b) the test set. The Bayesian
scores for the training set were obtained by sing the leave-one-out
(LOO) cross-validation process.
doi:10.1371/journal.pone.0095221.g007
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tree depth (Figure 4 and Table S1). For different fingerprint, the

best tree depth parameters are different. The performance of the

12 best RP models based on 12 fingerprints and MP are

summarized in Table 1. According to the C values listed in

Table 1 for 300 tested compounds, the fingerprint set FPFP_4

performs better than the others, indicated by the highest C value

(0.760). The best tree depth parameter is 12. The best RP model

based on FPFP_4 and MP has a sensitivity of 90.8%, a specificity

of 91.9%, and a prediction accuracy of 97.7% for the mTOR

inhibitor class, and a prediction accuracy of 72.2% for the non-

inhibitor class, and an overall prediction accuracy of 91.0%. The

performance evaluation of the model on the training set also show

comparable results with that of test set (Table 1). Moreover, the

AUC values were 0.982 and 0.937 for the training set and test set,

respectively.

The best decision tree, with a tree depth of 12 based on FPFP_4

and MP, is shown in Figure 5. The discriminant descriptors

include seven MPs and 18 structure fragments. Of the seven MPs

chosen by the decision tree, AlogP and logD are properties that

describe molecule hydrophobicity, Nrot and nAR describe the

molecule’s bulkiness, and MFPSA, MPSA and nHBAcc describe

its electrostatic properties or hydrogen binding ability. In other

words, the molecular hydrophobicity, size and electrostatic

properties are important for mTOR inhibition, which is consistent

with previously 3D-QSAR results [18,19]. Moreover, the eighteen

fragments based on FPFP_4 fingerprint also play a key role in

discriminating between mTOR inhibitors and non-inhibitors

(Figure 5).

Performance of naı̈ve Bayesian classifier models
The naı̈ve Bayesian classifier is an unsupervised learner that

does not have a fitting process and tuning parameters, unlike RP

method that is sensitive to predefined parameters, e.g., tree depth.

The process of Bayesian learning is to search through each feature

in an unbiased way for those with separation power.

Similar to the RP analysis, the performance of the naı̈ve

Bayesian classifier based on MP and fingerprints was evaluated.

Detailed results are summarized in Table 2. According to the C

values determined by the leave-one-out (LOO) cross-validation,

the performance of the Bayesian models based on 12 fingerprints

and MP is quite different for the training set (C:0.422,0.832).

MP+ECFP_4, MP+ECFP_6 and MP+LCFP_6 are associated

with better classifiers. The best classifier based MP and ECFP_6

fingerprint set has a sensitivity of 94.1%, a specificity of 94.7%, a

prediction accuracy for mTOR inhibitors of 98.7% and a

prediction accuracy for mTOR non-inhibitors of 79.4% for the

training set. Compared with the Bayesian classifier based solely on

MP, the addition of fingerprints can significantly improve the

classification (Figure 6). All the Bayesian models were validated by

the performance of the external 300 tested compounds, and the

detailed results are listed in Table 2. Three models (MP+ECFP_6,

MP+FPFP_6 and MP+LCFP_6) are good classifiers. Compared

with the prediction accuracy of the RP models, the best Bayesian

classifier performs slightly better. For the 300 tested compounds,

the best Bayesian classifier based on MP and LCFP_6 fingerprint

set retrieves a sensitivity of 90.3%, a specificity of 93.6%, and an

overall prediction accuracy of 91.0%. The best Bayesian classifier

has a slightly better C and AUC values (0.765 and 0.965) for the

test set compared to that of the best RP classifier (C = 0.760,

AUC = 0.937). Similar results can be found for the training set

(Table 1 and Table 2).

The Bayesian score based on MP and LCFP_6 was used to

evaluate the discrimination of inhibitors from non-inhibitors via

bimodal histograms of the training and test data sets (Figure 7). As

shown in Figure 7a, the p value associated with the difference in

the mean Bayesian score of training set mTOR inhibitors versus

non-inhibitors was 1.176102221 at the 95% confidence level,

suggesting that the two distributions are significantly different. The

Bayesian score of inhibitor tends to have more positive value,

while the Bayesian score of non-inhibitor tends to have more

negative value. Similar results can be found in the 300 tested

compounds (Figure 7b). For virtual screening, the Bayesian score

can be a quantitation standard to select new potential mTOR

inhibitors (like docking, pharmacophore or shape-feature score).

