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Abstract: Due to the increasing rates of chronic diseases and an aging population, the use of assistive
devices for ambulation is expected to grow rapidly over the next several years. Instrumenting these
devices has been proposed as a non-invasive way to proactively monitor changes in gait due to the
presence of pain or a condition in outdoor and indoor environments. In this paper, we evaluated the
effectiveness of a multi-sensor cane in detecting changes in gait due to the presence of simulated gait
abnormalities, walking terrains, impaired vision, and incorrect cane lengths. The effectiveness of the
instrumented cane was compared with the results obtained directly from a shank-mounted inertial
measurement unit. Results from 30 healthy participants obtained while simulating gait abnormalities
and walking over different terrains demonstrated the ability of the cane to reliably and effectively
discriminate among these walking conditions. Moreover, the results obtained while walking with
impaired vision and incorrect cane lengths indicate the ability of cane to detect changes in gait during
these scenarios as well.

Keywords: multi-sensor; assistive technologies; cane; gait; proactive monitoring; inertial measurement
unit (IMU); simulated gait abnormalities; walking terrain; vision; cane length

1. Introduction

Globally, healthcare systems are being stressed as a result of the aging baby-boomer demographic
and the rise of chronic diseases and neurological impairments [1,2]. Among a variety of increased
medical complications, mobility impairments due to reduced coordination, muscle strength and
postural balance are a major source of concern in these populations. In order to combat this, there has
been increased focused on developing innovative proactive solutions that enable self-management and
early intervention to alleviate the burden on healthcare providers and caregivers [3]. One proactive
solution is to monitor people’s behaviors and mobility during everyday life as opposed to performing
controlled and reactive assessments in the context of a lab or specialist clinic [4,5].

The gold standard for mobility and gait monitoring most often includes full-body motion capture
systems, video systems, and force places that are capable of providing highly detailed and quantitative
gait data [6,7]. These systems, however, are often prohibitively expensive for most clinical settings,
require the need for additional skilled technicians, and are limited to indoor use in laboratory
settings [8–10]. Moreover, these solutions can only provide gait data for a limited number of strides
thus preventing them from being a viable option for community-based, long-term monitoring.

To address these challenges, wearable sensor technology provides greater flexibility by allowing for
consistent monitoring of regular everyday activities across multiple indoor and outdoor environments.
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Wearable motion sensors, such as inertial measurement units (IMUs) which combine accelerometers
and gyroscopes, have been widely researched for gait monitoring in elderly subjects and pathological
populations [5,8]. A strength of these low power systems is their small size, allowing them to be
placed almost anywhere on the body as a single standalone, multi-channel, or even a multi-sensor
system [9,11,12]. Their data provide enough detailed information to extract relevant gait characteristics
including step length, number of steps, stride variability, and walking speed [12]. However, there are
some limitations that have restricted widespread adoption of these technologies among the populations
that could benefit the most from their use. Firstly, there are concerns related to adoption and adherence
due to the lack of technological knowledge and/or cognitive ability [11,12]. Secondly, there are concerns
related to the obtrusiveness of these devices and opposition to behavioral change [13].

To address these challenges while maintaining the ability to monitor in everyday environments,
the assistive gait aids (ADs) that these populations often already use have been instrumented [14–16].
Recent studies suggest that approximately 6.1 million community-dwelling American adults ambulate
with the support of an AD to combat mobility impairments and mitigate instability [17]. This has
led researchers to develop instrumented ADs to help monitor and categorize gait activity [16,18,19].
These works the presented mechanical design of instrumented canes equipped with IMUs and a load
monitoring system intended to be used as diagnostic tools in physiotherapy clinics. The work presented
in References [18,19] used load cells to measure axial loading information, whereas Wade et al. [16]
used force-sensing resistors incorporated into the cane handle and base to measure loading information.
While these early works demonstrated the potential of this approach, limitations including cost,
reliability, and lack of industrial design have prevented their successful deployment outside of training
situations [14]. In our previous works [14,15], the potential to perform preventative gait and mobility
monitoring using affordably instrumented gait aids was demonstrated by leveraging the Internet of
Things (IoT) principles to create “smart” technologies. Using this approach, accurate gait segmentation
has been shown to be possible across different walking terrains [20].

It has been shown that an instrumented wheeled walker can also be used to reflect changes in gait
during rehabilitation and predict the outcomes of clinical assessments [21]. Presented results revealed
the ability of an instrumented walker to predict Tinetti assessment scores (measure of balance and gait
function) on the fly. Clinician provided scores were compared to scores predicted by an instrumented
walker and showed a small mean square prediction score. In our previous work, instrumented walkers
have also demonstrated the ability to determine both the activity level of the individual and the type
of environment in which they are walking [15]. Incident monitoring has also been demonstrated to
be possible with instrumented walking canes that are capable of detecting falls [22,23]. For example,
Lan et al. [23] implemented a fall detection algorithm based on subsequence matching by recognizing
three stages of a fall pattern. Four types of falls (i.e., forward, backward, side, and free fall) were
simulated using healthy participants. The presented results indicated the ability of the algorithm to
detect the majority of the falls while achieving very low false-positive rates for non-falling conditions.
While these works performed well in fall detection, they provide evidence only for situations where
someone has already fallen as opposed to the preventative monitoring of near-falls or altered gait
patterns. To detect subtle changes in gait, Wade et al. [16] presented an alternative instrumented cane
design that could identify when an individual was walking on stairs, walking with their eyes closed,
as well as walking while looking to one’s side. The results from seven adult volunteers showed overall
accuracy of 95.8% in classifying these activities using force and inertial information collected from
the cane’s sensors. Recently, the relationship between user and cane movement was investigated to
provide clinicians and caregivers insightful information about cane-assisted walking [24]. Gyroscope
data from shank-mounted and cane IMUs were collected for two participants undergoing post-stroke
rehabilitation during a continuous standardized sequence of ambulation activities. Presented results
revealed that shank-mounted and cane IMUs can capture relevant information related to a user’s gait.
In our previous works, we have demonstrated the potential of a multi-sensor cane to detect changes
in gait due to the fact of pain-related simulated gait perturbation [14]. To truly enable preventative
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monitoring and intervention, however, these devices must all be able to function robustly during an
individual’s everyday life activities. This requires the ability to detect changes in gait caused due to
the presence of pain, injury, changes in walking terrains, or visual distractions.

In this work, we examined the potential of a multi-sensor cane to act, not only as an activity
monitor, but also as a tool to relay information about the nature of the user’s gait. To this aim, we
sought to determine the capabilities of an instrumented cane in detecting a variety of gait-related
changes as validated by a shank-mounted IMU. Specifically, the desired outcomes included the ability
to identify simulated changes in gait, walking terrain, simulated vision perturbations, and incorrect
cane length. Improvements in these factors may help validate the instrumented multi-sensor cane as
an important deployable tool for preventative monitoring of vulnerable individuals as they perform
their everyday activities and routines.

2. Materials and Methods

2.1. System Overview

The system used in this work consisted of an IoT-enabled, multi-sensor cane developed by
the Health Technologies Laboratory and Institute of Biomedical Engineering at the University of
New Brunswick, Fredericton, Canada. The system design and implementation are described in
detail in previous works [14]. The key requirement for the system design was that it was nearly
indistinguishable from a standard offset cane. Therefore, a 3D printed carriage housing the system
electronics was designed to fit the handle of a standard commercially available offset cane. Figure 1
shows a rendered model (left) and the final design (right) of the multi-sensor cane used in this
work. The multi-sensor cane is capable of measuring load exerted on the cane as well as motion and
orientation data. The loading information was measured using strain gauges (SGT-1A/1000-TY13,
Omega Engineering) arranged in Wheatstone topology. Two strain gauges were fixed on the apex of the
multi-sensor cane’s curvature while other two were mounted to a matching piece of aluminimum for
temperature compensation. A 9-axis inertial measurement unit (LSM9DS1), consisting of accelerometer,
gyroscope, and magnetometer was set to provide angular velocity and acceleration signals with a
sensitivity of 500 ◦/s and 16× g respectively. All sensors were sampled at a frequency of 231 Hz.
The multi-sensor cane can either store measured data on a microSD card or use Bluetooth Low Energy
(BLE) to streamline data to a nearby tablet. For this experiment data were stored locally on miscroSD
card for offline processing. We used two coordinate systems: the IMU coordinate system and a
global Cartesian system. The z-axis of the global Cartesian system is in parallel with the gravitational
acceleration, and the XY plane is assumed to be level and perpendicular (i.e., user is on flat ground)
with the y-axis pointing in the walking direction. The axes of the IMU coordinate system coincided
with the axes of the global Cartesian system.



Sensors 2020, 20, 631 4 of 16
Sensors 2019, 19, x FOR PEER REVIEW  4 of 15 

 

 
Figure 1. Multi-sensor Internet of Things (IoT) enabled cane [14,20]. IMU—inertial measurement unit. 
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height for each individual [25]. For trials that involved improper cane height, the cane’s length was 
adjusted to be 2 inches too tall or 2 inches too short. Prior to walking, all participants received a brief 
tutorial on cane-assisted gait (https://www.youtube.com/watch?v=fRn8ZZJMzno) as well as a 
practice session to familiarize themselves with walking with an assistive gait aid. The experiment 
only proceeded once the participant was comfortable enough to use the cane correctly while walking 
while also being able to engage in conversation. For each of the testing conditions, listed in Table 1, 
each participant was instructed to walk at a self-selected speed with the help of the cane. Each 
individual performed walking trials representing all 11 walking conditions. All subjects provided 
written informed consent prior to participating. This study was approved by the University of New 
Brunswick Research Ethics Board (REB #2017-097). 