For both the training and test sets, the Bayesian score of both

classes of compounds have some overlaps between 220 and 0.

This region can be defined as the ‘‘uncertain zone’’, indicating that

when the Bayesian score of a compound is located in this region,

the prediction for this compound may be not reliable. In other

words, a Bayesian score is greater than zero that can be used as a

cutoff value to select new mTOR inhibitors for a virtual screening

project.

Performance of ACFs-NB models
Recently, virtual screening tools were developed in our lab

based on atom center fragments (ACFs) approach [36–40]. A

program (called ACFs_NB), which can classify compounds into

actives and non-actives based on ACFs and Bayesian rules, has

been implemented in our lab. Here, we constructed a classifier that

discriminates between mTOR inhibitors and non-inhibitors using

ACFs_NB program. The 5-fold cross-validation technique was

used to evaluate the model’s robustness. The detailed results of the

ACFs method are shown in Table S3. The different C values were

obtained based on different ACFs layers. The best ACFs model

has a sensitivity of 92.4%, a specificity of 90.3%, a mTOR

inhibitor predictivity of 97.3%, a mTOR non-inhibitor predica-

tivity of 75.7%, and an overall predictivity of 92.0% for the test set

when the ACF-layer is set to 3. Compared the best RP and naı̈ve

Bayesian classifiers (Table 1 and Table 2), ACFs showed a good

prediction abilities because it has a slightly better C and AUC

values (0.777 and 0.968, Table S3). A web-based service for

predicting mTOR inhibitors or non-inhibitors was developed

based on the ACFs method (called mTORPredictor) and can be

accessed at http://rcdd.sysu.edu.cn/mtor/.

Privileged fragments for mTOR inhibition activity
To further explore favorable or unfavorable structural frag-

ments for mTOR inhibition, the fingerprints were translated into

2D fragments. The privileged fragments given by the best

Bayesian classifier (MP and LCFP_6) may be useful for medicinal

chemists when designing molecules with better mTOR inhibition.

The top 20 favorable and 20 unfavorable fragments ranked by

their Bayesian scores are summarized in Figure 8.

Analysis of the fragments with positive contributions to mTOR

inhibition in Figure 8a showed that many fragments have nitrogen

atoms encoded in saturated rings or connected with saturated rings

Figure 8. Important favorable and unfavorable fragments for mTOR inhibition obtained from Bayesian classifiers. (a) Selected 20
fragments with incremental effect, prefixed with ‘‘G’’, on mTOR inhibition (b) selected 20 fragments with detrimental effect, prefixed with ‘‘B’’, on
mTOR inhibition, predicted by the best Bayesian model based on molecular properties and LCFP_6 fingerprints set. The frequency of their
occurrences in active (good) molecules is given in bracket, with * represents any atom.
doi:10.1371/journal.pone.0095221.g008

In Silico Models to Predict mTOR Inhibitors

PLOS ONE | www.plosone.org 11 May 2014 | Volume 9 | Issue 5 | e95221

http://rcdd.sysu.edu.cn/mtor/


(except fragments 11, 16, and 17). Obviously, the nitrogen atoms

in these key fragments can serve as strong hydrogen acceptors and

form stable H-bonding interactions with the mTOR kinase

domain. Furthermore, these fragments may be as ‘‘support

scaffolds’’ that assist in maintaining the active conformation and

form favorable hydrophobic interactions with mTOR. Our

findings are consistent with the recent published co-crystallized

complex of mTOR kinase and inhibitors (PDB ID: 4JSX and

4JT5) [2]. The oxygen atom in fragment 11 is an electron donor

and therefore acts as an H-bond acceptor, which is also validated

by experimental X-ray results (PDB ID: 4JT6). Fragment 17

contains urea or carbamate groups, indicating that these fragments

may act as H-bond acceptors or donors to form H-bond

interactions with mTOR. Arie Zask et. al. observed a similar

result based on SAR analysis, homolog modeling, and molecular

docking technique [41].

The 20 fragments shown in Figure 8b indicate that the existence

of these fragments is unfavorable for mTOR inhibition. It is quite

interesting that many fragments have nitrogen atoms encoded in

unsaturated rings or connected with unsaturated rings. These

unsaturated rings encoded in unfavorable fragments may not be as

‘‘support scaffolds’’ because of its flexibility. Another reason is that

the proton of nitrogen atoms in unsaturated rings is not necessary

for mTOR inhibition, which is consistent with our nHBDon

Table 3. The predictions for the 37 tested compounds using the top three RP, and Bayesian and ACFs-NB classifiersa.