Table 1. Various walking conditions tested for each participant. 

Condition Detail 

Control 
Unperturbed cane-assisted 52 m walk on a flat surface. Participants moved the 

cane contralateral (opposite side) to the affected leg. This contralateral-side 
assistance was used for all conditions. 

Dorsiflexion 
Cane-assisted 52 m walk on flat surface. Participants were asked to dorsiflex to 

avoid putting any weight on the toes of their affected leg. 

Plantarflexion Cane-assisted 52 m walk on flat surface. Participant was asked to plantarflex to 
avoid putting any weight on the heel of their affected leg. 

Upstairs Unperturbed cane-assisted walk up 1 flight of stairs (20 steps). 

Downstairs Unperturbed cane-assisted walk down 1 flight of stairs (20 steps). 

Uphill Unperturbed cane-assisted 78 m walk on a paved sidewalk, uphill. 

Downhill Unperturbed cane-assisted 78 m walk on a paved sidewalk, downhill. 

Fogged 
Glasses 

Cane-assisted 52 m walk on a flat surface. Participant was asked to wear 
fogged glasses so that vision was impaired. 

Both Eyes 
Closed 

Cane-assisted 52 m walk on a flat surface while participant was blindfolded.  

Figure 1. Multi-sensor Internet of Things (IoT) enabled cane [14,20]. IMU—inertial measurement unit.

2.2. Experimental Protocol

Thirty healthy individuals (24 male and 6 female, aged 18–31 years, mean ± SD = 22.0 ± 3.1 years)
with no known injuries participated in this study. The cane length was adjusted to be an appropriate
height for each individual [25]. For trials that involved improper cane height, the cane’s length was
adjusted to be 2 inches too tall or 2 inches too short. Prior to walking, all participants received a
brief tutorial on cane-assisted gait (https://www.youtube.com/watch?v=fRn8ZZJMzno) as well as a
practice session to familiarize themselves with walking with an assistive gait aid. The experiment
only proceeded once the participant was comfortable enough to use the cane correctly while walking
while also being able to engage in conversation. For each of the testing conditions, listed in Table 1,
each participant was instructed to walk at a self-selected speed with the help of the cane. Each individual
performed walking trials representing all 11 walking conditions. All subjects provided written informed
consent prior to participating. This study was approved by the University of New Brunswick Research
Ethics Board (REB #2017-097).

Table 1. Various walking conditions tested for each participant.

Condition Detail

Control
Unperturbed cane-assisted 52 m walk on a flat surface. Participants moved the cane
contralateral (opposite side) to the affected leg. This contralateral-side assistance was

used for all conditions.

Dorsiflexion Cane-assisted 52 m walk on flat surface. Participants were asked to dorsiflex to avoid
putting any weight on the toes of their affected leg.

Plantarflexion Cane-assisted 52 m walk on flat surface. Participant was asked to plantarflex to avoid
putting any weight on the heel of their affected leg.

Upstairs Unperturbed cane-assisted walk up 1 flight of stairs (20 steps).
Downstairs Unperturbed cane-assisted walk down 1 flight of stairs (20 steps).

Uphill Unperturbed cane-assisted 78 m walk on a paved sidewalk, uphill.
Downhill Unperturbed cane-assisted 78 m walk on a paved sidewalk, downhill.

Fogged Glasses Cane-assisted 52 m walk on a flat surface. Participant was asked to wear fogged
glasses so that vision was impaired.

Both Eyes Closed Cane-assisted 52 m walk on a flat surface while participant was blindfolded.

Long Cane Cane-assisted 52 m walk on flat surface with cane adjusted to a length 2 inches longer
than ideal.

Short Cane Cane-assisted 52 m walk on flat surface with cane adjusted to a length 2 inches
shorter than ideal.

https://www.youtube.com/watch?v=fRn8ZZJMzno
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2.3. System Validation

To validate that the data from the multi-sensor cane provided accurate data relevant to gait,
a Shadow full-body inertial motion capture system (Motion Workshop) was used. The Shadow system
consists of 18 body-mounted sensors, sampling at 100 Hz, that are placed along an individual’s limbs
to track the entirety of the body’s movement. Of the 18 sensors, three sets of sensors served as potential
validation candidates: sensors placed within the shoe insoles (kinetic information), sensors placed on
the shoes, and shank-mounted IMU sensors (kinematic information). Sensors placed in shoe insoles
can provide gait-related kinetic information; however, they often suffer from wear and tear and are
also influenced by the drift typically observed with force-sensing resistors (FSRs). Shoe-mounted IMU
sensors can provide kinematic information related to movement; however, these sensors suffer from
motion artifacts caused from the heel strikes during walking. In this study, shank-mounted IMU sensors
were used to obtain kinematic information, as these sensors are less affected by motion artifacts and have
been widely used in the literature [24,26]. All Shadow system data were collected and stored for offline
processing using MATLAB® (Mathworks Inc., Natick, MA, USA). High-frequency motion artifacts and
noise components were removed from these shank-mounted sensors using sixth-order, low-pass filters
with cutoff frequencies of 8 Hz. A threshold-based gyroscope peak detection (GPD) algorithm similar
to the one presented in Reference [24] was developed and used to segment continuous gait data from
the Shadow system into individual strides. The algorithm operated on shank medial–lateral (x-axis)
gyroscope data. This is referred to as shank anteroposterior (AP) velocity. To ensure accurate baseline
results, a specific optimal threshold value was selected for each participant per condition based on
manual inspection of shank gyroscope data. This is explained in detail elsewhere [20,24]. Briefly, peaks
in gyroscope AP velocity above threshold value are classified as peak swing (PS) events. Thereafter,
initial contact (IC) events corresponding to a local minimum after PS events are identified. Similarly,
terminal contact (TC) events that corresponds to local minimum before PS events are detected. Lastly,
end of contact (EC) events that correspond to local minimum after PS events are identified. During
continuous walking, EC event corresponds to the IC event of the next gait cycle. This is demonstrated
in Figure 2. In this fashion, all valid strides and corresponding temporal events (i.e., IC, TC, PS, and EC)
were identified using the Shadow system’s shank-mounted IMU.
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2.4. System Data Segmentation

The raw data from the cane’s sensors were collected and stored from each participant for offline
processing using MATLAB® (Mathworks Inc. Natick, MA, USA). High-frequency motion artifacts
and noise components were removed from both sets of sensors using sixth-order, low pass filters with
4 and 8 Hz cutoff frequencies for strain gauge and IMU sensor data, respectively. Continuous gait
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data were segmented into the individual strides for every tested condition. Relevant walking cycle
events, such as initial contact (IC), terminal contact (TC), peak swing (PS), and end of contact (EC),
were identified. Of note, the IC, TC, and EC events all corresponded to zero-crossings in the strain
gauge data. By contrast, the PS event corresponded to a peak in the multi-sensor cane (x-axis) gyroscope
data. This is called the cane AP velocity. Segmentation and walking-cycle-event identification were
both performed using a multi-sensor matched filter (MSMF), a template matching algorithm, described
in detail in our previous work [20]. Briefly, the walking cycle is categorized into two phases: the
cane-loading phase and the cane-swing phase. The loading phase begins once the IC is detected and
continues as the cane touches the ground and the user steps forward while loading the cane for support.
The IC event is identified by correlating a known template signal with the unknown strain gauge data.
A similarity threshold of 50% was used to avoid spurious positive peaks in the matched filter output
being identified as valid strides. The IC events were identified as positive strain gauge zero-crossing
points within 0.5 s of the matched filter’s positive peak to account for varying stride lengths. In order
to directly compare with this MSMF approach, the GPD approach used with the Shadow system was
also applied to the cane’s gyroscope data to extract the IC event.

The loading phase ends with the TC event, as the user gets ready to lift the cane off the ground.
The TC event was identified as the negative strain gauge zero-crossing point following the IC event.
This is followed by the swing phase during which the user swings the cane in the anteroposterior
direction. The location of the peak, or maximum, value in the gyroscope AP velocity following a TC
event was identified as the PS event.

Lastly, the EC event corresponds to an instant at the end of the swing phase once the user stops
swinging the cane and places the cane-tip in front of themselves. The time interval between IC and
EC events here defines a full gait cycle. The EC event was identified as the positive strain gauge
zero-crossing point that follows the PS event. Figure 3 shows an example of a gait cycle for multi-sensor
cane data. All valid strides and corresponding temporal events (i.e., IC, TC, PS, and EC events) were
identified in a similar fashion.
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2.5. System Syncronization

Both the multi-sensor cane and shadow system started at times independent of each other and
collected data at different sampling rates. In order to align the starting points for both these systems,
participants were instructed to stand still while holding the cane off the ground for half a minute before
starting each walking trial. A first positive strain gauge zero-crossing point and first local minima
in gyroscope AP velocity of shank-mounted IMU were deemed as starting points for both the cane
and shadow system, respectively. Similarly, at the end of walking trial, participants were instructed
to stand still while holding the cane off the ground. The same procedure was followed for every
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walking trial. This allowed us to determine the starting and stopping points for both systems during
each walking trial.

2.6. System Evaluation

System evaluation conducted to ensure that the multi-sensor cane was capable of capturing
relevant gait information. Specifically, data from normal walking was compared to simulated perturbed
walking conditions due to pathology, terrain, vision, or improper cane lengths. A set of relevant
features that quantify gait were extracted from various cane sensors. Shown in Table 2, the features
were extracted from the cane data to quantify both how the cane moved and how much it was relied
upon during the various walking conditions. To assess whether the features were relevant in capturing
consistent and relevant information in the strides, a repeated measures ANOVA was performed using
MATLAB with a significance threshold of 0.05. To determine if differences among the conditions
were present in the features characterizing the sensor data, a multiple comparison of means across
conditions was performed with Bonferroni correction for each of the features listed in Table 2.