Cmps Expt. RP_ECFP_6 RP_FCFP_4 RP_FPFP_4 NB_ECFP_6 NB_LCFP_4 NB_LCFP_6 ACFs-NB

1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1 1

6 1 1 1 1 1 1 1 1

7 1 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1

9 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1

11 1 1 1 1 1 1 1 1

12 1 1 1 1 1 1 1 1

13 1 1 1 1 1 1 1 1

14 1 1 1 1 1 1 1 1

15 1 1 1 1 1 1 1 1

16 1 1 1 1 1 1 1

17 1 1 1 1 1 1 1 1

18 1 1 1 1 1 1 1 1

19 1 1 1 1 1 1 1 1

20 1 1 1 1 1 1 1 1

21 1 1 1 1 1 1 1 1

22 1 1 1 1 1 1 1 1

23 1 1 1 1 1 1 1 1

24 1 1 1 1 1 1 1 1

25 1 1 1 1 1 1 1 1

26 1 1 1 1 1 1 1 1

27 1 1 1 1 1 1 1 1

28 1 1 1 1 1 1 1 1

29 1 1 1 1 1 1 1 1

30 1 1 0 0 1 1 1 1

31 1 1 1 1 1 1 1 1

32 1 1 1 1 1 1 1 1

33 1 1 1 1 1 1 1 1

34 1 0 1 1 1 1 1 1

35 1 1 1 1 1 1 1 1

36 1 1 1 1 1 1 1 1

37 1 1 1 1 1 1 1 1

a0 represents mTOR noninhibitor and 1 represents inhibitor; Expt: experimental results.
doi:10.1371/journal.pone.0095221.t003
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analysis, two published pharmacophore models [20,21] and recent

X-ray results [2]. Moreover, 8 unfavorable fragments contain a

lactam group of unsaturated rings, indicating that the lactam

group may play a key role in unfavorable mTOR inhibition.

Fragments 14 and 16 are fragments that have nitrogen atoms in

five saturated rings, but they are cataloged in unfavorable class.

The major reason may be due to the nitrogen atoms connection

environment (ortho-connection for favorable and meta-connection

for unfavorable) or substituents are not from active scaffold. Our

results may be useful for designing molecules with better mTOR

inhibition.

Scaffold hopping and experimental validation of
classification models

The generalization ability of a model determines its usefulness

and reliability. In the present study, the performances of the RP,

Bayesian, and ACFs-NB models were validated by an external 300

tested compounds with 5-fold cross-validation. To further prove

our models are reliable and useful, we predicted 37 compounds

with mTOR inhibition activity published recently (all compounds

show IC50,10 mM) [42–44]. In a blind test, 37 new inhibitors

(Table 3) were predicted using the top three best RP, Bayesian

models, and the best ACFs model. The detailed results are

summarized in Table S3. As shown in Table S3, RP models (MP+
ECFP_6, MP+FCFP_4, and MP+FPFP_4) achieved ,97.3%

accuracy rate, while Bayesian (MP+ECFP_6, MP+LCFP_4, and

MP+LCFP_6) and ACFs-NB models had a 100% accuracy rate.

These results demonstrate that our models are reliable and useful.

Among the 37 compounds, 18 were novel inhibitors from a hit-

to-lead discovery strategy [42]. Nineteen compounds were derived

from structural modification of old scaffolds [43,44]. Four novel

scaffolds and one old scaffold are listed in Figure 9. Scaffolds I and

II have similar substituents to the old scaffold (R2 and R3 group,

Figure 9 and Table S3). Scaffolds III and IV differ not only in

substituents (R1 and R2) but also in the position of substituents.

Eighteen new inhibitors based on four novel scaffolds were all

predicted correctly, indicating that scaffold hopping can be carried

out via virtual screening our models.

Active cutoff value effects
In the present study, compounds were considered to be

‘‘inhibitors’’ if their reported IC50 or Ki were below 10 mM; this

cutoff value appeared to be a reasonable starting point for hit-to-

lead activity. To estimate the influence of these active cutoff values

on the performance of the classification models, two other

threshold values (1 and 5 mM) were used to split the data into

inhibitor and non-inhibitor classes. The classification models based

on best RP (MP+FPFP_4) and Bayesian (MP+LCFP_6) parame-

ters were reconstructed, and detailed results are listed in Table S4.