Table 2. Various cane features tested for each condition.

Feature Description

Max anteroposterior velocity (PV)—Swing Phase (◦/s) Maximum value of cane anteroposterior (AP) velocity measured in ◦/s during the
swing phase.

Max PV—Stance Phase (◦/s) Maximum value of cane AP velocity measured in ◦/s during the stance phase.

Max PV Time Index with respect to TC (ms) Time index of maximum value of cane AP velocity during the swing phase as
measured with respect to the TC event time index in milliseconds.

Swing Stance Ratio Ratio of swing phase to stance phase interval.
Max Strain (analog to digital converter (ADC) value) Maximum value of strain (ADC value) applied to cane.

Max Strain Time Index with respect to IC (ms) Time index of the maximum value of strain applied to the cane during the stance
phase as measured with respect to the IC event time index in milliseconds.

Stride Length (m) Calculated length of each stride measured in meters.

Difference in IC (ms)
Time difference in IC events from the cane data as measured by the multi-sensor

matched filter (MSMF) and gyroscope peak detection (GPD) algorithms (i.e.,
ICMSMF – ICGPD) measured in milliseconds.

3. Results

Four separate experiments were conducted to determine the ability of the multi-sensor cane
to determine changes in gait caused by simulated gait abnormalities, changes in walking terrain,
simulated vision perturbations, and incorrect cane length. The results of the four experiments are
presented here to validate the ability of the multi-sensor cane to distinguish the various walking
conditions from normal walking (control case).

3.1. Gait Abnormalities

Features were extracted from the cane’s sensor data and subsequently compared statistically.
A Bonferroni comparison tested for differences among features extracted from the different gait
conditions. These results, listed in Table 3, demonstrate that the multiple features that yielded
significantly different (p < 0.05) means were plantarflexed and dorsiflexed gait with respect to
the healthy control case. Moreover, maximum pitch velocity during both the swing and stance
phases; as well as stride length denoted a significant difference for the dorsiflexion with respect to
plantarflexion condition.
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Table 3. Features extracted from the cane sensors for simulated gait abnormalities (repeated measures
ANOVA, F: F ratio, p: p-value); µ: mean value; σ: standard deviation; (results of the Bonferroni
comparison are indicated by * control , plant or dorsi and ** plant , dorsi).

ANOVA (F, p) Control (µ ± σ) Plant (µ ± σ) Dorsi (µ ± σ)

Max PV—Swing Phase (◦/s) (5.2, <0.001) (246.5 ± 55.5) (228.3 ± 73.8) * (204.9 ± 61.6) *, **

Max PV—Stance Phase (◦/s) (3.9, 0.03) (156.4 ± 33.3) (148.8 ± 28.5) (124.6 ± 23.3) *, **

Max PV Time Index with
respect to TC (ms) (7.9, <0.001) (258 ± 58) (217.3 ± 52.4) * (204.8 ± 35.9) *

Swing Stance Ratio (0.8, 0.441) (1 ± 0.2) (0.9 ± 0.7) (0.8 ± 0.2) *

Max Strain (ADC value) (7.1, 0.002) (110.6 ± 57.7) (179.3 ± 93.3) * (188 ± 83) *

Max Strain Time Index with
respect to IC (ms) (2, 0.141) (361.9 ± 73.2) (412.1 ± 99.9) * (419 ± 80) *

Stride Length (m) (1.3, 0.29) (1.1 ± 0.4) (0.9 ± 0.3) * (0.8 ± 0.3) *, **

Difference in IC (ms) (3.9, 0.024) (−12.6 ± 6.6) (−20.2 ± 11.6) * (−25 ± 14.1) *

A comparison of features obtained from the cane and the shank-mounted IMU are shown in
Figure 4. All features from the cane and shank-mounted IMU follow the same trend of decreasing in
value with respect to the control condition. The exception was found to be the “swing stance ratio”
feature (Figure 4d). By inspection, the cane data indicate that this was smaller for dorsiflexion with
respect to the control case, whereas the shank-mounted IMU data indicate an increase. This can
be explained due to the difference in the IC and TC events determined by the MSMF and GPD
segmentation algorithms as shown in Figure 5. A negative difference in the IC suggests that the GPD
algorithm determined IC events later in time, whereas a positive difference in TC means that GPD
determined the TC event to occurs earlier.
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the cane data (ICMSMF – ICGPD and TCMSMF – TCGPD).

3.2. Walking Terrains

Table 4 lists the results of a Bonferroni comparison of the differences in features for uphill and
downhill walking with respect to level walking. The differences in upstairs and downstairs walking
with respect to level walking are presented in Table 5.

When walking on uphill or downhill terrains, pitch velocity during the swing and stance phases
was higher with respect to the control case, and no significant difference was observed in the swing
stance ratio. By contrast, while walking up and down stairs, pitch velocity during the swing and
stance phases was lower with respect to the control and a significant decrease in swing stance ratio
was observed.

For all terrains, maximum strain increased with respect to the control case. In addition, stride
length slightly decreased for uphill and downhill walking, whereas a significant decrease in stride
length was observed for upstairs and downstairs walking. Lastly, no significant difference in mean
difference in IC as determined by the MSMF and GPD approaches was observed for downhill walking,
whereas a significant difference was observed for uphill walking. For upstairs and downstairs walking,
a significant difference in IC determined by these approaches was observed with respect to control case.
For some features, significant differences were observed in downhill walking with respect to uphill
walking. When comparing downstairs walking with respect to upstairs walking, significant differences
were observed for maximum pitch velocity during swing phase, stride length, and difference in IC
determined by the two approaches.

Table 4. Features extracted from the cane sensors for uphill and downhill walking (repeated measures
ANOVA, F: F ratio, p: p-value); µ: mean value; σ: standard deviation; (results of the Bonferroni
comparison are indicated by * control , uphill or downhill and ** uphill , downhill).

ANOVA (F, p) Control (µ ± σ) Uphill (µ ± σ) Downhill (µ ± σ)

Max PV—Swing Phase (◦/s) (7.1, 0.002) (246.5 ± 55.5) (270 ± 73) * (268.1 ± 76.2) *

Max PV—Stance Phase (◦/s) (10, <0.001) (156.4 ± 33.3) (166.3 ± 27.5) * (189.6 ± 33.5) *, **

Swing Stance Ratio (0.1, 0.935) (1 ± 0.2) (1 ± 0.5) (1 ± 0.3)

Max Strain (ADC value) (1.8, 0.182) (110.6 ± 57.7) (159.7 ± 74.5) * (135.7 ± 67.3) *, **

Stride Length (m) (5.7, 0.005) (1.1 ± 0.4) (1.1 ± 0.4) (1.2 ± 0.4) *,**

Difference in IC (ms) (0.3, 0.722) (−12.6 ± 6.6) (−19.3 ± 12.8) * (−12.5 ± 6.8) **
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Table 5. Features extracted from the cane sensors for upstairs and downstairs walking (repeated
measures ANOVA, F: F ratio, p: p-value); µ: mean value; σ: standard deviation; (results of the Bonferroni
comparison are indicated by * control , upstairs or downstairs and ** upstairs , downstairs).

ANOVA (F, p) Control (µ ± σ) Upstairs (µ ± σ) Downstairs (µ ± σ)

Max PV—Swing Phase (◦/s) (158.4, <0.001) (246.5 ± 55.5) (68.3 ± 21.3) * (79.6 ± 26.4) *, **

Max PV—Stance Phase (◦/s) (67.3, <0.001) (156.4 ± 33.3) (37.4 ± 8.8) * (38.3 ± 14.2) *

Swing Stance Ratio (5.7, 0.006) (1 ± 0.2) (0.7 ± 0.2) * (0.7 ± 0.3) *

Max Strain (ADC value) (3.2, 0.480) (110.6 ± 57.7) (201.7 ± 122.9) * (179.8 ± 104.7) *

Stride Length (m) (39.5, <0.001) (1.1 ± 0.4) (0.3 ± 0.2) * (0.2 ± 0.1) *, **

Difference in IC (ms) (17.3, <0.001) (−12.6 ± 6.6) (−78.7 ± 29.7) * (−63.3 ± 27.4) *, **

Figure 6 shows a comparison of features obtained for various walking terrains for the cane and
shank-mounted IMU. All features for both follow the same trend with respect to control case except for
Max PV Time Index with respect to TC.
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3.3. Impaired Vision

Next, we investigated the ability of the cane to detect any changes in gait due to the fact of
impaired vision. The results presented in Table 6 show that swing stance ratio for the impaired vision
conditions saw significant differences with respect to the control case. Maximum strain increased
significantly for impaired vision conditions with respect to the control case. Moreover, the mean
difference in IC, as determined by the MSMF and GPD approaches, increased significantly for impaired
vision conditions with respect to the control case.
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Table 6. Features extracted from the cane sensors for impaired vision conditions (repeated measures
ANOVA, F: F ratio, p: p-value); µ: mean value; σ: standard deviation; (results of the Bonferroni
comparison are indicated by * control , fogged glasses or both eyes closed and ** fogged glasses , both
eyes closed).