As shown in Table S4, for RP models, the best model was

established based on the 10 mM cutoff value according to the C

value from the training set (C = 0.762 for 1 mM, 0.772 for 5 mM,

and 0.786 for 10 mM). Similar results were found for the 300 tested

compounds. For the Bayesian models, the best model was

constructed based on a 1 mM cutoff value for the training set

(C = 0.759 for 1 mM, 0.734 for 5 mM, and 0.753 for 10 mM), while

similar results are obtained from the test set (Table S4). The tree

Bayesian models show an overall prediction accuracy of 89.3%,

87.6%, and 91.0% for the 1 mM, 5 mM, and 10 mM models,

respectively. It should be noted that the cutoff values are arbitrarily

defined, and we cannot determine which values are best. Similar

results were found for the ACFs-NB model (Table S3, three cutoff

values). However, as shown in Table S3 and Table S4,

classification models with reliable predictive ability for the tested

compounds can be obtained even when a different threshold value

was used. Based on the above analysis, we selected active cutoff

value of 10 mM not only because this value appeared to be a

reasonable starting point for hit-to-lead activity but also because it

represents the active level of compounds from the current virtual

screening project.

Application of the RP, Bayesian, and ACFs-NB models
Based on important information from the RP, Bayesian, and

ACFs-NB models, there are at least three applications of RP and

Bayesian models. In the simplest sense, the favorable fragments

presented in Figure 8a can be used as queries for screening

compound libraries. Furthermore, the results of the models could

be useful for the design and optimization of compounds with

mTOR inhibition activity by replacing unfavorable fragments

with favorable fragments, removing inactive fragments altogether,

or adding active fragments to other fragments with promising

mTOR inhibitory activity. In addition, the best RP, Bayesian, and

ACFs-NB models are well-suited as tools to predict whether a

compound is an mTOR inhibitor and for virtual screening.

Compound prediction or virtual screening can be carried out

through our web server (http://rcdd.sysu.edu.cn/mtor/).

Figure 9. New scaffolds (right) were hopped based on old scaffold (left, contained in train set and test set). R1, R2 and R3 were
substituents.
doi:10.1371/journal.pone.0095221.g009
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Conclusions
In the present study, we report an extensive ATP-competitive

mTOR inhibition database consisting of 1,264 molecules. On the

basis of the diversity set of mTOR inhibition data, the

relationships between thirteen important molecular properties

and mTOR inhibition have been systematically examined. We

observed that some of the properties, especially molecular weight,

MSA, nRings, and a sum of N plus O atoms, are important

contributors to mTOR inhibition, but no single molecular

property is sufficient to distinguish inhibitors from non-inhibitors.

The RP technique was applied to construct the decision trees to

classify the whole data set into inhibitor and non-inhibitor classes.

To characterize the structural features important for mTOR

inhibition, structural fingerprints were introduced into our

analysis. We found that the introduction of fingerprints signif-

icantly improves the prediction accuracy. Then, Bayesian catego-

rization modeling was applied to establish classifiers for mTOR

inhibition. The best Bayesian classifier based on MP and LCFP_6

fingerprint achieved high prediction accuracies for the training set

and the test set (overall prediction accuracy of 93.2% for 964

compounds in the training set using a leave-one-out cross-

validation procedure and 91.0% for the 300 compounds in the

test set). Finally, an ACFs-NB classifier was constructed based on

an in-house algorithm, achieving overall prediction accuracy of

92.0% for 300 tested compounds. The scaffold hopping abilities of

the best RP, Bayesian, and ACFs-NB models were successfully

evaluated via predicting 37 recently published new mTOR

inhibitors. Comparing the performance and scaffold hopping

abilities of the best RP and Bayesian models, the ACFs-NB

classifier is comparable or slightly better than the RP and Bayesian

methods. Therefore, a web server for predicting mTOR inhibitors

or non-inhibitors was developed based on the ACFs and NB

method. The important favorable or unfavorable fragments for

mTOR inhibition provided by the Bayesian classifiers will be very

helpful in lead optimization or the design of new inhibitors with

better mTOR inhibitory activity.
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