ANOVA (F, p) Control (µ ± σ) Fogged Glasses (µ ± σ) Both Eyes Closed (µ ± σ)

Max PV—Swing Phase (◦/s) (55.2, <0.001) (246.5 ± 55.5) (243.5 ± 63.6) (194.8 ± 54.2) *, **

Max PV—Stance Phase (◦/s) (17, <0.001) (156.4 ± 33.3) (147.4 ± 24.9) (104.1 ± 23.3) *, **

Swing Stance Ratio (1.6, 0.202) (1 ± 0.2) (0.9 ± 0.2) * (0.8 ± 0.3) *

Max Strain (ADC value) (0.7, 0.524) (110.6 ± 57.7) (141.9 ± 80.9) * (147.2 ± 76.3) *

Stride Length (m) (9.3, <0.001) (1.1 ± 0.4) (1.1 ± 0.3) (0.8 ± 0.3) *, **

Difference in IC (ms) (3.1, 0.052) (−12.6 ± 6.6) (−19.3 ± 10.5) * (−28.4 ± 15.9) *, **

Maximum pitch velocity during both the swing and stance phase, as well as stride length,
decreased significantly for both eyes closed conditions. No significant differences in these features
were observed for the fogged glasses case with respect to the control case.

Results for the comparison of features for both cane and shank-mounted IMU are presented in
Figure 7. As can be seen, the results obtained using shank-mounted IMUs follow similar trends as
those obtained using the cane.
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3.4. Incorrect Cane Length

Lastly, the cane’s ability to detect changes in gait due to the incorrect configuration of the cane
length was investigated (Table 7). Users were found to rely more on the cane for incorrect cane lengths.
Intuitively, stride length increased while walking with a longer cane, whereas the opposite trend
was observed for a shorter cane. An increased mean difference in IC, as determined by MSMF with
respect to GPD, indicates a change in walking pattern due to the incorrect cane length. No significant
difference was observed in the other features for the shorter cane case. For the longer cane condition,
significant difference was observed in the swing stance ratio.
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Table 7. Features extracted from cane sensors for incorrect cane length conditions (repeated measures
ANOVA, F: F ratio, p: p-value); µ: mean value; σ: standard deviation; (results of the Bonferroni
comparison are indicated by * control , long cane or short cane and ** long cane , short cane).

ANOVA (F, p) Control (µ ± σ) Long Cane (µ ± σ) Short Cane (µ ± σ)

Max PV—Swing Phase (◦/s) (0.9, 0.392) (246.5 ± 55.5) (243.3 ± 61.7) (246.9 ± 65.4)

Max PV—Stance Phase (◦/s) (1.3, 0.275) (156.4 ± 33.3) (146.9 ± 27.7) (153.2 ± 28.3) **

Swing Stance Ratio (1.2, 0.309) (1 ± 0.2) (0.9 ± 0.3) * (1 ± 0.3)

Max Strain (ADC value) (1, 0.363) (110.6 ± 57.7) (143.4 ± 77.7) * (167 ± 85.1) *, **

Stride Length (m) (18.8, <0.001) (1.1 ± 0.4) (1.3 ± 0.4) * (0.8 ± 0.3) *, **

Difference in IC (ms) (1.9, 0.165) (−12.6 ± 6.6) (−21.6 ± 10.2) * (−23.3 ± 13) *

Results of the comparison between the features extracted by the cane and shank-mounted IMU
follow similar trends (see Figure 8).
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4. Discussion

Proactive monitoring and intervention may help to alleviate the growing demands on global
healthcare systems. This will require new and innovative solutions that can capture relevant information
about patients without intruding on their quality of life. Instrumenting existing assistive devices that a
person already uses may be an effective method of capturing changes in gait caused due to the fact of
pain, walking terrains, altered vision, etc. in a minimally invasive way. This is important as changes
in gait, particularly in response to pain originating from chronic disease, are known to be associated
with reduced mobility, disability, and quality of life. Decreases in the level of activity or avoiding
different walking terrains, such as stairs, can also be indicative of a person’s health. Similarly, changes
in vision caused due to the fact of aging may also be an indicator of health. Improper configuration
of assistive device settings can result in bad posture, potentially exacerbating problems and further
impacting quality of life. Recognizing negative trends and differences in activity levels in daily life
may provide vital information that could allow proactive monitoring of an individual’s well-being.
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Early interventions from healthcare professionals, especially for aging populations, may help reduce
incidents and enable aging in place.

The design of the tested multi-sensor cane provides a low-cost method for detecting deviations
from healthy walking patterns without requiring clinical intervention or assessment. In this study, the
cane consistently demonstrated the ability to detect changes in gait due to the presence of perturbed
gait. The mean differences observed between healthy controls and perturbed gait conditions indicate
the device can identify changes from a baseline state. Reduced pitch velocity during stance and swing
phases indicate that users tended to swing their cane more slowly for perturbed gait conditions. Smaller
values of maximum pitch velocity index with respect to the TC event indicate that users reached their
maximum velocity earlier for perturbed gait conditions, possibly suggesting apprehension towards
the end of the stride. Similarly, small values of swing stance ratio indicate that users tended to spend
more time in stance phase for perturbed gait conditions. This is likely due to the lower stability and
confidence. Higher values of maximum strain also indicate that the users relied more on the cane while
walking under perturbed gait conditions. Moreover, the negative mean difference in maximum strain
index with respect to the IC event for the stance phase indicates that users reached their peak load
later in stance phase for perturbed gait conditions. It can also be seen that stride length significantly
decreased for perturbed gait conditions. Lastly, the mean difference in IC event, determined by taking
the difference between the IC events determined by the MSMF and GPD approaches, increased for
perturbed gait. Together, this collection of metrics may be used to build indicators of changes in gait
due to the presence of pain or other factors.

Changes in gait due to the fact of walking terrains were also detectable by the multi-sensor cane.
Specifically, the swing and stance phases demonstrated higher values of pitch velocity for uphill and
downhill terrains with respect to the control case. This finding suggests that the users were swinging
their canes faster while on these terrains. By contrast, while walking on stairs, a reverse trend in
pitch velocity during swing and stance phase was observed for both upstairs and downstairs terrains.
This indicates that users tended to swing their cane slower while encountering stairs. In addition,
smaller values of swing stance ratio for stair-walking indicates that users tended to spend more time in
stance phase. As observed during the perturbed gait conditions, users again tended to rely more on
their canes for different walking terrains. The mean difference in IC events determined by the MSMF
and GPD algorithms increased for all walking terrains except for downhill walking, indicating that
changes in the walking pattern occurred due to the different terrains.

Changes in gait due to the fact of reduced vision were also investigated with results indicating
the ability of the multi-sensor cane to detect some changes from normal vision. Intuitively, the “both
eyes closed” case was notably different. A lack of vision decreased the pitch velocity during swing
and stance phases indicating that people walked slower when their vision was impaired. There was
some evidence that users relied more on their cane when their vision was impaired but not occluded;
however, no significant changes were observed. Stride length decreased significantly for the “both
eyes closed” case indicating decreased walking confidence due to the loss of vision. Lastly, mean
difference in IC event determined by MSMF with respect to GPD increased, indicating a change in
walking pattern because of a change in vision. The ability to detect gait changes during impaired or
occluded vision could be used to indicate unsafe walking conditions such as during the night without
proper lighting.

Finally, the results suggested that the multi-sensor cane is capable of identifying differences
between cane lengths. Particularly, users tended to rely more on cane due to the improper cane lengths,
and stride length increased and decreased in response to cane length with respect to the control case.
The mean difference in IC, as determined by the MSMF and GPD approaches, increased for improper
cane lengths, indicating a change in the walking pattern. Given these results, future work could seek
to develop an automated cane length adjustment protocol that optimizes gait.

Overall, the results presented here validate the ability of the multi-sensor cane to detect changes
in gait due to the presence of simulated pain, walking terrains, perturbed vision, and improper setting
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of the cane. These results were validated using a shank-mounted IMU which provided results similar
to those obtained by the cane. This is an important finding because, although the load through the
cane is distributed through the upper body, it is still able to identify changes in gait caused due to
the lower extremity. This strengthens the case for instrumented ADs as a deployable tool that could
provide valuable information and feedback to their users, healthcare providers, and loved ones.

5. Limitations and Future Work

Given the scope of this paper there are some limitations which future studies can address.
The experiments in our current work were performed with young healthy participants. This decision
was mainly motivated by the ease of recruiting university-going, young, healthy participants. The end
goal of this research was to help individuals with disease or disabilities. Our ongoing subsequent work
is seeking to extend current experiments with older adults and participants from clinical populations.
Moreover, current experiments were focused to detect changes in gait due to the single condition
confounding the measurement. Future studies are warranted to show the ability of multi-sensor canes
to extract information when more than one confounding factors are present (i.e., walking downhill
with pain in the heel, etc.). Lastly, it may be useful to characterize strides and evaluate the multi-sensor
cane in terms of force by performing tests on balance/weight board. This knowledge may provide
additional insights into capabilities of the multi-sensor cane.

6. Conclusions

In this paper, a multi-sensor cane was used to detect changes from healthy walking patterns.
Multi-sensor data were used to extract features that were compared between healthy walking conditions
and a variety of perturbed walking conditions. The multi-sensor cane approach was found to be able
to detect changes in gait that arose from changes in walking terrains such as walking uphill, downhill
or up and down flights of stairs, differences in cane length, and impaired vision. That the low-cost,
multi-sensor approach can detect changes in gait resulting from a variety of walking environments
and conditions suggests that it could greatly assist in the preventative monitoring of gait. Future
works should include monitoring the system’s ability to detect gradual changes over time in a
longitudinal study.
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